.. SPDX-FileCopyrightText: 2019-2020 Intel Corporation .. .. SPDX-License-Identifier: CC-BY-4.0 .. _onemkl_blas_gemm_batch: gemm_batch ========== Computes a group of ``gemm`` operations. .. _onemkl_blas_gemm_batch_description: .. rubric:: Description The ``gemm_batch`` routines are batched versions of :ref:`onemkl_blas_gemm`, performing multiple ``gemm`` operations in a single call. Each ``gemm`` operation perform a matrix-matrix product with general matrices. ``gemm_batch`` supports the following precisions. .. list-table:: :header-rows: 1 * - T * - ``half`` * - ``float`` * - ``double`` * - ``std::complex`` * - ``std::complex`` .. _onemkl_blas_gemm_batch_buffer: gemm_batch (Buffer Version) --------------------------- .. rubric:: Description The buffer version of ``gemm_batch`` supports only the strided API. The strided API operation is defined as: :: for i = 0 … batch_size – 1 A, B and C are matrices at offset i * stridea, i * strideb, i * stridec in a, b and c. C := alpha * op(A) * op(B) + beta * C end for where: op(X) is one of op(X) = X, or op(X) = X\ :sup:`T`, or op(X) = X\ :sup:`H`, ``alpha`` and ``beta`` are scalars, ``A``, ``B``, and ``C`` are matrices, op(``A``) is ``m`` x ``k``, op(``B``) is ``k`` x ``n``, and ``C`` is ``m`` x ``n``. The ``a``, ``b`` and ``c`` buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The total number of matrices in ``a``, ``b`` and ``c`` buffers is given by the ``batch_size`` parameter. **Strided API** .. rubric:: Syntax .. code-block:: cpp namespace oneapi::mkl::blas::column_major { void gemm_batch(sycl::queue &queue, onemkl::transpose transa, onemkl::transpose transb, std::int64_t m, std::int64_t n, std::int64_t k, T alpha, sycl::buffer &a, std::int64_t lda, std::int64_t stridea, sycl::buffer &b, std::int64_t ldb, std::int64_t strideb, T beta, sycl::buffer &c, std::int64_t ldc, std::int64_t stridec, std::int64_t batch_size) } .. code-block:: cpp namespace oneapi::mkl::blas::row_major { void gemm_batch(sycl::queue &queue, onemkl::transpose transa, onemkl::transpose transb, std::int64_t m, std::int64_t n, std::int64_t k, T alpha, sycl::buffer &a, std::int64_t lda, std::int64_t stridea, sycl::buffer &b, std::int64_t ldb, std::int64_t strideb, T beta, sycl::buffer &c, std::int64_t ldc, std::int64_t stridec, std::int64_t batch_size) } .. container:: section .. rubric:: Input Parameters queue The queue where the routine should be executed. transa Specifies op(``A``) the transposition operation applied to the matrices ``A``. See :ref:`onemkl_datatypes` for more details. transb Specifies op(``B``) the transposition operation applied to the matrices ``B``. See :ref:`onemkl_datatypes` for more details. m Number of rows of op(``A``) and ``C``. Must be at least zero. n Number of columns of op(``B``) and ``C``. Must be at least zero. k Number of columns of op(``A``) and rows of op(``B``). Must be at least zero. alpha Scaling factor for the matrix-matrix products. a Buffer holding the input matrices ``A`` with size ``stridea`` * ``batch_size``. lda The leading dimension of the matrices ``A``. It must be positive. .. list-table:: :header-rows: 1 * - - ``A`` not transposed - ``A`` transposed * - Column major - ``lda`` must be at least ``m``. - ``lda`` must be at least ``k``. * - Row major - ``lda`` must be at least ``k``. - ``lda`` must be at least ``m``. stridea Stride between different ``A`` matrices. b Buffer holding the input matrices ``B`` with size ``strideb`` * ``batch_size``. ldb The leading dimension of the matrices``B``. It must be positive. .. list-table:: :header-rows: 1 * - - ``B`` not transposed - ``B`` transposed * - Column major - ``ldb`` must be at least ``k``. - ``ldb`` must be at least ``n``. * - Row major - ``ldb`` must be at least ``n``. - ``ldb`` must be at least ``k``. strideb Stride between different ``B`` matrices. beta Scaling factor for the matrices ``C``. c Buffer holding input/output matrices ``C`` with size ``stridec`` * ``batch_size``. ldc The leading dimension of the matrices ``C``. It must be positive and at least ``m`` if column major layout is used to store matrices or at least ``n`` if column major layout is used to store matrices. stridec Stride between different ``C`` matrices. Must be at least ``ldc`` * ``n``. batch_size Specifies the number of matrix multiply operations to perform. .. container:: section .. rubric:: Output Parameters c Output buffer, overwritten by ``batch_size`` matrix multiply operations of the form ``alpha`` * op(``A``)*op(``B``) + ``beta`` * ``C``. .. container:: section .. rubric:: Notes If ``beta`` = 0, matrix ``C`` does not need to be initialized before calling ``gemm_batch``. .. container:: section .. rubric:: Throws This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here. :ref:`oneapi::mkl::invalid_argument` :ref:`oneapi::mkl::unsupported_device` :ref:`oneapi::mkl::host_bad_alloc` :ref:`oneapi::mkl::device_bad_alloc` :ref:`oneapi::mkl::unimplemented` .. _onemkl_blas_gemm_batch_usm: gemm_batch (USM Version) --------------------------- .. rubric:: Description The USM version of ``gemm_batch`` supports the group API and the strided API. The group API supports pointer and span inputs. The group API operation is defined as: :: idx = 0 for i = 0 … group_count – 1 for j = 0 … group_size – 1 A, B, and C are matrices in a[idx], b[idx] and c[idx] C := alpha[i] * op(A) * op(B) + beta[i] * C idx = idx + 1 end for end for The advantage of using span instead of pointer is that the sizes of the array can vary and the size of the span can be queried at runtime. For each GEMM parameter, except the output matrices, the span can be of size 1, the number of groups or the total batch size. For the output matrices, to ensure all computation are independent, the size of the span must be the total batch size. Depending on the size of the spans, each parameter for the GEMM computation is used as follows: - If the span has size 1, the parameter is reused for all GEMM computation. - If the span has size group_count, the parameter is reused for all GEMM within a group, but each group will have a different value for this parameter. This is like the gemm_batch group API with pointers. - If the span has size equal to the total batch size, each GEMM computation will use a different value for this parameter. The strided API operation is defined as :: for i = 0 … batch_size – 1 A, B and C are matrices at offset i * stridea, i * strideb, i * stridec in a, b and c. C := alpha * op(A) * op(B) + beta * C end for where: op(X) is one of op(X) = X, or op(X) = X\ :sup:`T`, or op(X) = X\ :sup:`H`, ``alpha`` and ``beta`` are scalars, ``A``, ``B``, and ``C`` are matrices, op(``A``) is ``m`` x ``k``, op(``B``) is ``k`` x ``n``, and ``C`` is ``m`` x ``n``. For group API, ``a``, ``b`` and ``c`` arrays contain the pointers for all the input matrices. The total number of matrices in ``a``, ``b`` and ``c`` are given by: .. math:: total\_batch\_count = \sum_{i=0}^{group\_count-1}group\_size[i] For strided API, ``a``, ``b``, ``c`` arrays contain all the input matrices. The total number of matrices in ``a``, ``b`` and ``c`` are given by the ``batch_size`` parameter. **Group API** .. rubric:: Syntax .. code-block:: cpp namespace oneapi::mkl::blas::column_major { sycl::event gemm_batch(sycl::queue &queue, onemkl::transpose *transa, onemkl::transpose *transb, std::int64_t *m, std::int64_t *n, std::int64_t *k, T *alpha, const T **a, std::int64_t *lda, const T **b, std::int64_t *ldb, T *beta, T **c, std::int64_t *ldc, std::int64_t group_count, std::int64_t *group_size, const std::vector &dependencies = {}) sycl::event gemm_batch(sycl::queue &queue, const sycl::span &transa, const sycl::span &transb, const sycl::span &m, const sycl::span &n, const sycl::span &k, const sycl::span &alpha, const sycl::span &a, const sycl::span &lda, const sycl::span &b, const sycl::span &ldb, const sycl::span &beta, sycl::span &c, const sycl::span &ldc, size_t group_count, const sycl::span &group_sizes, const std::vector &dependencies = {}) } .. code-block:: cpp namespace oneapi::mkl::blas::row_major { sycl::event gemm_batch(sycl::queue &queue, onemkl::transpose *transa, onemkl::transpose *transb, std::int64_t *m, std::int64_t *n, std::int64_t *k, T *alpha, const T **a, std::int64_t *lda, const T **b, std::int64_t *ldb, T *beta, T **c, std::int64_t *ldc, std::int64_t group_count, std::int64_t *group_size, const std::vector &dependencies = {}) sycl::event gemm_batch(sycl::queue &queue, const sycl::span &transa, const sycl::span &transb, const sycl::span &m, const sycl::span &n, const sycl::span &k, const sycl::span &alpha, const sycl::span &a, const sycl::span &lda, const sycl::span &b, const sycl::span &ldb, const sycl::span &beta, sycl::span &c, const sycl::span &ldc, size_t group_count, const sycl::span &group_sizes, const std::vector &dependencies = {}) } .. container:: section .. rubric:: Input Parameters queue The queue where the routine should be executed. transa Array or span of ``group_count`` ``onemkl::transpose`` values. ``transa[i]`` specifies the form of op(``A``) used in the matrix multiplication in group ``i``. See :ref:`onemkl_datatypes` for more details. transb Array or span of ``group_count`` ``onemkl::transpose`` values. ``transb[i]`` specifies the form of op(``B``) used in the matrix multiplication in group ``i``. See :ref:`onemkl_datatypes` for more details. m Array or span of ``group_count`` integers. ``m[i]`` specifies the number of rows of op(``A``) and ``C`` for every matrix in group ``i``. All entries must be at least zero. n Array or span of ``group_count`` integers. ``n[i]`` specifies the number of columns of op(``B``) and ``C`` for every matrix in group ``i``. All entries must be at least zero. k Array or span of ``group_count`` integers. ``k[i]`` specifies the number of columns of op(``A``) and rows of op(``B``) for every matrix in group ``i``. All entries must be at least zero. alpha Array or span of ``group_count`` scalar elements. ``alpha[i]`` specifies the scaling factor for every matrix-matrix product in group ``i``. a Array of pointers or span of input matrices ``A`` with size ``total_batch_count``. See :ref:`matrix-storage` for more details. lda Array or span of ``group_count`` integers. ``lda[i]`` specifies the leading dimension of ``A`` for every matrix in group ``i``. All entries must be positive. .. list-table:: :header-rows: 1 * - - ``A`` not transposed - ``A`` transposed * - Column major - ``lda[i]`` must be at least ``m[i]``. - ``lda[i]`` must be at least ``k[i]``. * - Row major - ``lda[i]`` must be at least ``k[i]``. - ``lda[i]`` must be at least ``m[i]``. b Array of pointers or span of input matrices ``B`` with size ``total_batch_count``. See :ref:`matrix-storage` for more details. ldb Array or span of ``group_count`` integers. ``ldb[i]`` specifies the leading dimension of ``B`` for every matrix in group ``i``. All entries must be positive. .. list-table:: :header-rows: 1 * - - ``B`` not transposed - ``B`` transposed * - Column major - ``ldb[i]`` must be at least ``k[i]``. - ``ldb[i]`` must be at least ``n[i]``. * - Row major - ``ldb[i]`` must be at least ``n[i]``. - ``ldb[i]`` must be at least ``k[i]``. beta Array or span of ``group_count`` scalar elements. ``beta[i]`` specifies the scaling factor for matrix ``C`` for every matrix in group ``i``. c Array of pointers or span of input/output matrices ``C`` with size ``total_batch_count``. See :ref:`matrix-storage` for more details. ldc Array or span of ``group_count`` integers. ``ldc[i]`` specifies the leading dimension of ``C`` for every matrix in group ``i``. All entries must be positive and ``ldc[i]`` must be at least ``m[i]`` if column major layout is used to store matrices or at least ``n[i]`` if row major layout is used to store matrices. group_count Specifies the number of groups. Must be at least 0. group_size Array or span of ``group_count`` integers. ``group_size[i]`` specifies the number of matrix multiply products in group ``i``. All entries must be at least 0. dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies. .. container:: section .. rubric:: Output Parameters c Overwritten by the ``m[i]``-by-``n[i]`` matrix calculated by (``alpha[i]`` * op(``A``)*op(``B``) + ``beta[i]`` * ``C``) for group ``i``. .. container:: section .. rubric:: Notes If ``beta`` = 0, matrix ``C`` does not need to be initialized before calling ``gemm_batch``. .. container:: section .. rubric:: Return Values Output event to wait on to ensure computation is complete. .. container:: section .. rubric:: Output Parameters c Overwritten by the ``m[i]``-by-``n[i]`` matrix calculated by (``alpha[i]`` * op(``A``)*op(``B``) + ``beta[i]`` * ``C``) for group ``i``. .. container:: section .. rubric:: Notes If ``beta`` = 0, matrix ``C`` does not need to be initialized before calling ``gemm_batch``. .. container:: section .. rubric:: Return Values Output event to wait on to ensure computation is complete. **Strided API** .. rubric:: Syntax .. code-block:: cpp namespace oneapi::mkl::blas::column_major { sycl::event gemm_batch(sycl::queue &queue, onemkl::transpose transa, onemkl::transpose transb, std::int64_t m, std::int64_t n, std::int64_t k, T alpha, const T *a, std::int64_t lda, std::int64_t stridea, const T *b, std::int64_t ldb, std::int64_t strideb, T beta, T *c, std::int64_t ldc, std::int64_t stridec, std::int64_t batch_size, const std::vector &dependencies = {}) } .. code-block:: cpp namespace oneapi::mkl::blas::row_major { sycl::event gemm_batch(sycl::queue &queue, onemkl::transpose transa, onemkl::transpose transb, std::int64_t m, std::int64_t n, std::int64_t k, T alpha, const T *a, std::int64_t lda, std::int64_t stridea, const T *b, std::int64_t ldb, std::int64_t strideb, T beta, T *c, std::int64_t ldc, std::int64_t stridec, std::int64_t batch_size, const std::vector &dependencies = {}) } .. container:: section .. rubric:: Input Parameters queue The queue where the routine should be executed. transa Specifies op(``A``) the transposition operation applied to the matrices ``A``. See :ref:`onemkl_datatypes` for more details. transb Specifies op(``B``) the transposition operation applied to the matrices ``B``. See :ref:`onemkl_datatypes` for more details. m Number of rows of op(``A``) and ``C``. Must be at least zero. n Number of columns of op(``B``) and ``C``. Must be at least zero. k Number of columns of op(``A``) and rows of op(``B``). Must be at least zero. alpha Scaling factor for the matrix-matrix products. a Pointer to input matrices ``A`` with size ``stridea`` * ``batch_size``. lda The leading dimension of the matrices ``A``. It must be positive. .. list-table:: :header-rows: 1 * - - ``A`` not transposed - ``A`` transposed * - Column major - ``lda`` must be at least ``m``. - ``lda`` must be at least ``k``. * - Row major - ``lda`` must be at least ``k``. - ``lda`` must be at least ``m``. stridea Stride between different ``A`` matrices. b Pointer to input matrices ``B`` with size ``strideb`` * ``batch_size``. ldb The leading dimension of the matrices``B``. It must be positive. .. list-table:: :header-rows: 1 * - - ``B`` not transposed - ``B`` transposed * - Column major - ``ldb`` must be at least ``k``. - ``ldb`` must be at least ``n``. * - Row major - ``ldb`` must be at least ``n``. - ``ldb`` must be at least ``k``. strideb Stride between different ``B`` matrices. beta Scaling factor for the matrices ``C``. c Pointer to input/output matrices ``C`` with size ``stridec`` * ``batch_size``. ldc The leading dimension of the matrices ``C``. It must be positive and at least ``m`` if column major layout is used to store matrices or at least ``n`` if column major layout is used to store matrices. stridec Stride between different ``C`` matrices. batch_size Specifies the number of matrix multiply operations to perform. dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies. .. container:: section .. rubric:: Output Parameters c Output matrices, overwritten by ``batch_size`` matrix multiply operations of the form ``alpha`` * op(``A``)*op(``B``) + ``beta`` * ``C``. .. container:: section .. rubric:: Notes If ``beta`` = 0, matrix ``C`` does not need to be initialized before calling ``gemm_batch``. .. container:: section .. rubric:: Return Values Output event to wait on to ensure computation is complete. .. container:: section .. rubric:: Throws This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here. :ref:`oneapi::mkl::invalid_argument` :ref:`oneapi::mkl::unsupported_device` :ref:`oneapi::mkl::host_bad_alloc` :ref:`oneapi::mkl::device_bad_alloc` :ref:`oneapi::mkl::unimplemented` **Parent topic:** :ref:`blas-like-extensions`