
oneAPI Specification
Release 1.4-provisional-rev-1

Intel

Sep 13, 2024

CONTENTS

1 Introduction 2
1.1 Target Audience . 2
1.2 Goals of the Specification . 3
1.3 Definitions . 3
1.4 Contribution Guidelines . 3

2 Software Architecture 4
2.1 oneAPI Platform . 4
2.2 API Programming Example . 6
2.3 Direct Programming Example . 6

3 oneDPL 8
3.1 Namespaces . 8
3.2 Parallel API . 9

3.2.1 Execution Policies . 9
3.2.2 Buffer Wrappers . 12
3.2.3 Iterators . 13
3.2.4 Parallel Algorithms . 18

3.3 SYCL Kernels API . 22
3.3.1 Supported C++ Standard Library APIs and Algorithms . 22
3.3.2 Random Number Generation . 23
3.3.3 Function Objects . 25

4 oneDNN 26
4.1 Introduction . 27

4.1.1 Graph Extension . 28
4.1.2 General API notes . 28
4.1.3 Error Handling . 29
4.1.4 Namespaces . 29

4.2 Conventions . 29
4.2.1 Variable (Tensor) Names . 29
4.2.2 RNN-Specific Notation . 30

4.3 Execution Model . 31
4.3.1 Engine . 31
4.3.2 Stream . 33

4.4 Data model . 34
4.4.1 Data types . 34
4.4.2 Memory . 39

4.5 Primitives . 58
4.5.1 Common Definitions . 59

i

4.5.2 Attributes . 83
4.5.3 Batch Normalization . 96
4.5.4 Binary . 104
4.5.5 Concat . 107
4.5.6 Convolution and Deconvolution . 109
4.5.7 Elementwise . 139
4.5.8 Inner Product . 148
4.5.9 Layer normalization . 156
4.5.10 Local Response Normalization . 164
4.5.11 Matrix Multiplication . 170
4.5.12 Pooling . 173
4.5.13 Prelu . 180
4.5.14 Reduction . 184
4.5.15 Reorder . 187
4.5.16 Resampling . 191
4.5.17 RNN . 197
4.5.18 Shuffle . 237
4.5.19 Softmax . 242
4.5.20 Sum . 247

4.6 Graph extension . 249
4.6.1 Common Definitions . 249
4.6.2 Programming Model . 263
4.6.3 Data Model . 267
4.6.4 Operation Set . 269

4.7 Open Source Implementation . 383
4.8 Implementation Notes . 383
4.9 Testing . 383

5 oneCCL 384
5.1 Introduction . 384
5.2 Namespaces . 384

5.2.1 oneapi::ccl namespace . 384
5.2.2 ccl namespace . 385

5.3 Current Version of this oneCCL Specification . 385
5.4 Definitions . 385

5.4.1 oneCCL Concepts . 385
5.4.2 Communication Operations . 391
5.4.3 Error handling . 406

5.5 Programming Model . 407
5.5.1 Generic Workflow . 407

6 oneDAL 409
6.1 Introduction . 409
6.2 Glossary . 411

6.2.1 Machine learning terms . 411
6.2.2 oneDAL terms . 413
6.2.3 Common oneAPI terms . 414

6.3 Mathematical Notations . 415
6.4 Programming model . 415

6.4.1 End-to-end example . 416
6.4.2 Descriptors . 417
6.4.3 Operations . 419
6.4.4 Computational modes . 424

6.5 Common Interface . 424

ii

6.5.1 Current Version of this oneDAL Specification . 424
6.5.2 Header files . 425
6.5.3 Namespaces . 425
6.5.4 Error handling . 426
6.5.5 Common type definitions . 428

6.6 Data management . 431
6.6.1 Key concepts . 431
6.6.2 Details . 435

6.7 Algorithms . 463
6.7.1 Clustering . 464
6.7.2 Nearest Neighbors (kNN) . 477
6.7.3 Decomposition . 485

6.8 Appendix . 494
6.8.1 k-d Tree . 494

6.9 Bibliography . 494

7 oneTBB 495
7.1 General Information . 495

7.1.1 Introduction . 495
7.1.2 Notational Conventions . 495
7.1.3 Identifiers . 497
7.1.4 Named Requirements . 497
7.1.5 Thread Safety . 516

7.2 oneTBB Interfaces . 516
7.2.1 Configuration . 516
7.2.2 Algorithms . 519
7.2.3 Flow Graph . 552
7.2.4 Task Scheduler . 605
7.2.5 Containers . 626
7.2.6 Thread Local Storage . 874

7.3 oneTBB Auxiliary Interfaces . 885
7.3.1 Memory Allocation . 885
7.3.2 Mutual Exclusion . 894
7.3.3 Timing . 906
7.3.4 info Namespace . 908

7.4 oneTBB Deprecated Interfaces . 909
7.4.1 task_arena::attach . 909

8 oneMKL 911
8.1 oneMKL Architecture . 911

8.1.1 Execution Model . 912
8.1.2 Memory Model . 914
8.1.3 API Design . 914
8.1.4 Exceptions and Error Handling . 919
8.1.5 Other Features . 920

8.2 oneMKL Domains . 920
8.2.1 Dense Linear Algebra . 921
8.2.2 Sparse Linear Algebra . 1486
8.2.3 Discrete Fourier Transforms . 1542
8.2.4 Random Number Generators . 1576
8.2.5 Summary Statistics . 1727
8.2.6 Vector Math . 1777

8.3 oneMKL Appendix . 1995
8.3.1 Future considerations . 1995

iii

8.3.2 Acknowledgment . 1995

9 Legal Notices and Disclaimers 1996

Bibliography 1997

Index 1998

iv

oneAPI Specification, Release 1.4-provisional-rev-1

oneAPI is an open, free, and standards-based programming system that provides portability and performance across
accelerators and generations of hardware. oneAPI consists of a language and libraries for creating parallel applications:

• oneDPL: A companion to the DPC++ Compiler for programming oneAPI devices with APIs from C++ standard
library, Parallel STL, and extensions.

• oneDNN : High performance implementations of primitives for deep learning frameworks

• oneCCL: Communication primitives for scaling deep learning frameworks across multiple devices

• oneDAL: Algorithms for accelerated data science

• oneTBB: Library for adding thread-based parallelism to complex applications on multiprocessors

• oneMKL: High performance math routines for science, engineering, and financial applications

CONTENTS 1

CHAPTER

ONE

INTRODUCTION

oneAPI simplifies software development by providing the same languages and programming models across accelerator
architectures. In this section, we introduce the programming model.

Parallel application development is a combination of API programming, where the parallel algorithm is hidden be-
hind an API provided by the system, and direct programming, where the application programmer writes the parallel
algorithm.

When using API programming, a developer implements performance critical sections of the program with library calls.
Well-defined and mature problem domains have high-performance solutions packaged as libraries. oneAPI defines a
set of APIs for the most used data parallel domains, and oneAPI platforms provide library implementations across
a variety of accelerators. Where possible, the API is based on established standards like BLAS. API programming
enables a programmer to attain high performance across a diverse set of accelerators with minimal coding & tuning.

Some problem domains are not well suited to API programming because no standard solution exists or because so-
lutions require a level of customization that cannot be easily implemented in a library. In this case, a developer uses
direct programming and must explicitly code the parallel algorithm. oneAPI’s programming model is based on data
parallelism, where the same computation is performed on each data element, and parallelism of the application scales
as the data scales. By allowing the programmer to directly express parallelism, data parallel algorithms make it possible
to productively create highly efficient algorithms for parallel architectures.

Data parallel algorithms are used for many of the most computationally demanding problems including scientific com-
puting, artificial intelligence, and visualization. Data parallel algorithms can be efficiently mapped to a diverse set of
architectures: multi-core CPUs, GPUs, systolic arrays, and FPGAs.

1.1 Target Audience

The expected audience for this specification includes: application developers, middleware developers, system software
providers, and hardware providers. As a contributor to this specification, you will shape the accelerator software
ecosystem. A productive and high performing system must take into account the constraints at all levels of the software
stack. As a user of this document, you can ensure that your components will inter-operate with applications and system
software for the oneAPI platform.

2

oneAPI Specification, Release 1.4-provisional-rev-1

1.2 Goals of the Specification

oneAPI seeks to provide:

• Source-level compatibility: oneAPI applications and middleware port to a conformant oneAPI platform through
recompilation and re-tuning.

• Performance transparency: API’s and language construct allow the programmer enough control over the map-
ping to hardware to create an efficient solution

• Software stack portability: Platform providers can port a oneAPI software stack by implementing the oneAPI
Level Zero interface.

1.3 Definitions

This specification uses the definition of must, must not, required, and so on specified in RFC 2119.

1.4 Contribution Guidelines

See Contributing.

1.2. Goals of the Specification 3

https://tools.ietf.org/html/rfc2119
https://github.com/uxlfoundation/CONTRIBUTING.rst

CHAPTER

TWO

SOFTWARE ARCHITECTURE

oneAPI provides a common developer interface across a range of data parallel accelerators (see the figure below).
Programmers use SYCL for both API programming and direct programming. The capabilities of a oneAPI platform
are determined by the Level Zero interface, which provides system software a common abstraction for a oneAPI device.

2.1 oneAPI Platform

A oneAPI platform is comprised of a host and a collection of devices. The host is typically a multi-core CPU, and the
devices are one or more GPUs, FPGAs, and other accelerators. The processor serving as the host can also be targeted
as a device by the software.

Each device has an associated command queue. A application that employs oneAPI runs on the host, following standard
C++ execution semantics. To run a function object on a device, the application submits a command group containing
the function object to the device’s queue. A function object contains a function definition together with associated
variables. A function object submitted to a queue is also referred to as a data parallel kernel or simply a kernel.

4

oneAPI Specification, Release 1.4-provisional-rev-1

The application running on the host and the functions running on the devices communicate through memory. oneAPI
defines several mechanisms for sharing memory across the platform, depending on the capabilities of the devices:

Memory Sharing Mechanism Description
Buffer objects

An application can create buffer objects
to pass data to devices. A buffer is an
array of data. A command group will define
accessor objects to identify which
buffers are accessed in this call to the
device. The oneAPI runtime will ensure the
data in the buffer is accessible to the
function running on the device. The
buffer-accessor mechanism is available on
all oneAPI platforms

Unified addressing

Unified addressing guarantees that the host and
all devices will share a unified address space.
Pointer values in the unified address space will
always refer to the same location in memory.

Unified shared memory

Unified shared memory enables data to be shared
through pointers without using buffers and
accessors. There are several levels of support
for this feature, depending on the capabilities
of the underlying device.

The scheduler determines when a command group is run on a device. The following mechanisms are used to determine
when a command group is ready to run.

• If the buffer-accessor method is used, the command group is ready when the buffers are defined and copied to
the device as necessary.

• If an ordered queue is used for a device, the command group is ready as soon as the prior command groups in
the queue are finished.

• If unified shared memory is used, you must specify a set of event objects which the command group depends on,
and the command group is ready when all of the events are completed.

The application on the host and the functions on the devices can synchronize through events, which are objects that
can coordinate execution. If the buffer-accessor mechanism is used, the application and device can also synchronize
through a host accessor, through the destruction of a buffer object, or through other more advanced mechanisms.

2.1. oneAPI Platform 5

oneAPI Specification, Release 1.4-provisional-rev-1

2.2 API Programming Example

API programming requires the programmer to specify the target device and the memory communication strategy. In
the following example, we call the oneMKL matrix multiply routine, GEMM. We are writing in SYCL and omitting
irrelevant details.

We create a queue initialized with a gpu_selector to specify that we want the computation performed on a GPU, and we
define buffers to hold the arrays allocated on the host. Compared to a standard C++ GEMM call, we add a parameter
to specify the queue, and we replace the references to the arrays with references to the buffers that contain the arrays.
Otherwise this is the standard GEMM C++ interface.

using namespace cl::sycl;

// declare host arrays
double *A = new double[M*N];
double *B = new double[N*P];
double *C = new double[M*P];

{
// Initializing the devices queue with a gpu_selector
queue q{gpu_selector()};

// Creating 1D buffers for matrices which are bound to host arrays
buffer<double, 1> a{A, range<1>{M*N}};
buffer<double, 1> b{B, range<1>{N*P}};
buffer<double, 1> c{C, range<1>{M*P}};

mkl::transpose nT = mkl::transpose::nontrans;
// Syntax
// void gemm(queue &exec_queue, transpose transa, transpose transb,
// int64_t m, int64_t n, int64_t k, T alpha,
// buffer<T,1> &a, int64_t lda,
// buffer<T,1> &b, int64_t ldb, T beta,
// buffer<T,1> &c, int64_t ldc);
// call gemm
mkl::blas::gemm(q, nT, nT, M, P, N, 1.0, a, M, b, N, 0.0, c, M);

}
// when we exit the block, the buffer destructor will write result back to C.

2.3 Direct Programming Example

With direct programming, we specify the target device and the memory communication strategy, as we do for API
programming. In addition, we must define and submit a command group to perform the computation. In the following
example, we write a simple data parallel matrix multiply. We are writing in SYCL and omitting irrelevant details.

We create a queue initialized with a gpu_selector to specify that the command group should run on the GPU, and we
define buffers to hold the arrays allocated on the host. We then submit the command group to the queue to perform the
computation. The command group defines accessors to specify we are reading arrays A and B and writing to C. We
then write a C++ lambda to create a function object that computes one element of the resulting matrix multiply. We
specify this function object as a parameter to a parallel_for which maps the function across the arrays A and B in
parallel. When we leave the scope, the destructor for the buffer object holding C writes the data back to the host array.

2.2. API Programming Example 6

oneAPI Specification, Release 1.4-provisional-rev-1

#include <CL/sycl.hpp>
using namespace sycl;

int main() {
// declare host arrays
double *Ahost = new double[M*N];
double *Bhost = new double[N*P];
double *Chost = new double[M*P];

{
// Initializing the devices queue with a gpu_selector
queue q{gpu_selector()};

// Creating 2D buffers for matrices which are bound to host arrays
buffer<double, 2> a{Ahost, range<2>{M,N}};
buffer<double, 2> b{Bhost, range<2>{N,P}};
buffer<double, 2> c{Chost, range<2>{M,P}};

// Submitting command group to queue to compute matrix c=a*b
q.submit([&](handler &h){

// Read from a and b, write to c
auto A = a.get_access<access::mode::read>(h);
auto B = b.get_access<access::mode::read>(h);
auto C = c.get_access<access::mode::write>(h);

int WidthA = a.get_range()[1];

// Executing kernel
h.parallel_for(range<2>{M, P},

[=](id<2> index){
int row = index[0];
int col = index[1];

// Compute the result of one element in c
double sum = 0.0;
for (int i = 0; i < WidthA; i++) {
sum += A[row][i] * B[i][col];

}
C[index] = sum;

});
});

}
// when we exit the block, the buffer destructor will write result back to C.

}

2.3. Direct Programming Example 7

CHAPTER

THREE

ONEDPL

The oneAPI DPC++ Library (oneDPL) provides the functionality specified in the C++ standard, with extensions to
support data parallelism and offloading to devices, and with extensions to simplify its usage for implementing data
parallel algorithms.

Note: Unless specified otherwise, in this document the C++ standard refers to ISO/IEC 14882:2017 Programming
languages - C++, commonly known as C++17.

The library is comprised of the following components:

• Parallel API:

– Parallel algorithms, complemented with execution policies and companion APIs for running on oneAPI
devices.

– An additional set of library classes and functions that are known to be useful in practice but are not yet
included into C++ or SYCL specifications.

• SYCL Kernels API:

– A subset of the C++ standard library which can be used with buffers and data parallel kernels.

– Support of random number generation including engines and distributions.

– Various utilities in addition to the C++ standard functionality.

3.1 Namespaces

oneDPL uses namespace oneapi::dpl and a shorter variant namespace dpl for all functionality including parallel
algorithms, oneDPL execution policies, etc. For the subset of the standard C++ library for kernels, the standard class
and function names are also aliased in namespace oneapi::dpl.

oneDPL uses nested namespaces for the functionality aligned with the C++ standard. The names of those names-
paces are the same as in namespace std. For example, oneDPL execution policies are provided in namespace
oneapi::dpl::execution.

8

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard

oneAPI Specification, Release 1.4-provisional-rev-1

3.2 Parallel API

oneDPL provides the set of parallel algorithms as defined by the C++ Standard, including parallel algorithms added in
the 6th edition known as C++20. All those algorithms work with C++ Standard aligned execution policies and with
device execution policies.

Additionally, oneDPL provides wrapper functions for SYCL buffers, special iterators, and a set of non-standard parallel
algorithms.

3.2.1 Execution Policies

C++ Standard Aligned Execution Policies

oneDPL has the set of execution policies and related utilities that are semantically aligned with the C++ Standard, 6th
edition (C++20):

// Defined in <oneapi/dpl/execution>

namespace oneapi {
namespace dpl {
namespace execution {

class sequenced_policy { /*unspecified*/ };
class parallel_policy { /*unspecified*/ };
class parallel_unsequenced_policy { /*unspecified*/ };
class unsequenced_policy { /*unspecified*/ };

inline constexpr sequenced_policy seq { /*unspecified*/ };
inline constexpr parallel_policy par { /*unspecified*/ };
inline constexpr parallel_unsequenced_policy par_unseq { /*unspecified*/ };
inline constexpr unsequenced_policy unseq { /*unspecified*/ };

template <class T>
struct is_execution_policy;

template <class T>
inline constexpr bool is_execution_policy_v = oneapi::dpl::execution::is_execution_

→˓policy<T>::value;
}

}
}

See “Execution policies” in the C++ Standard for more information.

3.2. Parallel API 9

https://isocpp.org/std/the-standard
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard

oneAPI Specification, Release 1.4-provisional-rev-1

Device Execution Policy

A device execution policy class oneapi::dpl::execution::device_policy specifies the SYCL device and queue
to run oneDPL algorithms.

// Defined in <oneapi/dpl/execution>

namespace oneapi {
namespace dpl {
namespace execution {

template <typename KernelName = /*unspecified*/>
class device_policy;

const device_policy<> dpcpp_default;

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::queue);

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::device);

template <typename NewKernelName, typename OldKernelName>
device_policy<NewKernelName>
make_device_policy(const device_policy<OldKernelName>& = dpcpp_default);

}
}

}

dpcpp_default is a predefined execution policy object to run algorithms on the default SYCL device.

device_policy Class

template <typename KernelName = /*unspecified*/>
class device_policy
{
public:

using kernel_name = KernelName;

device_policy();
template <typename OtherName>
device_policy(const device_policy<OtherName>&);
explicit device_policy(sycl::queue);
explicit device_policy(sycl::device);

sycl::queue queue() const;
operator sycl::queue() const;

};

An object of the device_policy type is associated with a sycl::queue that is used to run algorithms on a
SYCL device. When an algorithm runs with device_policy it is capable of processing SYCL buffers (passed via

3.2. Parallel API 10

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::dpl::begin/end), data in the host memory and data in Unified Shared Memory (USM), including USM
device memory. Data placed in the host memory and USM can only be passed to oneDPL algorithms as pointers and
random access iterators. The way to transfer data from the host memory to a device and back is unspecified; per-element
data movement to/from a temporary storage is a possible valid implementation.

The KernelName template parameter, also aliased as kernel_name within the class template, is to explicitly provide
a name for SYCL kernels executed by an algorithm the policy is passed to.

device_policy()

Construct a policy object associated with a queue created with the default device selector.

template <typename OtherName>
device_policy(const device_policy<OtherName>& policy)

Construct a policy object associated with the same queue as policy, by changing the kernel name of the given policy
to kernel_name defined for the new policy.

explicit device_policy(sycl::queue queue)

Construct a policy object associated with the given queue.

explicit device_policy(sycl::device device)

Construct a policy object associated with a queue created for the given device.

sycl::queue queue() const

Return the queue the policy is associated with.

operator sycl::queue() const

Allow implicit conversion of the policy to a sycl::queue object.

make_device_policy Function

The make_device_policy function templates simplify device_policy creation.

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::queue queue)

Return a policy object associated with queue, with a kernel name possibly provided as the template argument, otherwise
unspecified.

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::device device)

Return a policy object to run algorithms on device, with a kernel name possibly provided as the template argument,
otherwise unspecified.

template <typename NewKernelName, typename OldKernelName>
device_policy<NewKernelName>
make_device_policy(const device_policy<OldKernelName>& policy = dpcpp_default)

3.2. Parallel API 11

oneAPI Specification, Release 1.4-provisional-rev-1

Return a policy object constructed from policy, with a new kernel name provided as the template argument. If no
policy object is provided, the new policy is constructed from dpcpp_default.

3.2.2 Buffer Wrappers

// Defined in <oneapi/dpl/iterator>

namespace oneapi {
namespace dpl {

template < typename T, typename AllocatorT, typename TagT >
/*unspecified*/ begin(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

TagT tag = sycl::read_write);

template < typename T, typename AllocatorT, typename TagT >
/*unspecified*/ begin(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

TagT tag, sycl::property::no_init);

template < typename T, typename AllocatorT >
/*unspecified*/ begin(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::property::no_init);

template < typename T, typename AllocatorT, typename TagT >
/*unspecified*/ end(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

TagT tag = sycl::read_write);

template < typename T, typename AllocatorT, typename TagT >
/*unspecified*/ end(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

TagT tag, sycl::property::no_init);

template < typename T, typename AllocatorT >
/*unspecified*/ end(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::property::no_init);

}
}

oneapi::dpl::begin and oneapi::dpl::end are helper functions for passing SYCL buffers to oneDPL algorithms.
These functions accept a buffer and return an object of an unspecified type that satisfies the following requirements:

• it is CopyConstructible, CopyAssignable, and comparable with operators == and !=;

• the following expressions are valid: a + n, a - n, a - b, where a and b are objects of the type, and n is an
integer value;

• it provides the get_buffer() method that returns the buffer passed to the begin or end function.

When invoking an algorithm, the buffer passed to begin should be the same as the buffer passed to end. Otherwise,
the behavior is undefined.

SYCL deduction tags (the TagT parameters) and sycl::property::no_init allow to specify an access mode to be
used by algorithms for accessing the buffer. The mode serves as a hint, and can be overridden depending on semantics
of the algorithm. When invoking an algorithm, the same access mode arguments should be used for begin and end.
Otherwise, the behavior is undefined.

3.2. Parallel API 12

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html

oneAPI Specification, Release 1.4-provisional-rev-1

using namespace oneapi;
auto buf_begin = dpl::begin(buf, sycl::write_only);
auto buf_end_1 = dpl::end(buf, sycl::write_only);
auto buf_end_2 = dpl::end(buf, sycl::write_only, sycl::no_init);
dpl::fill(dpl::execution::dpcpp_default, buf_begin, buf_end_1, 42); // allowed
dpl::fill(dpl::execution::dpcpp_default, buf_begin, buf_end_2, 42); // not allowed

3.2.3 Iterators

The oneDPL iterators are defined in the <oneapi/dpl/iterator> header, in namespace oneapi::dpl.

Let us define a named requirement, AdaptingIteratorSource, to describe valid random access iterator-like
types that can be used as source for oneDPL iterators as described below. The type Iter satisfies the
AdaptingIteratorSource named requirement if it is any of the following:

• A random access iterator

• The unspecified iterator-like type returned by oneapi::dpl::begin or oneapi::dpl::end

• A permutation_iterator

• A transform_iterator

• A counting_iterator

• A discard_iterator

• A zip_iterator

template <typename Integral>
class counting_iterator
{
public:
using difference_type = /* a signed integer type of the same size as Integral */;
using value_type = Integral;
using reference = Integral;

counting_iterator();
explicit counting_iterator(Integral init);

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const counting_iterator& it) const;

counting_iterator operator+(difference_type forward) const;
counting_iterator operator-(difference_type backward) const;

counting_iterator& operator+=(difference_type forward);
counting_iterator& operator-=(difference_type backward);

counting_iterator& operator++();
counting_iterator& operator--();
counting_iterator& operator++(int);
counting_iterator& operator--(int);

(continues on next page)

3.2. Parallel API 13

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool operator==(const counting_iterator& it) const;
bool operator!=(const counting_iterator& it) const;
bool operator<(const counting_iterator& it) const;
bool operator>(const counting_iterator& it) const;
bool operator<=(const counting_iterator& it) const;
bool operator>=(const counting_iterator& it) const;

};

counting_iterator is a random access iterator-like type that represents an integer counter. When dereferenced,
counting_iterator provides an Integral rvalue equal to the value of the counter; dereference operations cannot be
used to modify the counter. The arithmetic and comparison operators of counting_iterator behave as if applied to
the values of Integral type representing the counters of the iterator instances passed to the operators.

class discard_iterator
{
public:
using difference_type = std::ptrdiff_t;
using value_type = /* unspecified */;
using reference = /* unspecified */;

discard_iterator();
explicit discard_iterator(difference_type init);

reference operator*() const;
reference operator[](difference_type) const;

difference_type operator-(const discard_iterator& it) const;

discard_iterator operator+(difference_type forward) const;
discard_iterator operator-(difference_type backward) const;

discard_iterator& operator+=(difference_type forward);
discard_iterator& operator-=(difference_type backward);

discard_iterator& operator++();
discard_iterator& operator--();
discard_iterator operator++(int);
discard_iterator operator--(int);

bool operator==(const discard_iterator& it) const;
bool operator!=(const discard_iterator& it) const;
bool operator<(const discard_iterator& it) const;
bool operator>(const discard_iterator& it) const;

};

discard_iterator is a random access iterator-like type that, when dereferenced, provides an lvalue that may be as-
signed an arbitrary value. The assignment has no effect on the discard_iterator instance; the write is discarded.
The arithmetic and comparison operators of discard_iterator behave as if applied to integer counter values main-
tained by the iterator instances to determine their position relative to each other.

template <typename SourceIterator, typename IndexMap>
(continues on next page)

3.2. Parallel API 14

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

class permutation_iterator
{
public:
using difference_type =

typename std::iterator_traits<SourceIterator>::difference_type;
using value_type = typename std::iterator_traits<SourceIterator>::value_type;
using pointer = typename std::iterator_traits<SourceIterator>::pointer;
using reference = typename std::iterator_traits<SourceIterator>::reference;

permutation_iterator(const SourceIterator& input1, const IndexMap& input2,
std::size_t index = 0);

SourceIterator base() const;

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const permutation_iterator& it) const;

permutation_iterator operator+(difference_type forward) const;
permutation_iterator operator-(difference_type backward) const;

permutation_iterator& operator+=(difference_type forward);
permutation_iterator& operator-=(difference_type forward);

permutation_iterator& operator++();
permutation_iterator& operator--();
permutation_iterator operator++(int);
permutation_iterator operator--(int);

bool operator==(const permutation_iterator& it) const;
bool operator!=(const permutation_iterator& it) const;
bool operator<(const permutation_iterator& it) const;
bool operator>(const permutation_iterator& it) const;
bool operator<=(const permutation_iterator& it) const;
bool operator>=(const permutation_iterator& it) const;

};

permutation_iterator is a random access iterator-like type whose dereferenced value set is defined by the source
iterator provided, and whose iteration order over the dereferenced value set is defined by either another iterator or a
functor that maps the permutation_iterator index to the index of the source iterator. The arithmetic and compar-
ison operators of permutation_iterator behave as if applied to integer counter values maintained by the iterator
instances to determine their position in the index map. SourceIterator must satisfy AdaptingIteratorSource.

The type IndexMap must be one of the following:

• A random access iterator

• The unspecified iterator-like type returned by oneapi::dpl::begin or oneapi::dpl::end

• A permutation_iterator

• A transform_iterator

• A counting_iterator

3.2. Parallel API 15

oneAPI Specification, Release 1.4-provisional-rev-1

• A functor with a signature equivalent to T operator()(const T&) const where T is a
std::iterator_traits<SourceIterator>::difference_type

permutation_iterator::operator* uses the counter value of the instance on which it is invoked to index into the
index map. The corresponding value in the map is then used to index into the value set defined by the source iterator.
The resulting lvalue is returned as the result of the operator.

permutation_iterator::operator[] uses the parameter i to index into the index map. The corresponding value
in the map is then used to index into the value set defined by the source iterator. The resulting lvalue is returned as the
result of the operator.

template <typename SourceIterator, typename IndexMap>
permutation_iterator<SourceIterator, IndexMap>
make_permutation_iterator(SourceIterator source, IndexMap map);

make_permutation_iterator constructs and returns an instance of permutation_iterator using the source it-
erator and index map provided.

template <typename Iterator, typename UnaryFunc>
class transform_iterator
{
public:
using difference_type = typename std::iterator_traits<Iterator>::difference_type;
using reference = typename std::invoke_result<UnaryFunc,

typename std::iterator_traits<Iterator>::reference>::type;
using value_type = typename std::remove_reference<reference>::type;
using pointer = typename std::iterator_traits<Iterator>::pointer;

Iterator base() const;

transform_iterator(Iterator it, UnaryFunc unary_func);
transform_iterator(const transform_iterator& input);
transform_iterator& operator=(const transform_iterator& input);

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const transform_iterator& it) const

transform_iterator operator+(difference_type forward) const;
transform_iterator operator-(difference_type backward) const;

transform_iterator& operator+=(difference_type forward);
transform_iterator& operator-=(difference_type backward);

transform_iterator& operator++();
transform_iterator& operator--();
transform_iterator operator++(int);
transform_iterator operator--(int);

bool operator==(const transform_iterator& it) const;
bool operator!=(const transform_iterator& it) const;
bool operator<(const transform_iterator& it) const;
bool operator>(const transform_iterator& it) const;
bool operator<=(const transform_iterator& it) const;

(continues on next page)

3.2. Parallel API 16

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool operator>=(const transform_iterator& it) const;
};

transform_iterator is a random access iterator-like type whose dereferenced value set is defined by the unary
function and source iterator provided. When dereferenced, transform_iterator provides the result of the unary
function applied to the corresponding element of the source iterator; dereference operations cannot be used to modify
the elements of the source iterator unless the unary function result includes a reference to the element. The arithmetic
and comparison operators of transform_iterator behave as if applied to the source iterator itself. The template
type Iterator must satisfy AdaptingIteratorSource.

template <typename UnaryFunc, typename Iterator>
transform_iterator<UnaryFunc, Iterator>
make_transform_iterator(Iterator, UnaryFunc);

make_transform_iterator constructs and returns an instance of transform_iterator using the source iterator
and unary function object provided.

template <typename... Iterators>
class zip_iterator
{
public:
using difference_type = typename std::make_signed<std::size_t>::type;
using value_type =

std::tuple<typename std::iterator_traits<Iterators>::value_type...>;
using reference = /* unspecified tuple of reference types */;
using pointer =

std::tuple<typename std::iterator_traits<Iterators>::pointer...>;

std::tuple<Iterators...> base() const;

zip_iterator();
explicit zip_iterator(Iterators... args);
zip_iterator(const zip_iterator& input);
zip_iterator& operator=(const zip_iterator& input);

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const zip_iterator& it) const;
zip_iterator operator-(difference_type backward) const;
zip_iterator operator+(difference_type forward) const;

zip_iterator& operator+=(difference_type forward);
zip_iterator& operator-=(difference_type backward);

zip_iterator& operator++();
zip_iterator& operator--();
zip_iterator operator++(int);
zip_iterator operator--(int);

bool operator==(const zip_iterator& it) const;
bool operator!=(const zip_iterator& it) const;

(continues on next page)

3.2. Parallel API 17

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool operator<(const zip_iterator& it) const;
bool operator>(const zip_iterator& it) const;
bool operator<=(const zip_iterator& it) const;
bool operator>=(const zip_iterator& it) const;

};

zip_iterator is an iterator-like type defined over one or more iterators. When dereferenced, the value returned from
zip_iterator is a tuple of the values returned by dereferencing the source iterators over which the zip_iterator
is defined. The arithmetic operators of zip_iterator update the source iterators of a zip_iterator instance as
though the operation were applied to each of these iterators. The types T within the template pack Iterators...
must satisfy AdaptingIteratorSource.

template <typename... Iterators>
zip_iterator<Iterators...>
make_zip_iterator(Iterators...);

make_zip_iterator constructs and returns an instance of zip_iterator using the set of source iterators provided.

3.2.4 Parallel Algorithms

The parallel algorithms are defined in the <oneapi/dpl/algorithm> header, in namespace oneapi::dpl.

template<typename Policy, typename InputKeyIt, typename InputValueIt,
typename OutputValueIt,
typename T = typename std::iterator_traits<InputValueIt>::value_type,
typename BinaryPred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>,
typename BinaryOp =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>>
OutputValueIt
exclusive_scan_by_segment(Policy&& policy, InputKeyIt keys_first,

InputKeyIt keys_last, InputValueIt values_first, OutputValueIt values_result,
T initial_value = 0,
BinaryPred binary_pred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>(),
BinaryOp binary_op =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>());

oneapi::dpl::exclusive_scan_by_segment performs partial prefix scans by applying the binary_op operation
to a sequence of values. Each partial scan applies to a contiguous subsequence determined by the keys associated with
the values being equal according to the binary_pred predicate, and the first element of each scan is the initial value
provided. The return value is an iterator targeting the end of the result sequence.

The initial value used if one is not provided is an instance of the value_type of the InputValueIt iterator type
initialized to 0. If no binary predicate is provided for the comparison of keys an instance of std::equal_to with
the value_type of the InputKeyIt iterator type is used. Finally, an instance of std::plus with the value_type
of the InputValueIt iterator type is used if no binary operator is provided to combine the elements of the value
subsequences.

template<typename Policy, typename InputKeyIt, typename InputValueIt,
typename OutputValueIt,
typename BinaryPredcate =

(continues on next page)

3.2. Parallel API 18

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type,
typename BinaryOp =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>>
OutputValueIt
inclusive_scan_by_segment(Policy&& policy, InputKeyIt keys_first,

InputKeyIt keys_last, InputValueIt values_first, OutputValueIt values_result
BinaryPred binary_pred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>(),
BinaryOp binary_op =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>());

oneapi::dpl::inclusive_scan_by_segment performs partial prefix scans by applying the binary_op operation
to a sequence of values. Each partial scan applies to a contiguous subsequence determined by the keys associated with
the values being equal according to the binary_pred predicate. The return value is an iterator targeting the end of the
result sequence.

If no binary predicate is provided for the comparison of keys an instance of std::equal_to with the value_type of
the InputKeyIt iterator type is used. An instance of std::plus with the value_type of the InputValueIt iterator
type is used if no binary operator is provided to combine the elements of the value subsequences.

template<typename Policy, typename InputKeyIt, typename InputValueIt,
typename OutputKeyIt, typename OutputValueIt,
typename BinaryPredcate =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type,
typename BinaryOp =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>>
std::pair<OutputKeyIt,OutputValueIt>
reduce_by_segment(Policy&& policy, InputKeyIt keys_first, InputKeyIt keys_last,

InputValueIt values_first, OutputKeyIt keys_result,
OutputValueIt values_result,
BinaryPred binary_pred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>(),
BinaryOp binary_op =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>());

oneapi::dpl::reduce_by_segment performs partial reductions on a sequence of values. Each reduction is com-
puted with the binary_op operation for a contiguous subsequence of values determined by the associated keys be-
ing equal according to the binary_pred predicate. For each subsequence the first of the equal keys is stored into
keys_result and the computed reduction is stored into values_result. The return value is a pair of iterators hold-
ing the end of the resulting sequences.

If no binary predicate is provided for the comparison of keys an instance of std::equal_to with the value_type of
the InputKeyIt iterator type is used. An instance of std::plus with the value_type of the InputValueIt iterator
type is used to combine the values in each subsequence identified if a binary operator is not provided.

template<typename Policy, typename InputIt1, typename InputIt2, typename OutputIt,
typename Comparator =

std::less<typename std::iterator_traits<InputIt>::value_type>>
OutputIt
binary_search(Policy&& policy, InputIt1 start, InputIt1 end,

InputIt2 value_first, InputIt2 value_last, OutputIterator result,
Comparator comp =

std::less<typename std::iterator_traits<InputIt1>::value_type>());

3.2. Parallel API 19

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::dpl::binary_search performs a binary search over the data in [start, end) for each value in
[value_first, value_last). If the value exists in the data searched then the corresponding element in [result,
result + distance(value_first, value_last)) is set to true, otherwise it is set to false.

If no comparator is provided, operator< is used to determine when the search value is less than an element in the
range being searched.

The elements of [start, end)must be partitioned with respect to the comparator used. For all elements e in [start,
end) and a given search value v in [value_first, value_last), comp(e, v) implies !comp(v, e).

template<typename Policy, typename InputIt1, typename InputIt2, typename OutputIt,
typename Comparator =

std::less<typename std::iterator_traits<InputIt>::value_type>>
OutputIt
lower_bound(Policy&& policy, InputIt1 start, InputIt1 end,

InputIt2 value_first, InputIt2 value_last, OutputIterator result,
Comparator comp =

std::less<typename std::iterator_traits<InputIt1>::value_type>());

oneapi::dpl::lower_bound performs a binary search over the data in [start, end) for each value in
[value_first, value_last) to find the lowest index at which the search value could be inserted in [start,
end) without violating the ordering defined by the comparator provided. That lowest index is then assigned to the
corresponding element in [result, result + distance(value_first, value_last)).

If no comparator is provided, operator< is used to determine when the search value is less than an element in the
range being searched.

The elements of [start, end) must be partitioned with respect to the comparator used.

template<typename Policy, typename InputIt1, typename InputIt2, typename OutputIt,
typename Comparator =

std::less<typename std::iterator_traits<InputIt>::value_type>>
OutputIt
upper_bound(Policy&& policy, InputIt1 start, InputIt1 end,

InputIt2 value_first, InputIt2 value_last, OutputIterator result,
Comparator comp =

std::less<typename std::iterator_traits<InputIt1>::value_type>());

oneapi::dpl::upper_bound performs a binary search over the data in [start, end) for each value in
[value_first, value_last) to find the highest index at which the search value could be inserted in [start,
end) without violating the ordering defined by the comparator provided. That highest index is then assigned to the
corresponding element in [result, result + distance(value_first, value_last)).

If no comparator is provided, operator< is used to determine when the search value is less than an element in the
range being searched.

The elements of [start, end) must be partitioned with respect to the comparator used.

template <typename Policy, typename InputIt, typename OutputIt, typename UnaryOp,
typename UnaryPredicate>

OutputIt
transform_if(Policy&& policy, InputIt start, InputIt end, OutputIt result, UnaryOp op,

UnaryPredicate pred); /
→˓/ (1)

template <typename Policy, typename InputIt1, typename InputIt2, typename OutputIt,
typename BinaryOp, typename BinaryPredicate>

(continues on next page)

3.2. Parallel API 20

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

OutputIt
transform_if(Policy&& policy, InputIt1 start1, InputIt1 end1, InputIt2 start2, OutputIt␣
→˓result,

BinaryOp op, BinaryPredicate pred); /
→˓/ (2)

oneapi::dpl::transform_if applies a given function to the elements of the input sequence(s) that satisfy a given
predicate, and stores the result to the output. Depending on the arguments, the algorithm:

1. Evaluates the unary predicate pred for each position i of the sequence [start, end) and if pred(start[i])
== true, it performs the unary operation op(start[i]) and stores the result into result[i]. If
pred(start[i]) == false, the data element result[i] is not modified from its initial value. The return
value is an iterator targeting past the last considered element of the output sequence, that is, result + (end -
start).

2. Evaluates the binary predicate pred for each position i of the sequence [start1, end1) and if
pred(start1[i], start2[i]) == true, it performs the binary operation op(start1[i], start2[i])
and stores the result into result[i]. If pred(start1[i], start2[i]) == false, the data element
result[i] is not modified from its initial value. The return value is an iterator targeting past the last considered
element of the output sequence, that is, result + (end1 - start1).

template<typename Policy, typename KeyIt, typename ValueIt,
typename Comparator = std::less<typename std::iterator_traits<KeyIt>::value_type>>

void
sort_by_key(Policy&& policy, KeyIt keys_first, KeyIt keys_last,

ValueIt values_first,
Comparator comp = std::less<typename std::iterator_traits<KeyIt>::value_type>());

oneapi::dpl::sort_by_key sorts the sequence of keys [keys_first, keys_last) and simultane-
ously permutes associated values at the same positions in the range [values_first, values_first +
std::distance(keys_first, keys_last)) to match the order of the sorted keys. That is, a key and its
associated value will have the same index in their respective sequences after sorting.

Keys are sorted with respect to the provided comparator object comp. That means, for any two iterators i and j to the
sorted sequence of keys such that i precedes j, comp(*j, *i) == false. If no comp object is provided, keys are
sorted with respect to std::less.

Sorting is unstable. That means, keys which do not precede one another with respect to the given comparator and their
associated values might be ordered arbitrarily relative to each other.

KeyIt and ValueIt must satisfy the requirements of ValueSwappable, and Comparator must satisfy the require-
ments for the Compare parameter of std::sort, as defined by the C++ Standard.

template<typename Policy, typename KeyIt, typename ValueIt,
typename Comparator = std::less<typename std::iterator_traits<KeyIt>::value_type>>

void
stable_sort_by_key(Policy&& policy, KeyIt keys_first, KeyIt keys_last,

ValueIt values_first,
Comparator comp = std::less<typename std::iterator_traits<KeyIt>::value_type>());

oneapi::dpl::stable_sort_by_key sorts the sequence of keys [keys_first, keys_last) and simulta-
neously permutes associated values at the same positions in the range [values_first, values_first +
std::distance(keys_first, keys_last)) to match the order of the sorted keys. That is, a key and its asso-
ciated value will have the same index in their respective sequences after sorting.

Keys are sorted with respect to the provided comparator object comp. That means, for any two iterators i and j to the

3.2. Parallel API 21

https://isocpp.org/std/the-standard

oneAPI Specification, Release 1.4-provisional-rev-1

sorted sequence of keys such that i precedes j, comp(*j, *i) == false. If no comp object is provided, keys are
sorted with respect to std::less.

Sorting is stable. That means, keys which do not precede one another with respect to the given comparator and their
associated values maintain the relative order as in the original sequences.

KeyIt and ValueIt must satisfy the requirements of ValueSwappable, and Comparator must satisfy the require-
ments for the Compare parameter of std::sort, as defined by the C++ Standard.

template <typename Policy, typename InputIt, typename Size, typename ValueType,
typename OutputIt>

OutputIt
histogram(Policy&& exec, InputIt start, InputIt end, Size num_intervals,

ValueType first_interval_begin, ValueType last_interval_end, OutputIt histogram_
→˓first); // (1)

template <typename Policy, typename InputIt1, typename InputIt2, typename OutputIt>
OutputIt
histogram(Policy&& exec, InputIt1 start, InputIt1 end, InputIt2 boundary_start,

InputIt2 boundary_end, OutputIt histogram_first); ␣
→˓ // (2)

oneapi::dpl::histogram computes the histogram over the data in [start, end) by counting the number of ele-
ments that map to each of a set of bins and storing the counts into the output sequence starting from histogram_first.
Input values that do not map to a defined bin are skipped silently. The value type of OutputIt must be an integral type
of sufficient size to store the counts of the histogram without overflow. The return value is an iterator targeting past the
last element of the output sequence starting from histogram_first.

1. The elements of [start, end) are mapped into num_intervals bins that evenly divide the
range [first_interval_begin, last_interval_end). Each bin is of size bin_size =
(last_interval_end - first_interval_begin) / num_intervals as represented by a real num-
ber without rounding or truncation. An input element start[i] maps to a bin histogram_first[j]
if and only if (first_interval_begin + j * bin_size <= start[i]) && (start[i] <
first_interval_begin + (j + 1) * bin_size). Both ValueType and the value type of InputIt
must be arithmetic types.

2. The elements of [start, end) are mapped into std::distance(boundary_start, boundary_end) -
1) bins defined by the values in [boundary_start, boundary_end). An input element start[i] maps
to a bin histogram_first[j] if and only if (boundary_start[j] <= start[i]) && (start[i] <
boundary_start[j + 1]). The value types of InputIt1 and InputIt2must be arithmetic types. The values
in [boundary_start, boundary_end) must be sorted with respect to operator<.

3.3 SYCL Kernels API

3.3.1 Supported C++ Standard Library APIs and Algorithms

oneDPL defines a subset of the C++ Standard library APIs for use in SYCL kernels. These APIs can be employed in
the kernels similarly to how they are employed in code for a typical CPU-based platform.

3.3. SYCL Kernels API 22

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard

oneAPI Specification, Release 1.4-provisional-rev-1

3.3.2 Random Number Generation

oneDPL provides a subset of the standard C++ pseudo-random number generation functionality suitable to use within
SYCL kernels. The APIs are defined in the <oneapi/dpl/random> header.

Supported Functionality

• Engine class templates:

– linear_congruential_engine

– subtract_with_carry_engine

• Engine adaptor class templates:

– discard_block_engine

• Engines and engine adaptors with predefined parameters:

– minstd_rand0

– minstd_rand

– ranlux24_base

– ranlux48_base

– ranlux24

– ranlux48

• Distribution class templates:

– uniform_int_distribution

– uniform_real_distribution

– normal_distribution

– exponential_distribution

– bernoulli_distribution

– geometric_distribution

– weibull_distribuion

– lognormal_distribution

– cauchy_distribution

– extreme_value_distribution

linear_congruential_engine and subtract_with_carry_engine satisfy the uniform random bit generator re-
quirements.

3.3. SYCL Kernels API 23

oneAPI Specification, Release 1.4-provisional-rev-1

Limitations

The following deviations from the C++ Standard may apply:

• random_device and seed_seq classes and related APIs in other classes are not required;

• specifying the size of a random number engine’s state is not required;

• distributions are only required to operate with floating point types applicable to supported SYCL devices.

Extensions

As an extension to the C++ Standard, sycl::vec<Type, N> can be used as the data type template parameter for
engines, engine adaptors, and distributions, where Type is one of data types supported by the corresponding class
template in the standard. For such template instantiations, the result_type is also defined to sycl::vec<Type,
N>.

Engines, engine adaptors, and distributions additionally define scalar_type, equivalent to the following:

• using scalar_type = typename result_type::element_type; if result_type is
sycl::vec<Type, N>,

• otherwise, using scalar_type = result_type;

The scalar_type is used instead of result_type in all contexts where a scalar data type is expected, including

• the type of configuration parameters and properties,

• the seed value type,

• the input parameters of constructors,

• the return value type of min() and max() methods, etc.

Since scalar_type is the same as result_type except for template instantiations with sycl::vec, class templates
still meet the applicable requirements of the C++ Standard.

When instantiated with sycl::vec<Type,N>, linear_congruential_engine and
subtract_with_carry_engine may not formally satisfy the uniform random bit generator requirements de-
fined by the C++ Standard. Instead, the following alternative requirements apply: for an engine object g of type
G,

• G::scalar_type is an unsigned integral type same as sycl::vec<Type,N>::element_type,

• G::min() and G::max() return a value of G::scalar_type,

• for each index i in the range [0, N), G::min() <= g()[i] and g()[i] <= G::max().

Effectively, these engines satisfy the standard uniform random bit generator requirements for each element of a
sycl::vec returned by their operator().

Similarly, for a distribution object d of a type D that is a template instantiated with sycl::vec<Type,N>:

• D::scalar_type is the same as sycl::vec<Type,N>::element_type,

• D::min() and D::max() return a value of D::scalar_type, and D::min() <= D::max(),

• operator() of a distribution returns a sycl::vec<Type,N> filled with random values in the closed interval
[D::min(), D::max()];

The following engines and engine adaptors with predefined parameters are defined:

3.3. SYCL Kernels API 24

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard

oneAPI Specification, Release 1.4-provisional-rev-1

template <int N>
using minstd_rand0_vec = linear_congruential_engine<sycl::vec<::std::uint_fast32_t, N>,␣
→˓16807, 0, 2147483647>;

template <int N>
using minstd_rand_vec = linear_congruential_engine<sycl::vec<uint_fast32_t, N>, 48271, 0,
→˓ 2147483647>;

template <int N>
using ranlux24_base_vec = subtract_with_carry_engine<sycl::vec<uint_fast32_t, N>, 24, 10,
→˓ 24>;

template <int N>
using ranlux48_base_vec = subtract_with_carry_engine<sycl::vec<uint_fast64_t, N>, 48, 5,␣
→˓12>;

template <int N>
using ranlux24_vec = discard_block_engine<ranlux24_base_vec<N>, 223, 23>;

template <int N>
using ranlux48_vec = discard_block_engine<ranlux48_base_vec<N>, 389, 11>;

Except for producing a sycl::vec of random values per invocation, the behavior of these engines is equivalent to the
corresponding scalar engines, as described in the following table:

Engines and engine adaptors
based on sycl::vec<>

C++ standard
analogue

The 10000th scalar random value consecutively pro-
duced by a default-constructed object

minstd_rand0_vec minstd_rand0 1043618065
minstd_rand_vec minstd_rand 399268537
ranlux24_base_vec ranlux24_base 7937952
ranlux48_base_vec ranlux48_base 61839128582725
ranlux24_vec ranlux24 9901578
ranlux48_vec ranlux48 1112339016

3.3.3 Function Objects

The oneDPL function objects are defined in the <oneapi/dpl/functional> header.

namespace oneapi {
namespace dpl {

struct identity
{

template <typename T>
constexpr T&&
operator()(T&& t) const noexcept;

};
}
}

The oneapi::dpl::identity class implements an identity operation. Its function operator receives an instance of a
type and returns the argument unchanged.

3.3. SYCL Kernels API 25

CHAPTER

FOUR

ONEDNN

oneAPI Deep Neural Network Library (oneDNN) is a performance library containing building blocks for deep learning
applications and frameworks. oneDNN supports:

• CNN primitives (Convolutions, Inner product, Pooling, etc.)

• RNN primitives (LSTM, Vanilla, RNN, GRU)

• Normalizations (LRN, Batch, Layer)

• Elementwise operations (ReLU, Tanh, ELU, Abs, etc.)

• Softmax, Sum, Concat, Shuffle

• Reorders from/to optimized data layouts

• 8-bit integer, 16-, 32-bit, and bfloat16 floating point data types

// Tensor dimensions
int N, C, H, W;

// User-owned DPC++ objects
sycl::device dev {sycl::gpu_selector {}}; // Device
sycl::context ctx {dev}; // Context
sycl::queue queue {dev}; // Queue
std::vector<sycl::event> dependencies; // Input events dependencies
// Source
float *buf_src = static_cast<float *>(

sycl::malloc_device((N * C * H * W) * sizeof(float), dev, ctx));
// Results
float *buf_dst = static_cast<float *>(

sycl::malloc_device((N * C * H * W) * sizeof(float), dev, ctx));

// Create an engine encapsulating users' DPC++ GPU device and context
dnnl::engine engine = dnnl::sycl_interop::make_engine(dev, ctx);
// Create a stream encapsulating users' DPC++ GPU queue
dnnl::stream stream = dnnl::sycl_interop::make_stream(engine, queue);
// Create memory objects that use buf_src and buf_dst as the underlying storage
dnnl::memory mem_src({{N, C, H, W}, dnnl::memory::data_type::f32,

dnnl::memory::format_tag::nhwc},
engine, buf_src);

dnnl::memory mem_dst({{N, C, H, W}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::nhwc},

engine, buf_dst);
// Create a ReLU elementwise primitive

(continues on next page)

26

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

dnnl::eltwise_forward relu {
{{dnnl::prop_kind::forward_inference, dnnl::algorithm::eltwise_relu,

mem_src.get_desc(), 0.f, 0.f},
engine}};

// Execute the ReLU primitive in the stream passing input dependencies and
// retrieving the output dependency
sycl::event event = dnnl::sycl_interop::execute(relu, stream,

{{DNNL_ARG_SRC, mem_src}, {DNNL_ARG_DST, mem_dst}}, dependencies);

4.1 Introduction

Although the origins of this specification are in the existing open source implementation, its goal is to define a portable
set of APIs. To this end, for example, it intentionally omits implementation-specific details like tiled or blocked mem-
ory formats (layouts), and instead describes plain multi-dimensional memory formats and defines opaque optimized
memory format that can be implementation specific.

oneDNN main concepts are primitives, engines, streams, and memory objects.

A primitive (dnnl::primitive) is a functor object that encapsulates a particular computation such as forward convo-
lution, backward LSTM computations, or a data transformation operation. A single primitive can sometimes represent
more complex fused computations such as a forward convolution followed by a ReLU. Fusion, among other things, is
controlled via the primitive attributes mechanism.

The most important difference between a primitive and a pure function is that a primitive can be specialized for a subset
of input parameters.

For example, a convolution primitive stores parameters like tensor shapes and can pre-compute other dependent pa-
rameters like cache blocking. This approach allows oneDNN primitives to pre-generate code specifically tailored for
the requested operation to be performed. The oneDNN programming model assumes that the time it takes to perform
the pre-computations is amortized by reusing the same primitive to perform computations multiple times.

A primitive may also need a mutable memory buffer that it may use for temporary storage only during computations.
Such buffer is called a scratchpad. It can either be owned by a primitive object (which makes that object non-thread
safe) or be an execution-time parameter.

Primitive creation is a potentially expensive operation. Users are expected to create primitives once and reuse them
multiple times. Alternatively, implementations may reduce the primitive creation cost by caching primitives that have
the same parameters. This optimization falls outside of the scope of this specification.

Engines (dnnl::engine) are an abstraction of a computational device: a CPU, a specific GPU card in the system, etc.

4.1. Introduction 27

https://github.com/oneapi-src/oneDNN

oneAPI Specification, Release 1.4-provisional-rev-1

Most primitives are created to execute computations on one specific engine. The only exceptions are reorder primitives
that may transfer data between two different engines.

Streams (dnnl::stream) encapsulate execution context tied to a particular engine. For example, they can correspond
to DPC++ command queues.

Memory objects (dnnl::memory) encapsulate handles to memory allocated on a specific engine, tensor dimensions,
data type, and memory format – the way tensor indices map to offsets in linear memory space. Memory objects are
passed to primitives during execution.

Levels of Abstraction

oneDNN has multiple levels of abstractions for primitives and memory objects in order to expose maximum flexibility
to its users.

On the logical level, the library provides the following abstractions:

• Memory descriptors (dnnl::memory::desc) define the logical dimensions of a tensor, data type, and the format
in which the data is laid out in memory. The special format any (dnnl::memory::format_tag::any) indicates
that the actual format will be defined later.

• Primitive descriptors (dnnl::primitive_desc_base is the base class and each of the supported primitives
have their own version) can be used to inspect details of a specific primitive implementation like expected memory
formats via queries to implement memory format propagation (see Memory format propagation) without having
to fully instantiate a primitive.

Abstraction level Memory object Primitive objects
Logical description Memory descriptor Primitive descriptor
Implementation Memory object Primitive

4.1.1 Graph Extension

The graph extension is a high level abstraction in oneDNN that allows to work with a computation graph instead of
individual primitives. This approach allows to make operation fusion:

• transparent: the integration efforts are reduced by abstracting engine-aware fusion logic.

• scalable: no integration code change is necessary to benefit from new fusion patterns enabled in the oneDNN
implementation.

The programming model for the graph extension is detailed in the graph programming model section.

4.1.2 General API notes

oneDNN objects can be empty in which case they are not valid for any use. Memory descriptors are special in this
regard, as their empty versions are regarded as zero memory descriptors that can be used to indicate absence of a
memory descriptor. Empty objects are usually created using default constructors, but also may be a result of an error
during object construction (see the next section).

4.1. Introduction 28

oneAPI Specification, Release 1.4-provisional-rev-1

4.1.3 Error Handling

All oneDNN functions throw the following exception in case of error.

struct error : public std::exception
oneDNN exception class.

This class captures the status returned by a failed function call

Additionally, many oneDNN functions that construct or return oneDNN objects have a boolean allow_empty param-
eter that defaults to false and that makes the library to return an empty object (a zero object in case of memory
descriptors) when an object cannot be constructed instead of throwing an error.

4.1.4 Namespaces

All oneDNN functions and classes reside in ::dnnl namespace. The functions that accept or return DPC++ objects
such as command queues or buffers reside in ::dnnl::sycl_interop namespace.

Furthermore, oneDNN defines ::oneapi::dnnl namespace, that is an alias for the ::dnnl namespace.

4.2 Conventions

oneDNN specification relies on a set of standard naming conventions for variables. This section describes these con-
ventions.

4.2.1 Variable (Tensor) Names

Neural network models consist of operations of the following form:

dst = 𝑓(src,weights),

where dst and src are activation tensors, and weights are learnable tensors.

The backward propagation therefore consists in computing the gradients with respect to the src ‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ :weights`
respectively:

diff_src = d𝑓src(diff_dst, src,weights,dst),

and

diff_weights = d𝑓weights(diff_dst, src,weights,dst).

While oneDNN uses src, dst, and weights as generic names for the activations and learnable tensors, for a specific oper-
ation there might be commonly used and widely known specific names for these tensors. For instance, the convolution
operation has a learnable tensor called bias. For usability reasons, oneDNN primitives use such names in initialization
and other functions.

oneDNN uses the following commonly used notations for tensors:

4.2. Conventions 29

oneAPI Specification, Release 1.4-provisional-rev-1

Name Meaning
src Source tensor
dst Destination tensor
weights Weights tensor
bias Bias tensor (used in convolution, inner product and other primitives)
scale_shift Scale and shift tensors (used in Batch Normalization and Layer normalization primitives)
workspace Workspace tensor that carries additional information from the forward propagation to the backward

propagation
scratchpad Temporary tensor that is required to store the intermediate results
diff_src Gradient tensor with respect to the source
diff_dst Gradient tensor with respect to the destination
diff_weights Gradient tensor with respect to the weights
diff_bias Gradient tensor with respect to the bias
diff_scale Gradient tensor with respect to the scale
diff_shift Gradient tensor with respect to the shift
*_layer RNN layer data or weights tensors
*_iter RNN recurrent data or weights tensors

4.2.2 RNN-Specific Notation

The following notations are used when describing RNN primitives.

Name Semantics
· matrix multiply operator
* elementwise multiplication operator
W input weights
U recurrent weights
□𝑇 transposition
B bias
h hidden state
a intermediate value
x input
□𝑡 timestamp index
□𝑙 layer index
activation tanh, relu, logistic
c cell state
𝑐 candidate state
i input gate
f forget gate
o output gate
u update gate
r reset gate

4.2. Conventions 30

oneAPI Specification, Release 1.4-provisional-rev-1

4.3 Execution Model

To execute a primitive, a user needs to pass memory arguments and a stream to the dnnl::primitive::execute()
member function.

The primitive’s computations are executed on the computational device corresponding to the engine on which the
primitive (and memory arguments) were created and happens within the context of the stream.

4.3.1 Engine

Engine is abstraction of a computational device: a CPU, a specific GPU card in the system, etc. Most primitives are
created to execute computations on one specific engine. The only exceptions are reorder primitives that transfer data
between two different engines.

Engines correspond to and can be constructed from pairs of the DPC++ sycl::device and sycl::context objects.
Alternatively, oneDNN itself can create and own the corresponding objects.

struct engine
An execution engine.

Public Types

enum class kind
Kinds of engines.

Values:

enumerator any
An unspecified engine.

enumerator cpu
CPU engine.

4.3. Execution Model 31

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator gpu
GPU engine.

Public Functions

engine() = default
Constructs an empty engine. An empty engine cannot be used in any operations.

engine(kind akind, size_t index)
Constructs an engine.

Parameters

• akind – The kind of engine to construct.

• index – The index of the engine. Must be less than the value returned by get_count() for
this particular kind of engine.

kind get_kind() const
Returns the kind of the engine.

Returns
The kind of the engine.

Public Static Functions

static size_t get_count(kind akind)
Returns the number of engines of a certain kind.

Parameters
akind – The kind of engines to count.

Returns
The number of engines of the specified kind.

engine dnnl::sycl_interop::make_engine(const cl::sycl::device &adevice, const cl::sycl::context &acontext)
Creates an engine object using a specified SYCL device and SYCL context objects.

Parameters

• adevice – SYCL device.

• acontext – SYCL context.

Returns
Engine object for the adevice SYCL device, within the specified acontext SYCL context.

cl::sycl::device dnnl::sycl_interop::get_device(const engine &aengine)
Returns the SYCL device underlying a specified engine object.

Parameters
aengine – Engine object.

Returns
SYCL device object underlying the aengine engine object.

4.3. Execution Model 32

oneAPI Specification, Release 1.4-provisional-rev-1

cl::sycl::context dnnl::sycl_interop::get_context(const engine &aengine)
Returns the SYCL context underlying a specified engine object.

Parameters
aengine – Engine object.

Returns
SYCL context object underlying the aengine engine object.

4.3.2 Stream

A stream is an encapsulation of execution context tied to a particular engine. They are passed to
dnnl::primitive::execute() when executing a primitive.

Streams correspond to and can be constructed from DPC++ sycl::queue objects. Alternatively, oneDNN itself can
create and own the corresponding objects. Streams are considered to be ephemeral and can be created / destroyed as
long these operation do not violate DPC++ synchronization requirements.

Similar to DPC++ queues, streams can be in-order and out-of-order (see the relevant portion of the DPC++ specification
for the explanation). The desired behavior can be specified using dnnl::stream::flags value. A stream created from
a DPC++ queue inherits its behavior.

struct stream
An execution stream.

Public Types

enum class flags : unsigned
Stream flags. Can be combined using the bitwise OR operator.

Values:

enumerator in_order
In-order execution.

enumerator out_of_order
Out-of-order execution.

enumerator default_flags
Default stream configuration.

Public Functions

stream()

Constructs an empty stream. An empty stream cannot be used in any operations.

stream(const engine &aengine, flags aflags = flags::default_flags)
Constructs a stream for the specified engine and with behavior controlled by the specified flags.

Parameters

• aengine – Engine to create the stream on.

4.3. Execution Model 33

oneAPI Specification, Release 1.4-provisional-rev-1

• aflags – Flags controlling stream behavior.

engine get_engine() const

Returns
The associated engine.

stream &wait()
Waits for all primitives executing in the stream to finish.

Returns
The stream itself.

stream dnnl::sycl_interop::make_stream(const engine &aengine, cl::sycl::queue &aqueue)
Creates a stream for a specified engine and SYCL queue objects.

Parameters

• aengine – Engine object to use for the stream.

• aqueue – SYCL queue to use for the stream.

Returns
Stream object for the aengine engine object, which holds the aqueue SYCL queue object.

cl::sycl::queue dnnl::sycl_interop::get_queue(const stream &astream)

Returns the SYCL queue underlying a specified stream object.

Parameters
astream – Stream object.

Returns
SYCL queue underlying the astream stream object.

4.4 Data model

Data in oneDNN is stored in memory objects that both store and describe data that can be of various types and be stored
in different formats (layouts).

4.4.1 Data types

oneDNN supports multiple data types. However, the 32-bit IEEE single-precision floating-point data type is the fun-
damental type in oneDNN. It is the only data type that must be supported by an implementation. All the other types
discussed below are optional.

Primitives operating on the single-precision floating-point data type consume data, produce, and store intermediate
results using the same data type.

Moreover, single-precision floating-point data type is often used for intermediate results in the mixed precision compu-
tations because it provides better accuracy. For example, the elementwise primitive and elementwise post-ops always
use it internally.

Note: Implicit downconversion can be enabled in order to speedup computations, and are controlled using the fpmath
mode controls

oneDNN uses the following enumeration to refer to data types it supports:

4.4. Data model 34

oneAPI Specification, Release 1.4-provisional-rev-1

enum class dnnl::memory::data_type
Data type specification.

Values:

enumerator undef
Undefined data type (used for empty memory descriptors).

enumerator f16
16-bit/half-precision floating point.

enumerator bf16
non-standard 16-bit floating point with 7-bit mantissa.

enumerator f32
32-bit/single-precision floating point.

enumerator s32
32-bit signed integer.

enumerator s8
8-bit signed integer.

enumerator u8
8-bit unsigned integer.

oneDNN supports training and inference with the following data types:

Usage
mode

Data types

infer-
ence

dnnl::memory::data_type::f32, dnnl::memory::data_type::bf16,
dnnl::memory::data_type::f16, dnnl::memory::data_type::s8/dnnl::memory::data_type::u8

training dnnl::memory::data_type::f32, dnnl::memory::data_type::bf16

Note: Using lower precision arithmetic may require changes in the deep learning model implementation.

Individual primitives may have additional limitations with respect to data type support based on the precision require-
ments. The list of data types supported by each primitive is included in the corresponding sections of the specification
guide.

4.4. Data model 35

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format

oneAPI Specification, Release 1.4-provisional-rev-1

Bfloat16

Note: In this section we abbreviate data types names for readability. For example,
dnnl::memory::data_type::f32 is abbreviated to f32.

Bfloat16 (bf16) is a 16-bit floating point data type based on the IEEE 32-bit single-precision floating point data type
(f32).

Both bf16 and f32 have an 8-bit exponent. However, while f32 has a 23-bit mantissa, bf16 has only a 7-bit one,
keeping only the most significant bits. As a result, while these data types support a very close numerical range of
values, bf16 has a significantly reduced precision. Therefore, bf16 occupies a spot between f32 and the IEEE 16-
bit half-precision floating point data type, f16. Compared directly to f16, which has a 5-bit exponent and a 10-bit
mantissa, bf16 trades increased range for reduced precision.

More details of the bfloat16 data type can be found here.

One of the advantages of using bf16 versus f32 is reduced memory footprint and, hence, increased memory access
throughput.

Workflow

The main difference between implementing training with the f32 data type and with the bf16 data type is the way
the weights updates are treated. With the f32 data type, the weights gradients have the same data type as the weights
themselves. This is not necessarily the case with the bf16 data type as oneDNN allows some flexibility here. For
example, one could maintain a master copy of all the weights, computing weights gradients in f32 and converting the
result to bf16 afterwards.

Support

Most of the primitives can support the bf16 data type for source and weights tensors. Destination tensors can be
specified to have either the bf16 or f32 data type. The latter is intended for cases in which the output is to be fed to
operations that do not support bfloat16 or require higher precision.

4.4. Data model 36

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

oneAPI Specification, Release 1.4-provisional-rev-1

Int8

To push higher performance during inference computations, recent work has focused on computations that use activa-
tions and weights stored at lower precision to achieve higher throughput. Int8 computations offer improved performance
over higher-precision types because they enable packing more computations into a single instruction, at the cost of re-
duced (but acceptable) accuracy.

Workflow

oneDNN support symmetric and asymmetric quantization models.

Quantization Model

For each int8 tensor, the oneDNN library allows to specify scaling factors and zero-points (also referred to as quanti-
zation parameters), and assumes the following mathematical relationship:

𝑥𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒𝑥 · (𝑥𝑖𝑛𝑡8[:]− 𝑧𝑝𝑥)

where 𝑠𝑐𝑎𝑙𝑒𝑥 is a scaling factor in float format, 𝑧𝑝𝑥 is the zero point in int32 format, and [:] is used to denote elemen-
twise application of the formula to the arrays. In order to provide best performance, oneDNN does not compute those
scaling factors and zero-points as part of primitive computation. Those should be provided by the user through the
attribute mechanism.

These quantization parameters can either be computed ahead of time using calibration tools (static quantization) or at
runtime based on the actual minimum and maximum values of a tensor (dynamic quantization). Either method can be
used in conjunction with oneDNN, as the quantization parameters are passed to the oneDNN primitives at execution
time.

To support int8 quantization, primitives should be created and executed as follow:

• during primitive creation, if one or multiple inputs are int8 (signed or not), then the primitive will behave as a
quantized integer operation.

• still during primitive creation, the dimensionality of the scaling factors and zero-point should be provided using
masks (e.g. one scale per tensor, one scale per channel, . . .).

• finally, during primitive execution, the user must provide the actual quantization parameters as arguments to the
execute function. Scales shall be f32 values, and zero-points shall be int32 values.

Note: For performance reasons, each primitive implementation can support only a subset of quantization parameter
masks. For example, convolution typically supports per-channel scales (no zero-point) for weights, and per-tensor
scaling factor and zero-point for activation.

Note: Some primitives might use quantization parameters in order to dequantize/quantize intermediate values. This
is for example the case for the RNN primitive, which will dequantize before applying non linear functions, and will
requantize before executing matrix multiplication operations.

4.4. Data model 37

oneAPI Specification, Release 1.4-provisional-rev-1

Numerical behavior

Primitive implementations are allowed to convert int8 inputs to wider datatypes (e.g. int16 or int32), as those conver-
sions do not impact accuracy.

During execution, primitives should avoid integer overflows and maintain integer accuracy by using wider datatypes
(e.g. int32) for intermediate values and accumulators. Those are then converted as necessary before the result is written
to the output memory objects. During that conversion, the behavior in case of underflow/overflow is undefined (e.g.
when converting s32 to int8). However, it is highly encouraged for implementations to saturate values.

When multiple operations are fused in a single primitive using the post-op mecanism, those are assumed to be computed
in f32 precision. As a result the destination quantization parameters are applied after the post-ops as follow:

dst[:] = 𝑝𝑜𝑠𝑡_𝑜𝑝𝑠(𝑂𝑃 (𝑠𝑟𝑐[:], 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[:], ...))/𝑠𝑐𝑎𝑙𝑒dst + 𝑧𝑝dst

Quantizing/dequantizing values between post-operations can still be achieved using one of eltwise post-ops, binary
post-ops, or the scale parameter of the appropriate post-operation.

Example: Convolution Quantization Workflow

Consider a convolution without bias. The tensors are represented as:

• src𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒src · (src𝑖𝑛𝑡8[:]− 𝑧𝑝src)

• weights𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒weights · weights𝑖𝑛𝑡8[:]

• dst𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒dst · (dst𝑖𝑛𝑡8[:]− 𝑧𝑝dst)

Here the src𝑓32,weights𝑓32,dst𝑓32 are not computed at all, the whole work happens with int8 tensors.So the task is
to compute the dst𝑖𝑛𝑡8 tensor, using the src_{int8}, weights_{int8} tensors passed at execution time, as well as the cor-
responding quantization parameters scale_{src}, scale_{weights}, scale_{dst} and zero_point{src}, zero_point_{dst}.
Mathematically, the computations are:

dst𝑖𝑛𝑡8[:] = f32_to_int8(𝑠𝑐𝑎𝑙𝑒src · 𝑠𝑐𝑎𝑙𝑒weights · s32_to_f32(𝑐𝑜𝑛𝑣𝑠32(src𝑖𝑛𝑡8,weights𝑖𝑛𝑡8)− 𝑧𝑝src · 𝑐𝑜𝑚𝑝𝑠32)/𝑠𝑐𝑎𝑙𝑒dst + 𝑧𝑝dst)

where

• 𝑐𝑜𝑛𝑣𝑠32 is just a regular convolution which takes source and weights with int8 data type and compute the result
in int32 data type (int32 is chosen to avoid overflows during the computations);

• 𝑐𝑜𝑚𝑝𝑠32 is a compensation term to account for src non-zero zero point. This term is computed by the oneDNN
library and can typically be pre-computed ahead of time, for example during weights reorder.

• f32_to_s8() converts an f32 value to s8 with potential saturation if the values are out of the range of the int8 data
type.

• s32_to_f32() converts an int8 value to f32 with potential rounding. This conversion is typically necessary to
apply f32 scaling factors.

4.4. Data model 38

oneAPI Specification, Release 1.4-provisional-rev-1

Per-Channel Scaling

Primitives may have limited support of multiple scales for a quantized tensor. The most popular use case is the Convo-
lution and Deconvolution primitives that support per-output-channel scaling factors for the weights, meaning that the
actual convolution computations would need to scale different output channels differently.

• src𝑓32(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = 𝑠𝑐𝑎𝑙𝑒src · src𝑖𝑛𝑡8(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤)

• weights𝑓32(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤) = 𝑠𝑐𝑎𝑙𝑒weights(𝑜𝑐) · weights𝑖𝑛𝑡8(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤)

• dst𝑓32(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = 𝑠𝑐𝑎𝑙𝑒dst · dst𝑖𝑛𝑡8(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤)

Note that now the weights’ scaling factor depends on 𝑜𝑐.

To compute the dst𝑖𝑛𝑡8 we need to perform the following:

dst𝑖𝑛𝑡8(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = f32_to_int8(
𝑠𝑐𝑎𝑙𝑒src · 𝑠𝑐𝑎𝑙𝑒weights(𝑜𝑐)

𝑠𝑐𝑎𝑙𝑒dst
· 𝑐𝑜𝑛𝑣𝑠32(src𝑖𝑛𝑡8,weights𝑖𝑛𝑡8)|(𝑛,𝑜𝑐,𝑜ℎ,𝑜𝑤)).

The user is responsible for preparing quantized weights accordingly. To do that, oneDNN provides reorders that can
perform per-channel scaling:

weights𝑖𝑛𝑡8(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤) = f32_to_int8(weights𝑓32(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤)/𝑠𝑐𝑎𝑙𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑜𝑐)).

The Quantization describes what kind of quantization model oneDNN supports.

Support

oneDNN supports int8 computations for inference by allowing to specify that primitive input and output memory
objects use int8 data types.

4.4.2 Memory

There are two levels of abstraction for memory in oneDNN.

1. Memory descriptor – engine-agnostic logical description of data (number of dimensions, dimension sizes, data
type, and format.

2. Memory object – an engine-specific object combines memory descriptor with storage.

oneDNN defines the following convenience aliases to denote tensor dimensions

using dnnl::memory::dim = int64_t
Integer type for representing dimension sizes and indices.

using dnnl::memory::dims = std::vector<dim>
Vector of dimensions. Implementations are free to force a limit on the vector’s length.

4.4. Data model 39

oneAPI Specification, Release 1.4-provisional-rev-1

Memory Formats

In oneDNN memory format is how a multidimensional tensor is stored in 1-dimensional linear memory address space.
oneDNN specifies two kinds of memory formats: plain which correspond to traditional multidimensional arrays, and
optimized which are completely opaque.

Plain Memory Formats

Plain memory formats describe how multidimensional tensors are laid out in memory using an array of dimensions
and an array of strides both of which have length equal to the rank of the tensor. In oneDNN the order of dimensions is
fixed and different dimensions can have certain canonical interpretation depending on the primitive. For example, for
CNN primitives the order for activation tensors is {𝑁,𝐶, ...,𝐷,𝐻,𝑊}, where 𝑁 stands for minibatch (or batch size),
𝐶 stands for channels, and 𝐷, 𝐻 , and 𝑊 stand for image spatial dimensions: depth, height and width respectively.
Spatial dimensions may be omitted in the order from outermost to innermost; for example, it is not possible to omit
𝐻 when 𝐷 is present and it is never possible to omit 𝑊 . Canonical interpretation is documented for each primitive.
However, this means that the strides array plays an important role defining the order in which different dimension are
laid out in memory. Moreover, the strides need to agree with dimensions.

More precisely, let 𝑇 be a tensor of rank 𝑛 and let 𝜎 be the permutation of the strides array that sorts it, i.e. strides[𝑖] ≥
strides[𝑗] if 𝜎(𝑖) < 𝜎(𝑗) for all 0 ≤ 𝑖, 𝑗 < 𝑛. Then the following must hold:

strides[𝑖] ≥ strides[𝑗] * dimensions[𝑗] if 𝜎(𝑖) < 𝜎(𝑗) for all 0 ≤ 𝑖, 𝑗 < 𝑛.

For an element with coordinates (𝑖0, . . . , 𝑖𝑛−1) such that 0 ≤ 𝑖𝑗 < dimensions[𝑗] for 0 ≤ 𝑗 < 𝑛, its offset in memory
is computed as:

offset(𝑖0, . . . , 𝑖𝑛−1) = offset0 +

𝑛−1∑︁
𝑗=0

𝑖𝑗 * strides[𝑗].

Here offset0 is the offset from the parent memory and is non-zero only for submemory memory descriptors created
using dnnl::memory::desc::submemory_desc(). Submemory memory descriptors inherit strides from the parent
memory descriptor. Their main purpose is to express in-place concat operations.

As an example, consider an𝑀×𝑁 matrix𝐴 (𝑀 rows times𝑁 columns). Regardless of whether𝐴 is stored transposed
or not, dimensions𝐴 = {𝑀,𝑁}. However, strides𝐴 = {𝐿𝐷𝐴, 1} if it is not transposed and strides𝐴 = {1, 𝐿𝐷𝐴} if
it is, where 𝐿𝐷𝐴 is such that 𝐿𝐷𝐴 ≥ 𝑁 if 𝐴 is not transposed, and 𝐿𝐷𝐴 ≥ 𝑀 if it is. This also shows that 𝐴 does
not have to be stored densly in memory.

Note: The example above shows that oneDNN assumes data to be stored in row-major order.

Code example:

int M, N;
dnnl::memory::dims dims {M, N}; // Dimensions always stay the same

// Non-transposed matrix
dnnl::memory::dims strides_non_transposed {N, 1};
dnnl::memory::desc A_non_transposed {dims, dnnl::memory::data_type::f32,

strides_non_transposed};

// Transposed matrix
dnnl::memory::dims strides_transposed {1, M};
dnnl::memory::desc A_transposed {dims, dnnl::memory::data_type::f32,

strides_transposed};

4.4. Data model 40

oneAPI Specification, Release 1.4-provisional-rev-1

Format Tags

In addition to strides, oneDNN provides named format tags via the dnnl::memory::format_tag enum type. The
enumerators of this type can be used instead of strides for dense plain layouts.

The format tag names for 𝑁 -dimensional memory formats use first 𝑁 letters of the English alphabet which can be
arbitrarily permuted. This permutation is used to compute strides for tensors with up to 6 dimensions. The resulting
strides specify dense storage, in other words, using the nomenclature from the previous section, the following equality
holds:

strides[𝑖] = strides[𝑗] * dimensions[𝑗] if 𝜎(𝑖) + 1 = 𝜎(𝑗) for all 0 ≤ 𝑖, 𝑗 < 𝑛− 1.

In the matrix example, we could have used dnnl::memory::format_tag::ab for the non-transposed matrix above,
and dnnl::memory::format_tag::ba for the transposed:

int M, N;
dnnl::memory::dims dims {M, N}; // Dimensions always stay the same

// Non-transposed matrix
dnnl::memory::desc A_non_transposed {dims, dnnl::memory::data_type::f32,

dnnl::memory::format_tag::ab};

// Transposed matrix
dnnl::memory::desc A_transposed {dims, dnnl::memory::data_type::f32,

dnnl::memory::format_tag::ba};

Note: In what follows in this section we abbreviate memory format tag names for readability. For example,
dnnl::memory::format_tag::abcd is abbreviated to abcd .

In addition to abstract format tag names, oneDNN also provides convenience aliases. Some examples for CNNs and
RNNs:

• nchw is an alias for abcd (see the canonical order order of dimensions for CNNs discussed above).

• oihw is an alias for abcd .

• nhwc is an alias for acdb.

• tnc is an alias for abc.

• ldio is an alias for abcd .

• ldoi is an alias for abdc.

Optimized Format ‘any’

Another kind of format that oneDNN supports is an opaque optimized memory format that cannot be created directly
from strides and dimensions arrays. A memory descriptor for an optimized memory format can only be created by
passing any when creating certain primitive descriptor. That primitive descriptor can then querying them for memory
descriptors. Data in plain memory format should then be reordered into the data in optimized data format before com-
putations. Since reorders are expensive, the optimized memory format needs to be propagated through computations
graph.

Optimized formats can employ padding, blocking and other data transformations to keep data in layout optimal for
a certain architecture. This means that it in general operations like dnnl::memory::desc::permute_axes() or

4.4. Data model 41

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::memory::desc::submemory_desc() may fail. It is in general incorrect to use product of dimension sizes to
calculate amount of memory required to store data: dnnl::memory::desc::get_size() must be used instead.

Memory Format Propagation

Memory format propagation is one of the central notions that needs to be well-understood to use oneDNN correctly.

Convolution, matmul, RNN and inner product primitives choose the memory format when you create them with the
placeholder memory format any for input or output. The memory format chosen is based on different circumstances
such as hardware and convolution parameters. Using the placeholder any memory format is the recommended practice
for convolutions, since they are the most compute-intensive operations in most topologies where they are present.

Other primitives, such as Elementwise, LRN, batch normalization and other, on forward propagation should use the
same memory format as the preceding layer thus propagating the memory format through multiple oneDNN primitives.
This avoids unnecessary reorders which may be expensive and should be avoided unless a compute-intensive primitive
requires a different format. For performance reasons, backward computations of such primitives requires consistent
memory format with the corresponding forward computations. Hence, when initializing there primitives for backward
computations you should use dnnl::memory::format_tag::any memory format tag as well.

Below is the short summary when to use and not to use memory format any during primitive descriptor construction:

Primitive Kinds Forward Propagation Backward Propa-
gation

No Propagation

Compute intensive: (De-
)convolution, Matmul, Inner
product, RNN

Use any Use any N/A

Memory-bandwidth limited: Pool-
ing, Layer and Batch Normalization,
Local Response Normalization, Ele-
mentwise, Shuffle, Softmax

Use memory format
from preceding layer for
source tensors, and any
for destination tensors

Use any for gra-
dient tensors, and
actual memory for-
mats for data ten-
sors

N/A

Memory-bandwidth limited: Re-
order, Concat, Sum, Binary

N/A N/A Use memory format
from preceding layer for
source tensors, and any
for destination tensors

Additional format synchronization is required between forward and backward propagation when running training work-
loads. This is achieved via the hint_pd arguments of primitive descriptor constructors for primitives that implement
backward propagation.

API

enum class dnnl::memory::format_tag
Memory format tag specification.

Memory format tags can be further divided into two categories:

• Domain-agnostic names, i.e. names that do not depend on the tensor usage in the specific primitive. These
names use letters from a to f to denote logical dimensions and form the order in which the dimensions
are laid in memory. For example, dnnl::memory::format_tag::ab is used to denote a 2D tensor where
the second logical dimension (denoted as b) is the innermost, i.e. has stride = 1, and the first logical

4.4. Data model 42

oneAPI Specification, Release 1.4-provisional-rev-1

dimension (a) is laid out in memory with stride equal to the size of the second dimension. On the other
hand, dnnl::memory::format_tag::ba is the transposed version of the same tensor: the outermost dimension
(a) becomes the innermost one.

• Domain-specific names, i.e. names that make sense only in the context of a certain domain, such as CNN.
These names are aliases to the corresponding domain-agnostic tags and used mostly for convenience. For
example, dnnl::memory::format_tag::nc is used to denote 2D CNN activations tensor memory format,
where the channels dimension is the innermost one and the batch dimension is the outermost one. Moreover,
dnnl::memory::format_tag::nc is an alias for dnnl::memory::format_tag::ab, because for CNN primitives
the logical dimensions of activations tensors come in order: batch, channels, spatial. In other words, batch
corresponds to the first logical dimension (a), and channels correspond to the second one (b).

The following domain-specific notation applies to memory format tags:

• 'n' denotes the mini-batch dimension

• 'c' denotes a channels dimension

• When there are multiple channel dimensions (for example, in convolution weights tensor), 'i' and 'o'
denote dimensions of input and output channels

• 'g' denotes a groups dimension for convolution weights

• 'd', 'h', and 'w' denote spatial depth, height, and width respectively

Values:

enumerator undef
Undefined memory format tag.

enumerator any
Placeholder memory format tag. Used to instruct the primitive to select a format automatically.

enumerator a
plain 1D tensor

enumerator ab
plain 2D tensor

enumerator ba
permuted 2D tensor

enumerator abc
plain 3D tensor

enumerator acb
permuted 3D tensor

enumerator bac
permuted 3D tensor

enumerator bca
permuted 3D tensor

4.4. Data model 43

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator cba
permuted 3D tensor

enumerator abcd
plain 4D tensor

enumerator abdc
permuted 4D tensor

enumerator acdb
permuted 4D tensor

enumerator bacd
permuted 4D tensor

enumerator bcda
permuted 4D tensor

enumerator cdba
permuted 4D tensor

enumerator dcab
permuted 4D tensor

enumerator abcde
plain 5D tensor

enumerator abdec
permuted 5D tensor

enumerator acbde
permuted 5D tensor

enumerator acdeb
permuted 5D tensor

enumerator bacde
permuted 5D tensor

enumerator bcdea
permuted 5D tensor

enumerator cdeba
permuted 5D tensor

4.4. Data model 44

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator decab
permuted 5D tensor

enumerator abcdef
plain 6D tensor

enumerator acbdef
plain 6D tensor

enumerator defcab
plain 6D tensor

enumerator x
1D tensor; an alias for dnnl::memory::format_tag::a

enumerator nc
2D CNN activations tensor; an alias for dnnl::memory::format_tag::ab

enumerator cn
2D CNN activations tensor; an alias for dnnl::memory::format_tag::ba

enumerator tn
2D RNN statistics tensor; an alias for dnnl::memory::format_tag::ab

enumerator nt
2D RNN statistics tensor; an alias for dnnl::memory::format_tag::ba

enumerator ncw
3D CNN activations tensor; an alias for dnnl::memory::format_tag::abc

enumerator nwc
3D CNN activations tensor; an alias for dnnl::memory::format_tag::acb

enumerator nchw
4D CNN activations tensor; an alias for dnnl::memory::format_tag::abcd

enumerator nhwc
4D CNN activations tensor; an alias for dnnl::memory::format_tag::acdb

enumerator chwn
4D CNN activations tensor; an alias for dnnl::memory::format_tag::bcda

enumerator ncdhw
5D CNN activations tensor; an alias for dnnl::memory::format_tag::abcde

4.4. Data model 45

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator ndhwc
5D CNN activations tensor; an alias for dnnl::memory::format_tag::acdeb

enumerator oi
2D CNN weights tensor; an alias for dnnl::memory::format_tag::ab

enumerator io
2D CNN weights tensor; an alias for dnnl::memory::format_tag::ba

enumerator oiw
3D CNN weights tensor; an alias for dnnl::memory::format_tag::abc

enumerator owi
3D CNN weights tensor; an alias for dnnl::memory::format_tag::acb

enumerator wio
3D CNN weights tensor; an alias for dnnl::memory::format_tag::cba

enumerator iwo
3D CNN weights tensor; an alias for dnnl::memory::format_tag::bca

enumerator oihw
4D CNN weights tensor; an alias for dnnl::memory::format_tag::abcd

enumerator hwio
4D CNN weights tensor; an alias for dnnl::memory::format_tag::cdba

enumerator ohwi
4D CNN weights tensor; an alias for dnnl::memory::format_tag::acdb

enumerator ihwo
4D CNN weights tensor; an alias for dnnl::memory::format_tag::bcda

enumerator iohw
4D CNN weights tensor; an alias for dnnl::memory::format_tag::bacd

enumerator oidhw
5D CNN weights tensor; an alias for dnnl::memory::format_tag::abcde

enumerator dhwio
5D CNN weights tensor; an alias for dnnl::memory::format_tag::cdeba

enumerator odhwi
5D CNN weights tensor; an alias for dnnl::memory::format_tag::acdeb

4.4. Data model 46

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator iodhw
5D CNN weights tensor; an alias for dnnl::memory::format_tag::bacde

enumerator idhwo
5D CNN weights tensor; an alias for dnnl::memory::format_tag::bcdea

enumerator goiw
4D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcd

enumerator wigo
4D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::dcab

enumerator goihw
5D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcde

enumerator hwigo
5D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::decab

enumerator giohw
5D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::acbde

enumerator goidhw
6D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcdef

enumerator giodhw
6D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcdef

enumerator dhwigo
6D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::defcab

enumerator tnc
3D RNN data tensor in the format (seq_length, batch, input channels).

enumerator ntc
3D RNN data tensor in the format (batch, seq_length, input channels).

enumerator ldnc
4D RNN states tensor in the format (num_layers, num_directions, batch, state channels).

enumerator ldigo
5D RNN weights tensor in the format (num_layers, num_directions, input_channels, num_gates, out-
put_channels).

• For LSTM cells, the gates order is input, forget, candidate and output gate.

• For GRU cells, the gates order is update, reset and output gate.

4.4. Data model 47

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator ldgoi
5D RNN weights tensor in the format (num_layers, num_directions, num_gates, output_channels, in-
put_channels).

• For LSTM cells, the gates order is input, forget, candidate and output gate.

• For GRU cells, the gates order is update, reset and output gate.

enumerator ldio
4D LSTM projection tensor in the format (num_layers, num_directions, num_channels_in_hidden_state,
num_channels_in_recurrent_projection).

enumerator ldoi
4D LSTM projection tensor in the format (num_layers, num_directions,
num_channels_in_recurrent_projection, num_channels_in_hidden_state).

enumerator ldgo
4D RNN bias tensor in the format (num_layers, num_directions, num_gates, output_channels).

• For LSTM cells, the gates order is input, forget, candidate and output gate.

• For GRU cells, the gates order is update, reset and output gate.

Memory Descriptors and Objects

Descriptors

Memory descriptor is an engine-agnostic logical description of data (number of dimensions, dimension sizes, and data
type), and, optionally, the information about the physical format of data in memory. If this information is not known
yet, a memory descriptor can be created with format tag set to dnnl::memory::format_tag::any. This allows
compute-intensive primitives to chose the most appropriate physical format for the computations. The user is then
responsible for reordering their data into the proper format they do not match. See Memory Format Propagation for
more details.

A memory descriptor can be initialized either by specifying dimensions, and memory format tag or strides for each of
them.

User can query amount of memory required by a memory descriptor using the dnnl::memory::desc::get_size()
function. The size of data in general cannot be computed as the product of dimensions multiplied by the size of the
data type. So users are required to use this function for better code portability.

Two memory descriptors can be compared using the equality and inequality operators. The comparison is especially
useful when checking whether it is necessary to reorder data from the user’s data format to a primitive’s format.

Along with ordinary memory descriptors with all dimensions being positive, oneDNN supports zero-volume memory
descriptors with one or more dimensions set to zero. This is used to support the NumPy* convention. If a zero-volume
memory is passed to a primitive, the primitive typically does not perform any computations with this memory. For
example:

• The concatenation primitive would ignore all memory object with zeroes in the concatenation dimension / axis.

4.4. Data model 48

oneAPI Specification, Release 1.4-provisional-rev-1

• A forward convolution with a source memory object with zero in the minibatch dimension would always produce
a destination memory object with a zero in the minibatch dimension and perform no computations.

• However, a forward convolution with a zero in one of the weights dimensions is ill-defined and is considered to
be an error by the library because there is no clear definition on what the output values should be.

Data handle of a zero-volume memory is never accessed.

Note: Some primitives support implicit broadcast semantic when a given tensor has a dimensions set to 1 (similar
to NumPY broadcast semantic). In particular, if an operation expects two tensors with same dimensions, and one of
the descriptors has some dimension set to 1, that dimension will be implicitly broadcasted to match the other tensor
dimension.

API

struct desc
A memory descriptor.

Public Functions

desc()

Constructs a zero (empty) memory descriptor. Such a memory descriptor can be used to indicate absence
of an argument.

desc(const dims &adims, data_type adata_type, format_tag aformat_tag, bool allow_empty = false)
Constructs a memory descriptor.

Note: The logical order of dimensions corresponds to the abc... format tag, and the physical meaning of
the dimensions depends both on the primitive that would operate on this memory and the operation context.

Parameters

• adims – Tensor dimensions.

• adata_type – Data precision/type.

• aformat_tag – Memory format tag.

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case a zero memory descriptor will be constructed. This flag is
optional and defaults to false.

desc(const dims &adims, data_type adata_type, const dims &strides, bool allow_empty = false)
Constructs a memory descriptor by strides.

Note: The logical order of dimensions corresponds to the abc... format tag, and the physical meaning of
the dimensions depends both on the primitive that would operate on this memory and the operation context.

Parameters

4.4. Data model 49

oneAPI Specification, Release 1.4-provisional-rev-1

• adims – Tensor dimensions.

• adata_type – Data precision/type.

• strides – Strides for each dimension.

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case a zero memory descriptor will be constructed. This flag is
optional and defaults to false.

desc submemory_desc(const dims &adims, const dims &offsets, bool allow_empty = false) const
Constructs a memory descriptor for a region inside an area described by this memory descriptor.

Parameters

• adims – Sizes of the region.

• offsets – Offsets to the region from the encompassing memory object in each dimension.

• allow_empty – A flag signifying whether construction is allowed to fail without throwing
an exception. In this case a zero memory descriptor will be returned. This flag is optional
and defaults to false.

Returns
A memory descriptor for the region.

desc reshape(const dims &adims, bool allow_empty = false) const
Constructs a memory descriptor by reshaping an existing one. The new memory descriptor inherits the
data type.

The operation ensures that the transformation of the physical memory format corresponds to the trans-
formation of the logical dimensions. If such transformation is impossible, the function either throws an
exception (default) or returns a zero memory descriptor depending on the allow_empty flag.

The reshape operation can be described as a combination of the following basic operations:

i. Add a dimension of size 1. This is always possible.

ii. Remove a dimension of size 1.

iii. Split a dimension into multiple ones. This is possible only if the product of all tensor dimensions stays
constant.

iv. Join multiple consecutive dimensions into a single one. This requires that the dimensions are dense in
memory and have the same order as their logical counterparts.

• Here, ‘dense’ means: stride for dim[i] == (stride for dim[i + 1]) * dim[i +
1];

• And ‘same order’ means: i < j if and only if stride for dim[j] <= stride for dim[i].

Note: Reshape may fail for optimized memory formats.

Parameters

• adims – New dimensions. The product of dimensions must remain constant.

• allow_empty – A flag signifying whether construction is allowed to fail without throwing
an exception. In this case a zero memory descriptor will be returned. This flag is optional
and defaults to false.

4.4. Data model 50

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A new memory descriptor with new dimensions.

desc permute_axes(const std::vector<int> &permutation, bool allow_empty = false) const
Constructs a memory descriptor by permuting axes in an existing one.

The physical memory layout representation is adjusted accordingly to maintain the consistency between the
logical and physical parts of the memory descriptor. The new memory descriptor inherits the data type.

The logical axes will be permuted in the following manner:

for (i = 0; i < ndims(); i++)
new_desc.dims()[permutation[i]] = dims()[i];

Example:

std::vector<int> permutation = {1, 0}; // swap the first and
// the second axes

dnnl::memory::desc in_md(
{2, 3}, data_type, memory::format_tag::ab);

dnnl::memory::desc expect_out_md(
{3, 2}, data_type, memory::format_tag::ba);

assert(in_md.permute_axes(permutation) == expect_out_md);

Parameters

• permutation – Axes permutation.

• allow_empty – A flag signifying whether construction is allowed to fail without throwing
an exception. In this case a zero memory descriptor will be returned. This flag is optional
and defaults to false.

Returns
A new memory descriptor with new dimensions.

memory::dims dims() const
Returns dimensions of the memory descriptor.

Potentially expensive due to the data copy involved.

Returns
A copy of the dimensions vector.

memory::data_type data_type() const
Returns the data type of the memory descriptor.

Returns
The data type.

size_t get_size() const
Returns size of the memory descriptor in bytes.

Returns
The number of bytes required to allocate a memory buffer for the memory object described
by this memory descriptor.

4.4. Data model 51

oneAPI Specification, Release 1.4-provisional-rev-1

bool is_zero() const
Checks whether the memory descriptor is zero (empty).

Returns
true if the memory descriptor describes an empty memory and false otherwise.

bool operator==(const desc &other) const
An equality operator.

Parameters
other – Another memory descriptor.

Returns
Whether this and the other memory descriptors have the same format tag, dimensions, strides,
etc.

bool operator!=(const desc &other) const
An inequality operator.

Parameters
other – Another memory descriptor.

Returns
Whether this and the other memory descriptors describe different memory.

Objects

Memory objects combine memory descriptors with storage for data (a data handle). With USM, the data handle
is simply a pointer to void. The data handle can be queried using dnnl::memory::get_data_handle() and
set using dnnl::memory::set_data_handle(). The underlying SYCL buffer, when used, can be queried using
dnnl::sycl_interop::get_buffer() and set using dnnl::sycl_interop::set_buffer(). In addition, the
memory descriptor and the engine underlying a memory object can be queried using dnnl::memory::get_desc()
and dnnl::memory::get_engine() respectively.

API

struct memory
Memory object.

A memory object encapsulates a handle to a memory buffer allocated on a specific engine, tensor dimensions,
data type, and memory format, which is the way tensor indices map to offsets in linear memory space. Memory
objects are passed to primitives during execution.

Public Functions

memory()

Default constructor.

Constructs an empty memory object, which can be used to indicate absence of a parameter.

4.4. Data model 52

oneAPI Specification, Release 1.4-provisional-rev-1

memory(const desc &md, const engine &aengine, void *handle)
Constructs a memory object.

Unless handle is equal to DNNL_MEMORY_NONE, the constructed memory object will have the under-
lying buffer set. In this case, the buffer will be initialized as if dnnl::memory::set_data_handle() has been
called.

See also:

memory::set_data_handle()

Parameters

• md – Memory descriptor.

• aengine – Engine to store the data on.

• handle – Handle of the memory buffer to use.

– A pointer to the user-allocated buffer. In this case the library doesn’t own the buffer.

– The DNNL_MEMORY_ALLOCATE special value. Instructs the library to allocate the
buffer for the memory object. In this case the library owns the buffer and the memory
allocation kind of the underlying buffer is dnnl::sycl_interop::memory_kind::usm.

– DNNL_MEMORY_NONE to create dnnl::memory without an underlying buffer.

memory(const desc &md, const engine &aengine)
Constructs a memory object.

The underlying buffer for the memory will be allocated by the library. The memory allocation kind of the
underlying buffer is dnnl::sycl_interop::memory_kind::usm.

Parameters

• md – Memory descriptor.

• aengine – Engine to store the data on.

desc get_desc() const
Returns the associated memory descriptor.

engine get_engine() const
Returns the associated engine.

void *get_data_handle() const
Returns the underlying memory buffer.

On the CPU engine, or when using USM, this is a pointer to the allocated memory.

void set_data_handle(void *handle, const stream &astream) const
Sets the underlying memory buffer.

This function may write zero values to the memory specified by the handle if the memory object has a zero
padding area. This may be time consuming and happens each time this function is called. The operation is
always blocking and the stream parameter is a hint.

4.4. Data model 53

oneAPI Specification, Release 1.4-provisional-rev-1

Note: Even when the memory object is used to hold values that stay constant during the execution of
the program (pre-packed weights during inference, for example), the function will still write zeroes to the
padding area if it exists. Hence, the handle parameter cannot and does not have a const qualifier.

Parameters

• handle – Memory buffer to use. On the CPU engine or when USM is used, the memory
buffer is a pointer to the actual data. It must have at least dnnl::memory::desc::get_size()
bytes allocated.

• astream – Stream to use to execute padding in.

void set_data_handle(void *handle) const
Sets the underlying memory buffer.

See documentation for dnnl::memory::set_data_handle(void *, const stream &) const for more information.

Parameters
handle – Memory buffer to use. For the CPU engine, the memory buffer is a pointer to the
actual data. It must have at least dnnl::memory::desc::get_size() bytes allocated.

template<typename T = void>
T *map_data() const

Maps a memory object and returns a host-side pointer to a memory buffer with a copy of its contents.

Mapping enables read/write directly from/to the memory contents for engines that do not support direct
memory access.

Mapping is an exclusive operation - a memory object cannot be used in other operations until it is unmapped
via dnnl::memory::unmap_data() call.

Note: Any primitives working with the memory should be completed before the memory is mapped. Use
dnnl::stream::wait() to synchronize the corresponding execution stream.

Note: The map_data and unmap_data functions are provided mainly for debug and testing purposes and
their performance may be suboptimal.

Template Parameters
T – Data type to return a pointer to.

Returns
Pointer to the mapped memory.

void unmap_data(void *mapped_ptr) const
Unmaps a memory object and writes back any changes made to the previously mapped memory buffer.

Note: The map_data and unmap_data functions are provided mainly for debug and testing purposes and
their performance may be suboptimal.

Parameters
mapped_ptr – A pointer previously returned by dnnl::memory::map_data().

4.4. Data model 54

oneAPI Specification, Release 1.4-provisional-rev-1

enum class dnnl::sycl_interop::memory_kind
Memory allocation kinds.

Values:

enumerator usm
USM memory allocation kind.

enumerator buffer
Buffer memory allocation kind.

memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const engine &aengine,
memory_kind akind, void *ahandle =
DNNL_MEMORY_ALLOCATE)

Creates a memory object of a specified description and of a specified memory allocation kind, for a specified
engine.

Note: If akind is dnnl::sycl_interop::memory_kind::buffer, and ahandle is not
DNNL_MEMORY_ALLOCATE or DNNL_MEMORY_NONE, an exception is thrown.

Parameters

• adesc – Memory descriptor that describes the data.

• aengine – Engine to store the data on.

• akind – Memory allocation kind.

• ahandle – Handle of the memory data to use. This parameter is optional. By de-
fault, the underlying memory buffer is allocated internally, its memory allocation kind is
dnnl::sycl_interop::memory_kind::usm, and the library owns the buffer. If handle is pro-
vided, the library does not own the buffer.

Returns
Memory object described by adesc memory descriptor, which has akind memory allocation
kind, and is attached to the aengine engine.

memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const stream &astream,
memory_kind akind, void *ahandle =
DNNL_MEMORY_ALLOCATE)

Creates a memory object of a specified description and of a specified memory allocation kind, for a specified
stream.

Note: If akind is dnnl::sycl_interop::memory_kind::buffer, and ahandle is not
DNNL_MEMORY_ALLOCATE or DNNL_MEMORY_NONE, an exception is thrown.

Parameters

• adesc – Memory descriptor that describes the data.

• astream – Stream object where the data is used.

• akind – Memory allocation kind.

4.4. Data model 55

oneAPI Specification, Release 1.4-provisional-rev-1

• ahandle – Handle of the memory data to use. This parameter is optional. By de-
fault, the underlying memory buffer is allocated internally, its memory allocation kind is
dnnl::sycl_interop::memory_kind::usm, and the library owns the buffer. If handle is pro-
vided, the library does not own the buffer.

Returns
Memory object described by adesc memory descriptor, which has akind memory allocation
kind, and used withing the astream stream.

template<typename T, int ndims>
memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const engine &aengine,

cl::sycl::buffer<T , ndims> abuffer)
Creates a memory object using a specified SYCL buffer.

Note: When such memory object is created, it is implied that its memory allocation kind is
dnnl::sycl_interop::memory_kind::buffer.

Template Parameters

• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters

• adesc – Memory descriptor that describes the data within the specified buffer.

• aengine – Engine to store the data on.

• abuffer – SYCL buffer.

Returns
Memory object which holds a abuffer SYCL buffer described by the adesc memory descriptor
and attached to the aengine engine.

template<typename T, int ndims>
memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const stream &astream,

cl::sycl::buffer<T , ndims> abuffer)
Creates a memory object using a specified SYCL buffer.

Note: When such memory object is created, it is implied that its memory allocation kind is
dnnl::sycl_interop::memory_kind::buffer.

Template Parameters

• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters

• adesc – Memory descriptor that describes the data within the specified buffer.

• astream – Stream object where the data is used.

• abuffer – SYCL buffer.

4.4. Data model 56

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Memory object which holds a abuffer SYCL buffer described by the adesc memory descriptor
and used within the astream stream.

memory_kind dnnl::sycl_interop::get_memory_kind(const memory &amemory)
Returns the memory allocation kind of a specified memory object.

Note: The memory allocation kind of a memory object could be changed during its lifetime, by setting the USM
handle or SYCL buffer of said memory object.

Parameters
amemory – Memory object.

Returns
Memory allocation kind of the amemory memory object.

template<typename T, int ndims>
void dnnl::sycl_interop::set_buffer(memory &amemory, cl::sycl::buffer<T , ndims> abuffer)

Sets the SYCL buffer underlying a specified memory object.

Note: By setting the SYCL buffer of a memory object its memory allocation kind will be changed to
dnnl::sycl_interop::memory_kind::buffer.

Template Parameters

• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters

• amemory – Memory object that will store the abuffer SYCL buffer.

• abuffer – SYCL buffer to be stored in the amemory memory object.

template<typename T, int ndims>
void dnnl::sycl_interop::set_buffer(memory &amemory, cl::sycl::buffer<T , ndims> abuffer, stream

&astream)

Sets the SYCL buffer underlying a specified memory object in a specified stream.

Template Parameters

• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters

• amemory – Memory object that will store the abuffer SYCL buffer.

• abuffer – SYCL buffer to be stored in the amemorymemory object and used in the astream
stream.

• astream – Stream object within which the amemory memory object is used.

template<typename T, int ndims = 1>

4.4. Data model 57

oneAPI Specification, Release 1.4-provisional-rev-1

cl::sycl::buffer<T , ndims> dnnl::sycl_interop::get_buffer(const memory &amemory)
Returns the SYCL buffer underlying a specified memory object.

Template Parameters

• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified buffer.

Parameters
amemory – Memory object.

Returns
SYCL buffer of type T with ndims dimensions, underlying the amemory memory object.

DNNL_MEMORY_NONE

Special pointer value that indicates that a memory object should not have an underlying buffer.

DNNL_MEMORY_ALLOCATE

Special pointer value that indicates that the library needs to allocate an underlying buffer for a memory object.

4.5 Primitives

Primitives are functor objects that encapsulate a particular computation such as forward convolution, backward LSTM
computations, or a data transformation operation. A single primitive can sometimes represent more complex fused
computations such as a forward convolution followed by a ReLU.

The most important difference between a primitive and a pure function is that a primitive can store state.

One part of the primitive’s state is immutable. For example, convolution primitives store parameters like tensor shapes
and can pre-compute other dependent parameters like cache blocking. This approach allows oneDNN primitives to pre-
generate code specifically tailored for the operation to be performed. The oneDNN programming model assumes that
the time it takes to perform the pre-computations is amortized by reusing the same primitive to perform computations
multiple times.

The mutable part of the primitive’s state is referred to as a scratchpad. It is a memory buffer that a primitive may use for
temporary storage only during computations. The scratchpad can either be owned by a primitive object (which makes
that object non-thread safe) or be an execution-time parameter.

Conceptually, oneDNN establishes several layers of how to describe a computation from more abstract to more concrete:

• Primitives descriptors fully defines an operations’s computation using the memory descriptors
(dnnl::memory::desc) passed at construction, as well as the attributes. It also dispatches specific im-
plementation based on the engine. Primitive descriptors can be used to query various primitive implementation
details and, for example, to implement memory format propagation by inspecting expected memory formats
via queries without having to fully instantiate a primitive. oneDNN may contain multiple implementations
for the same primitive that can be used to perform the same particular computation. Primitive descriptors
allow one-way iteration which allows inspecting multiple implementations. The library is expected to order the
implementations from most to least preferred, so it should always be safe to use the one that is chosen by default.

• Primitives, which are the most concrete, and embody the actual executable code that will be run to perform the
primitive computation.

On the API level:

• Primitives are represented as a class on the top level of the dnnl namespace that have dnnl::primitive as
their base class, for example dnnl::convolution_forward

4.5. Primitives 58

oneAPI Specification, Release 1.4-provisional-rev-1

• Primitive descriptors are represented as classes named primitive_desc and nested within the
corresponding primitive classes that have dnnl::primitive_desc_base as their base class (ex-
cept for RNN primitives that derive from dnnl::rnn_primitive_desc_base), for example
dnnl::convolution_forward::primitive_desc. The dnnl::primitive_desc::next_impl()
member function provides a way to iterate over implementations.

namespace dnnl {
struct something_forward : public primitive {
struct desc {
// Primitive-specific constructors.

}
struct primitive_desc : public primitive_desc_base {
// Constructors and primitive-specific memory descriptor queries.

}
};

}

The sequence of actions to create a primitive is:

1. Create a primitive descriptor with the proper memory descriptors, engine and attributes. The primitive descriptor
can contain memory descriptors with placeholder dnnl::memory::format_tag::any memory formats if the
primitive supports it.

2. Create a primitive based on the primitive descriptor obtained in step 1.

4.5.1 Common Definitions

This section lists common types and definitions used by all or multiple primitives.

Base Class for Primitives

struct primitive
Base class for all computational primitives.

Subclassed by dnnl::augru_backward, dnnl::augru_forward, dnnl::batch_normalization_backward,
dnnl::batch_normalization_forward, dnnl::binary, dnnl::concat, dnnl::convolution_backward_data,
dnnl::convolution_backward_weights, dnnl::convolution_forward, dnnl::deconvolution_backward_data,
dnnl::deconvolution_backward_weights, dnnl::deconvolution_forward, dnnl::eltwise_backward,
dnnl::eltwise_forward, dnnl::gru_backward, dnnl::gru_forward, dnnl::inner_product_backward_data,
dnnl::inner_product_backward_weights, dnnl::inner_product_forward, dnnl::layer_normalization_backward,
dnnl::layer_normalization_forward, dnnl::lbr_augru_backward, dnnl::lbr_augru_forward,
dnnl::lbr_gru_backward, dnnl::lbr_gru_forward, dnnl::lrn_backward, dnnl::lrn_forward,
dnnl::lstm_backward, dnnl::lstm_forward, dnnl::matmul, dnnl::pooling_backward, dnnl::pooling_forward,
dnnl::prelu_backward, dnnl::prelu_forward, dnnl::reduction, dnnl::reorder, dnnl::resampling_backward,
dnnl::resampling_forward, dnnl::shuffle_backward, dnnl::shuffle_forward, dnnl::softmax_backward,
dnnl::softmax_forward, dnnl::sum, dnnl::vanilla_rnn_backward, dnnl::vanilla_rnn_forward

4.5. Primitives 59

oneAPI Specification, Release 1.4-provisional-rev-1

Public Types

enum class kind
Kinds of primitives supported by the library.

Values:

enumerator undef
Undefined primitive.

enumerator reorder
A reorder primitive.

enumerator shuffle
A shuffle primitive.

enumerator concat
A (out-of-place) tensor concatenation primitive.

enumerator sum
A summation primitive.

enumerator convolution
A convolution primitive.

enumerator deconvolution
A deconvolution primitive.

enumerator eltwise
An element-wise primitive.

enumerator softmax
A softmax primitive.

enumerator pooling
A pooling primitive.

enumerator prelu
A PReLU primitive.

enumerator lrn
An LRN primitive.

enumerator batch_normalization
A batch normalization primitive.

4.5. Primitives 60

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator layer_normalization
A layer normalization primitive.

enumerator inner_product
An inner product primitive.

enumerator rnn
An RNN primitive.

enumerator binary
A binary primitive.

enumerator matmul
A matmul (matrix multiplication) primitive.

enumerator resampling
A resampling primitive.

Public Functions

primitive()

Default constructor. Constructs an empty object.

primitive(const primitive_desc_base &pd)
Constructs a primitive from a primitive descriptor.

Parameters
pd – Primitive descriptor.

inline kind get_kind() const
Returns the kind of the primitive.

Returns
The primitive kind.

void execute(const stream &astream, const std::unordered_map<int, memory> &args) const
Executes computations specified by the primitive in a specified stream.

Arguments are passed via an arguments map containing <index, memory object> pairs. The index must be
one of the DNNL_ARG_* values such as DNNL_ARG_SRC, and the memory must have a memory descriptor
matching the one returned by dnnl::primitive_desc_base::query_md(query::exec_arg_md, index) unless
using dynamic shapes (see DNNL_RUNTIME_DIM_VAL).

Parameters

• astream – Stream object. The stream must belong to the same engine as the primitive.

• args – Arguments map.

primitive &operator=(const primitive &rhs)
Assignment operator.

4.5. Primitives 61

oneAPI Specification, Release 1.4-provisional-rev-1

cl::sycl::event dnnl::sycl_interop::execute(const primitive &aprimitive, const stream &astream, const
std::unordered_map<int, memory> &args, const
std::vector<cl::sycl::event> &dependencies = {})

Executes computations using a specified primitive object in a specified stream.

Arguments are passed via an arguments map containing <index, memory object> pairs. The index must be one
of the DNNL_ARG_* values such as DNNL_ARG_SRC, and the memory must have a memory descriptor matching
the one returned by dnnl::primitive_desc_base::query_md(query::exec_arg_md, index) unless using dynamic
shapes (see DNNL_RUNTIME_DIM_VAL).

Parameters

• aprimitive – Primitive to be executed.

• astream – Stream object. The stream must belong to the same engine as the primitive.

• args – Arguments map.

• dependencies – Vector of SYCL events that the execution depends on.

Returns
SYCL event object for the specified primitive execution.

Base Class for Primitives Descriptors

There is a common base class for primitive descriptors.

struct primitive_desc_base
Base class for all primitive descriptors.

Subclassed by dnnl::concat::primitive_desc, dnnl::primitive_desc, dnnl::reorder::primitive_desc,
dnnl::sum::primitive_desc

Public Functions

primitive_desc_base()

Default constructor. Produces an empty object.

engine get_engine() const
Returns the engine of the primitive descriptor.

Returns
The engine of the primitive descriptor.

const char *impl_info_str() const
Returns implementation name.

Returns
The implementation name.

memory::dim query_s64(query what) const
Returns a memory::dim value (same as int64_t).

Parameters
what – The value to query.

Returns
The result of the query.

4.5. Primitives 62

oneAPI Specification, Release 1.4-provisional-rev-1

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

float get_epsilon() const
Returns an epsilon.

Returns
An epsilon.

Returns
Zero if the primitive does not have an epsilon parameter.

template<typename T = unsigned>
T get_flags() const

Returns flags.

Template Parameters
T – Flags enumeration type.

Returns
Flags.

Returns
Zero if the primitive does not have a flags parameter.

dnnl::algorithm get_algorithm() const
Returns an algorithm kind.

4.5. Primitives 63

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

float get_alpha() const
Returns an alpha.

Returns
An alpha.

Returns
Zero if the primitive does not have an alpha parameter.

float get_beta() const
Returns a beta.

Returns
A beta.

Returns
Zero if the primitive does not have a beta parameter.

int get_axis() const
Returns an axis.

Returns
An axis.

Returns
A negative number if the primitive does not have an axis parameter.

memory::dim get_local_size() const
Returns an LRN local size parameter.

Returns
An LRN local size parameter.

Returns
Zero if the primitive does not have an LRN local size parameter.

float get_k() const
Returns an LRN K parameter.

Returns
An LRN K parameter.

Returns
Zero if the primitive does not have an LRN K parameter.

float get_p() const
Returns a reduction P parameter.

Returns
A reduction P parameter.

Returns
Zero if the primitive does not have a reduction P parameter.

4.5. Primitives 64

oneAPI Specification, Release 1.4-provisional-rev-1

std::vector<float> get_factors() const
Returns a resampling factors parameters.

Returns
A vector of factors.

Returns
An empty vector if the primitive does not have a resampling factors parameter.

dnnl::algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

dnnl::rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

dnnl::algorithm get_activation_kind() const
Returns an RNN activation kind parameter.

Returns
An RNN activation kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN activation kind parameter.

memory::dims get_kernel() const
Returns a pooling kernel parameter.

Returns
A pooling kernel parameter.

Returns
An empty dnnl::memory::dims if the primitive does not have a pooling kernel parameter.

memory::dim get_group_size() const
Returns a shuffle group size parameter.

Returns
A shuffle group size parameter.

Returns
Zero if the primitive does not have a shuffle group size parameter.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

4.5. Primitives 65

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc query_md(query what, int idx = 0) const
Returns a memory descriptor.

Note: There are also convenience methods dnnl::primitive_desc_base::src_desc(),
dnnl::primitive_desc_base::dst_desc(), and others.

Parameters

• what – The kind of parameter to query; can be dnnl::query::src_md, dnnl::query::dst_md,
etc.

• idx – Index of the parameter. For example, convolution bias can be queried with what =
dnnl::query::weights_md and idx = 1.

Returns
The requested memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a parameter of the specified kind or
index.

memory::desc src_desc(int idx) const
Returns a source memory descriptor.

Parameters
idx – Source index.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter with index pdx.

memory::desc dst_desc(int idx) const
Returns a destination memory descriptor.

Parameters
idx – Destination index.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter with index
pdx.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns
The bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a bias parameter.

memory::desc weights_desc(int idx) const
Returns a weights memory descriptor.

4.5. Primitives 66

oneAPI Specification, Release 1.4-provisional-rev-1

Parameters
idx – Weights index.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter with index pdx.

memory::desc diff_src_desc(int idx) const
Returns a diff source memory descriptor.

Parameters
idx – Diff source index.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source parameter with index
pdx.

memory::desc diff_dst_desc(int idx) const
Returns a diff destination memory descriptor.

Parameters
idx – Diff destination index.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter with
index pdx.

memory::desc diff_weights_desc(int idx) const
Returns a diff weights memory descriptor.

Parameters
idx – Diff weights index.

Returns
Diff weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff weights parameter with index
pdx.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

4.5. Primitives 67

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns
Diff weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc scratchpad_desc() const
Returns the scratchpad memory descriptor.

Returns
scratchpad memory descriptor.

Returns
A zero memory descriptor if the primitive does not require scratchpad parameter.

engine scratchpad_engine() const
Returns the engine on which the scratchpad memory is located.

Returns
The engine on which the scratchpad memory is located.

4.5. Primitives 68

oneAPI Specification, Release 1.4-provisional-rev-1

primitive_attr get_primitive_attr() const
Returns the primitive attributes.

Returns
The primitive attributes.

dnnl::primitive::kind get_kind() const
Returns the kind of the primitive descriptor.

Returns
The kind of the primitive descriptor.

It is further derived from to provide base class for all primitives.

struct primitive_desc : public dnnl::primitive_desc_base
A base class for descriptors of all primitives that have an operation descriptor and that support iteration over
multiple implementations.

Subclassed by dnnl::batch_normalization_backward::primitive_desc, dnnl::batch_normalization_forward::primitive_desc,
dnnl::binary::primitive_desc, dnnl::convolution_backward_data::primitive_desc,
dnnl::convolution_backward_weights::primitive_desc, dnnl::convolution_forward::primitive_desc,
dnnl::deconvolution_backward_data::primitive_desc, dnnl::deconvolution_backward_weights::primitive_desc,
dnnl::deconvolution_forward::primitive_desc, dnnl::eltwise_backward::primitive_desc,
dnnl::eltwise_forward::primitive_desc, dnnl::inner_product_backward_data::primitive_desc,
dnnl::inner_product_backward_weights::primitive_desc, dnnl::inner_product_forward::primitive_desc,
dnnl::layer_normalization_backward::primitive_desc, dnnl::layer_normalization_forward::primitive_desc,
dnnl::lrn_backward::primitive_desc, dnnl::lrn_forward::primitive_desc, dnnl::matmul::primitive_desc,
dnnl::pooling_backward::primitive_desc, dnnl::pooling_forward::primitive_desc,
dnnl::prelu_backward::primitive_desc, dnnl::prelu_forward::primitive_desc, dnnl::reduction::primitive_desc,
dnnl::resampling_backward::primitive_desc, dnnl::resampling_forward::primitive_desc,
dnnl::rnn_primitive_desc_base, dnnl::shuffle_backward::primitive_desc, dnnl::shuffle_forward::primitive_desc,
dnnl::softmax_backward::primitive_desc, dnnl::softmax_forward::primitive_desc

Public Functions

primitive_desc()

Default constructor. Produces an empty object.

bool next_impl()
Advances the primitive descriptor iterator to the next implementation.

Returns
true on success, and false if the last implementation reached, in which case primitive de-
scriptor is not modified.

The dnnl::reorder, dnnl::sum and dnnl::concat primitives also subclass dnnl::primitive_desc to imple-
ment their primitive descriptors.

RNN primitives further subclass the dnnl::primitive_desc_base to provide utility functions for frequently queried
memory descriptors.

struct rnn_primitive_desc_base : public dnnl::primitive_desc
Base class for primitive descriptors for RNN primitives.

Subclassed by dnnl::augru_backward::primitive_desc, dnnl::augru_forward::primitive_desc,
dnnl::gru_backward::primitive_desc, dnnl::gru_forward::primitive_desc, dnnl::lbr_augru_backward::primitive_desc,

4.5. Primitives 69

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::lbr_augru_forward::primitive_desc, dnnl::lbr_gru_backward::primitive_desc,
dnnl::lbr_gru_forward::primitive_desc, dnnl::lstm_backward::primitive_desc,
dnnl::lstm_forward::primitive_desc, dnnl::vanilla_rnn_backward::primitive_desc,
dnnl::vanilla_rnn_forward::primitive_desc

Public Functions

rnn_primitive_desc_base()

Default constructor. Produces an empty object.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc src_iter_c_desc() const
Returns source recurrent cell state memory descriptor.

Returns
Source recurrent cell state memory descriptor.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc weights_peephole_desc() const
Returns weights peephole memory descriptor.

Returns
Weights peephole memory descriptor.

memory::desc weights_projection_desc() const
Returns weights projection memory descriptor.

Returns
Weights projection memory descriptor.

memory::desc augru_attention_desc() const
Returns AUGRU attention memory descriptor.

Returns
AUGRU attention memory descriptor.

4.5. Primitives 70

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc dst_iter_c_desc() const
Returns destination recurrent cell state memory descriptor.

Returns
Destination recurrent cell state memory descriptor.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns
Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns
Diff source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source iteration parameter.

memory::desc diff_src_iter_c_desc() const
Returns diff source recurrent cell state memory descriptor.

Returns
Diff source recurrent cell state memory descriptor.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns
Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns
Diff weights iteration memory descriptor.

4.5. Primitives 71

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc diff_weights_peephole_desc() const
Returns diff weights peephole memory descriptor.

Returns
Diff weights peephole memory descriptor.

memory::desc diff_weights_projection_desc() const
Returns diff weights projection memory descriptor.

Returns
Diff weights projection memory descriptor.

memory::desc diff_augru_attention_desc() const
Returns diff AUGRU attention memory descriptor.

Returns
Diff AUGRU attention memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns
Diff bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns
Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns
Diff destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination iteration parameter.

memory::desc diff_dst_iter_c_desc() const
Returns diff destination recurrent cell state memory descriptor.

Returns
Diff destination recurrent cell state memory descriptor.

Common Enumerations

enum class dnnl::prop_kind
Propagation kind.

Values:

enumerator undef
Undefined propagation kind.

4.5. Primitives 72

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator forward_training
Forward data propagation (training mode). In this mode, primitives perform computations necessary for
subsequent backward propagation.

enumerator forward_inference
Forward data propagation (inference mode). In this mode, primitives perform only computations that are
necessary for inference and omit computations that are necessary only for backward propagation.

enumerator forward_scoring
Forward data propagation, alias for dnnl::prop_kind::forward_inference.

enumerator forward
Forward data propagation, alias for dnnl::prop_kind::forward_training.

enumerator backward
Backward propagation (with respect to all parameters).

enumerator backward_data
Backward data propagation.

enumerator backward_weights
Backward weights propagation.

enumerator backward_bias
Backward bias propagation.

enum class dnnl::algorithm
Kinds of algorithms.

Values:

enumerator undef
Undefined algorithm.

enumerator convolution_auto
Convolution algorithm that is chosen to be either direct or Winograd automatically

enumerator convolution_direct
Direct convolution.

enumerator convolution_winograd
Winograd convolution.

enumerator deconvolution_direct
Direct deconvolution.

4.5. Primitives 73

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator deconvolution_winograd
Winograd deconvolution.

enumerator eltwise_abs
Elementwise: abs.

enumerator eltwise_bounded_relu
Elementwise: bounded_relu.

enumerator eltwise_clip
Elementwise: clip.

enumerator eltwise_clip_use_dst_for_bwd
Elementwise: clip (dst for backward)

enumerator eltwise_elu
Elementwise: exponential linear unit (ELU)

enumerator eltwise_elu_use_dst_for_bwd
Elementwise: exponential linear unit (ELU) (dst for backward)

enumerator eltwise_exp
Elementwise: exponent.

enumerator eltwise_exp_use_dst_for_bwd
Elementwise: exponent (dst for backward)

enumerator eltwise_gelu
Elementwise: gelu alias for dnnl::algorithm::eltwise_gelu_tanh

enumerator eltwise_gelu_tanh
Elementwise: tanh-based gelu.

enumerator eltwise_gelu_erf
Elementwise: erf-based gelu.

enumerator eltwise_hardswish
Elementwise: hardswish.

enumerator eltwise_hardsigmoid
Elementwise: hardsigmoid.

enumerator eltwise_linear
Elementwise: linear.

4.5. Primitives 74

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator eltwise_log
Elementwise: natural logarithm.

enumerator eltwise_logistic
Elementwise: logistic.

enumerator eltwise_logistic_use_dst_for_bwd
Elementwise: logistic (dst for backward)

enumerator eltwise_mish
Elementwise: mish.

enumerator eltwise_pow
Elementwise: pow.

enumerator eltwise_relu
Elementwise: rectified linear unit (ReLU)

enumerator eltwise_relu_use_dst_for_bwd
Elementwise: rectified linear unit (ReLU) (dst for backward)

enumerator eltwise_round
Elementwise: round.

enumerator eltwise_soft_relu
Elementwise: soft_relu.

enumerator eltwise_sqrt
Elementwise: square root.

enumerator eltwise_sqrt_use_dst_for_bwd
Elementwise: square root (dst for backward)

enumerator eltwise_square
Elementwise: square.

enumerator eltwise_swish
Elementwise: swish (𝑥 · 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑎 · 𝑥))

enumerator eltwise_tanh
Elementwise: hyperbolic tangent non-linearity (tanh)

enumerator eltwise_tanh_use_dst_for_bwd
Elementwise: hyperbolic tangent non-linearity (tanh) (dst for backward)

4.5. Primitives 75

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator lrn_across_channels
Local response normalization (LRN) across multiple channels.

enumerator lrn_within_channel
LRN within a single channel.

enumerator pooling_max
Max pooling.

enumerator pooling_avg
Average pooling exclude padding, alias for dnnl::algorithm::pooling_avg_include_padding

enumerator pooling_avg_include_padding
Average pooling include padding.

enumerator pooling_avg_exclude_padding
Average pooling exclude padding.

enumerator vanilla_rnn
RNN cell.

enumerator vanilla_lstm
LSTM cell.

enumerator vanilla_gru
GRU cell.

enumerator lbr_gru
GRU cell with linear before reset. Differs from original GRU in how the new memory gate is calculated:
𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐*𝑥𝑡+𝑏𝑐𝑥+𝑟𝑡*(𝑈𝑐*ℎ𝑡−1+𝑏𝑐ℎ)) LRB GRU expects 4 bias tensors on input: [𝑏𝑢, 𝑏𝑟, 𝑏𝑐𝑥 , 𝑏𝑐ℎ]

enumerator binary_add
Binary add.

enumerator binary_mul
Binary mul.

enumerator binary_max
Binary max.

enumerator binary_min
Binary min.

enumerator binary_div
Binary div.

4.5. Primitives 76

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator binary_sub
Binary sub.

enumerator binary_ge
Binary greater than or equal.

enumerator binary_gt
Binary greater than.

enumerator binary_le
Binary less than or equal.

enumerator binary_lt
Binary less than.

enumerator binary_eq
Binary equal.

enumerator binary_ne
Binary not equal.

enumerator resampling_nearest
Nearest Neighbor resampling method.

enumerator resampling_linear
Linear (Bilinear, Trilinear) resampling method.

enumerator reduction_max
Reduction using max operation.

enumerator reduction_min
Reduction using min operation.

enumerator reduction_sum
Reduction using sum operation.

enumerator reduction_mul
Reduction using mul operation.

enumerator reduction_mean
Reduction using mean operation.

enumerator reduction_norm_lp_max
Reduction using norm_lp_max operation.

4.5. Primitives 77

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator reduction_norm_lp_sum
Reduction using norm_lp_sum operation.

enumerator reduction_norm_lp_power_p_max
Reduction using norm_lp_power_p_max operation.

enumerator reduction_norm_lp_power_p_sum
Reduction using norm_lp_power_p_sum operation.

enumerator softmax_accurate
Softmax, numerically stable.

enumerator softmax_log
LogSoftmax, numerically stable.

Normalization Primitives Flags

enum class dnnl::normalization_flags : unsigned
Flags for normalization primitives (can be combined via ‘|’)

Values:

enumerator none
Use no normalization flags. If specified, the library computes mean and variance on forward propagation
for training and inference, outputs them on forward propagation for training, and computes the respective
derivatives on backward propagation.

enumerator use_global_stats
Use global statistics. If specified, the library uses mean and variance provided by the user as an input
on forward propagation and does not compute their derivatives on backward propagation. Otherwise, the
library computes mean and variance on forward propagation for training and inference, outputs them on
forward propagation for training, and computes the respective derivatives on backward propagation.

enumerator use_scale
Use scale and shift parameters. If specified, the user is expected to pass scale and shift as inputs on forward
propagation. On backward propagation of type dnnl::prop_kind::backward, the library computes their
derivatives. If not specified, the scale and shift parameters are not used by the library in any way.

enumerator use_shift

enumerator fuse_norm_relu
Fuse normalization with ReLU. On training, normalization will require the workspace to implement back-
ward propagation. On inference, the workspace is not required and behavior is the same as when normal-
ization is fused with ReLU using the post-ops API.

4.5. Primitives 78

oneAPI Specification, Release 1.4-provisional-rev-1

Execution argument indices

DNNL_ARG_SRC_0

Source argument #0.

DNNL_ARG_SRC

A special mnemonic for source argument for primitives that have a single source. An alias for
DNNL_ARG_SRC_0.

DNNL_ARG_SRC_LAYER

A special mnemonic for RNN input vector. An alias for DNNL_ARG_SRC_0.

DNNL_ARG_FROM

A special mnemonic for reorder source argument. An alias for DNNL_ARG_SRC_0.

DNNL_ARG_SRC_1

Source argument #1.

DNNL_ARG_SRC_ITER

A special mnemonic for RNN input recurrent hidden state vector. An alias for DNNL_ARG_SRC_1.

DNNL_ARG_SRC_2

Source argument #2.

DNNL_ARG_SRC_ITER_C

A special mnemonic for RNN input recurrent cell state vector. An alias for DNNL_ARG_SRC_2.

DNNL_ARG_DST_0

Destination argument #0.

DNNL_ARG_DST

A special mnemonic for destination argument for primitives that have a single destination. An alias for
DNNL_ARG_DST_0.

DNNL_ARG_TO

A special mnemonic for reorder destination argument. An alias for DNNL_ARG_DST_0.

DNNL_ARG_DST_LAYER

A special mnemonic for RNN output vector. An alias for DNNL_ARG_DST_0.

DNNL_ARG_DST_1

Destination argument #1.

DNNL_ARG_DST_ITER

A special mnemonic for RNN input recurrent hidden state vector. An alias for DNNL_ARG_DST_1.

4.5. Primitives 79

oneAPI Specification, Release 1.4-provisional-rev-1

DNNL_ARG_DST_2

Destination argument #2.

DNNL_ARG_DST_ITER_C

A special mnemonic for LSTM output recurrent cell state vector. An alias for DNNL_ARG_DST_2.

DNNL_ARG_WEIGHTS_0

Weights argument #0.

DNNL_ARG_WEIGHTS

A special mnemonic for primitives that have a single weights argument. Alias for DNNL_ARG_WEIGHTS_0.

DNNL_ARG_SCALE

Scale values argument of normalization primitives.

DNNL_ARG_SHIFT

Shift values argument of normalization primitives.

DNNL_ARG_WEIGHTS_LAYER

A special mnemonic for RNN weights applied to the layer input. An alias for DNNL_ARG_WEIGHTS_0.

DNNL_ARG_WEIGHTS_1

Weights argument #1.

DNNL_ARG_WEIGHTS_ITER

A special mnemonic for RNN weights applied to the recurrent input. An alias for DNNL_ARG_WEIGHTS_1.

DNNL_ARG_BIAS

Bias tensor argument.

DNNL_ARG_MEAN

Mean values tensor argument.

DNNL_ARG_VARIANCE

Variance values tensor argument.

DNNL_ARG_WORKSPACE

Workspace tensor argument. Workspace is used to pass information from forward propagation to backward
propagation computations.

DNNL_ARG_SCRATCHPAD

Scratchpad (temporary storage) tensor argument.

DNNL_ARG_DIFF_SRC_0

Gradient (diff) of the source argument #0.

4.5. Primitives 80

oneAPI Specification, Release 1.4-provisional-rev-1

DNNL_ARG_DIFF_SRC

A special mnemonic for primitives that have a single diff source argument. An alias for
DNNL_ARG_DIFF_SRC_0.

DNNL_ARG_DIFF_SRC_LAYER

A special mnemonic for gradient (diff) of RNN input vector. An alias for DNNL_ARG_DIFF_SRC_0.

DNNL_ARG_DIFF_SRC_1

Gradient (diff) of the source argument #1.

DNNL_ARG_DIFF_SRC_ITER

A special mnemonic for gradient (diff) of RNN input recurrent hidden state vector. An alias for
DNNL_ARG_DIFF_SRC_1.

DNNL_ARG_DIFF_SRC_2

Gradient (diff) of the source argument #2.

DNNL_ARG_DIFF_SRC_ITER_C

A special mnemonic for gradient (diff) of RNN input recurrent cell state vector. An alias for
DNNL_ARG_DIFF_SRC_1.

DNNL_ARG_DIFF_DST_0

Gradient (diff) of the destination argument #0.

DNNL_ARG_DIFF_DST

A special mnemonic for primitives that have a single diff destination argument. An alias for
DNNL_ARG_DIFF_DST_0.

DNNL_ARG_DIFF_DST_LAYER

A special mnemonic for gradient (diff) of RNN output vector. An alias for DNNL_ARG_DIFF_DST_0.

DNNL_ARG_DIFF_DST_1

Gradient (diff) of the destination argument #1.

DNNL_ARG_DIFF_DST_ITER

A special mnemonic for gradient (diff) of RNN input recurrent hidden state vector. An alias for
DNNL_ARG_DIFF_DST_1.

DNNL_ARG_DIFF_DST_2

Gradient (diff) of the destination argument #2.

DNNL_ARG_DIFF_DST_ITER_C

A special mnemonic for gradient (diff) of RNN input recurrent cell state vector. An alias for
DNNL_ARG_DIFF_DST_2.

4.5. Primitives 81

oneAPI Specification, Release 1.4-provisional-rev-1

DNNL_ARG_DIFF_WEIGHTS_0

Gradient (diff) of the weights argument #0.

DNNL_ARG_DIFF_WEIGHTS

A special mnemonic for primitives that have a single diff weights argument. Alias for
DNNL_ARG_DIFF_WEIGHTS_0.

DNNL_ARG_DIFF_SCALE

Scale gradient argument of normalization primitives.

DNNL_ARG_DIFF_SHIFT

Shift gradient argument of normalization primitives.

DNNL_ARG_DIFF_WEIGHTS_LAYER

A special mnemonic for diff of RNN weights applied to the layer input. An alias for
DNNL_ARG_DIFF_WEIGHTS_0.

DNNL_ARG_DIFF_WEIGHTS_1

Gradient (diff) of the weights argument #1.

DNNL_ARG_DIFF_WEIGHTS_ITER

A special mnemonic for diff of RNN weights applied to the recurrent input. An alias for
DNNL_ARG_DIFF_WEIGHTS_1.

DNNL_ARG_DIFF_BIAS

Gradient (diff) of the bias tensor argument.

DNNL_ARG_MULTIPLE_SRC

Starting index for source arguments for primitives that take a variable number of source arguments.

DNNL_ARG_MULTIPLE_DST

Starting index for destination arguments for primitives that produce a variable number of destination arguments.

DNNL_ARG_ATTR_SCALES

Scaling factors provided at execution time.

DNNL_ARG_ATTR_ZERO_POINTS

Zero points provided at execution time.

DNNL_RUNTIME_DIM_VAL

A wildcard value for dimensions that are unknown at a primitive creation time.

DNNL_RUNTIME_SIZE_VAL

A size_t counterpart of the DNNL_RUNTIME_DIM_VAL. For instance, this value is returned by
dnnl::memory::desc::get_size() if either of the dimensions or strides equal to DNNL_RUNTIME_DIM_VAL.

4.5. Primitives 82

oneAPI Specification, Release 1.4-provisional-rev-1

DNNL_RUNTIME_F32_VAL

A wildcard value for floating point values that are unknown at a primitive creation time.

DNNL_RUNTIME_S32_VAL

A wildcard value for int32_t values that are unknown at a primitive creation time.

4.5.2 Attributes

The parameters passed to create a primitive descriptor specify the basic problem description: the operation kind, the
propagation kind, the input and output tensors descriptors (e.g. strides if applicable. . .), as well as the engine where
the primitive will be executed.

Attributes specify some extra properties of the primitive. Users must create them before use and must set required
specifics using the corresponding setters. The attributes are copied during primitive descriptor creation, so users can
change or destroy attributes right after that.

If not modified, attributes can stay empty, which is equivalent to the default attributes. Primitive descriptors’ construc-
tors have empty attributes as default parameters, so, unless required, users can simply omit them.

Attributes can also contain post-ops, which are computations executed after the primitive.

Post-ops

Post-ops are operations that are appended after a primitive. They are implemented using the Attributes mechanism. If
there are multiple post-ops, they are executed in the order they have been appended as follow:

dst = 𝑝𝑜[𝑛](𝑝𝑜[𝑛− 1](...(𝑝𝑜[0](𝑂𝑃 ()))))

Note: Post-ops does not preserve intermediate data during computation. This typically makes them suitable for
inference only.

The post-ops are represented by dnnl::post_ops which is copied once it is attached to the attributes using
dnnl::primitive_attr::set_post_ops() function. The attributes then need to be passed to a primitive descriptor
creation function to take effect. Below is a simple sketch:

dnnl::post_ops po; // default empty post-ops
assert(po.len() == 0); // no post-ops attached

po.append_SOMETHING(params); // append some particular post-op
po.append_SOMETHING_ELSE(other_params); // append one more post-op

// (!) Note that the order in which post-ops are appended matters!
assert(po.len() == 2);

dnnl::primitive_attr attr; // default attributes
attr.set_post_ops(po); // attach the post-ops to the attr
// any changes to po after this point don't affect the value stored in attr

primitive::primitive_desc op_pd(params, attr); // create a pd with the attr

4.5. Primitives 83

oneAPI Specification, Release 1.4-provisional-rev-1

Note: Different primitives may have different post-ops support. Moreover, the support might also depend on the actual
implementation of a primitive. So robust code should be able to handle errors accordingly. See the Attribute Related
Error Handling.

Note: Post-ops do not change memory format of the operation destination memory object.

The post-op objects can be inspected using the dnnl::post_ops::kind() function that takes an index of the post-op
to inspect (that must be less than the value returned by dnnl::post_ops::len()), and returns its kind.

Supported Post-ops

Eltwise Post-op

The eltwise post-op is appended using dnnl::post_ops::append_eltwise() function. The
dnnl::post_ops::kind() returns dnnl::primitive::kind::eltwise for such a post-op.

The eltwise post-op replaces:

dst[:] = Op(...)

with

dst[:] = 𝑠𝑐𝑎𝑙𝑒 · eltwise(Op(...))

The intermediate result of the Op(...) is not preserved.

The 𝑠𝑐𝑎𝑙𝑒 factor is supported in int8 inference only. For all other cases the scale must be 1.0 (default value). The scale
parameter is set to 1.0 by default, and can be set using the dnnl::primitive_attr::set_scales_mask() attribute
for the argument DNNL_ARG_ATTR_MULTIPLE_POST_OP.

Sum Post-op

The sum post-op accumulates the result of a primitive with the existing data and is appended
using dnnl::post_ops::append_sum() function. The dnnl::post_ops::kind() returns
dnnl::primitive::kind::sum for such a post-op.

Prior to accumulating the result, the existing value is multiplied by scale. The 𝑠𝑐𝑎𝑙𝑒 factor is supported in int8 in-
ference only and should be used only when the result and the existing data have different magnitudes. For all other
cases the scale must be 1.0 (default value). The scale parameter is set to 1.0 by default, and can be set using the
dnnl::primitive_attr::set_scales_mask() attribute for the argument DNNL_ARG_ATTR_MULTIPLE_POST_OP.

Additionally, the sum post-op can reinterpret the destination values as a different data type of the same size. This may
be used to, for example, reinterpret 8-bit signed data as unsigned or vice versa (which requires that values fall within a
common range to work).

The sum post-op replaces

dst[:] = Op(...)

with

dst[:] = 𝑠𝑐𝑎𝑙𝑒 · 𝑎𝑠𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒(dst[:]) + Op(...)

4.5. Primitives 84

oneAPI Specification, Release 1.4-provisional-rev-1

Binary post-ops

The binary post-op replaces: .. math:

\dst[:] = \operatorname{Op}(...)

with

dst[:] = binary(Op(...), 𝑠𝑐𝑎𝑙𝑒[:] · 𝑆𝑜𝑢𝑟𝑐𝑒_1[:])

The binary post-op supports the same algorithms and broadcast semantic as the binary primitive.

Furthermore, the binary post-op scale parameter is set to 1.0 by default, and can be set using the
dnnl::primitive_attr::set_scales_mask() attribute for the argument DNNL_ARG_ATTR_MULTIPLE_POST_OP
| DNNL_ARG_SRC_1. For example:

primitive_attr attr;
post_ops p_ops;
p_ops.append_binary(algorithm::binary_add, summand_md);

attr.set_post_ops(p_ops);
attr.set_scales_mask(DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,

/* mask */ 0);

Examples of Chained Post-ops

Post-ops can be chained together by appending one after another. Note that the order matters: the post-ops are executed
in the order they have been appended.

Sum -> ReLU

This pattern is pretty common for the CNN topologies of the ResNet family.

dnnl::post_ops po;
po.append_sum();
po.append_eltwise(

/* algorithm = */ dnnl::algorithm::eltwise_relu,
/* neg slope = */ 0.f,
/* unused for ReLU */ 0.f);

dnnl::primitive_attr attr;
attr.set_post_ops(po);

convolution_forward::primitive_desc(conv_d, attr, engine);

This will lead to the following computations:

dst[:] = ReLU(dst[:] + conv(src[:],weights[:])

4.5. Primitives 85

oneAPI Specification, Release 1.4-provisional-rev-1

API

struct post_ops
Post-ops.

Post-ops are computations executed after the main primitive computations and are attached to the primitive via
primitive attributes.

Public Functions

post_ops()

Constructs an empty sequence of post-ops.

int len() const
Returns the number of post-ops entries.

primitive::kind kind(int index) const
Returns the primitive kind of post-op at entry with a certain index.

Parameters
index – Index of the post-op to return the kind for.

Returns
Primitive kind of the post-op at the specified index.

void append_sum(memory::data_type data_type = memory::data_type::undef)
Appends an accumulation (sum) post-op. Prior to accumulating the result, the previous value would be
multiplied by a scaling factor scale provided as execution argument.

The kind of this post-op is dnnl::primitive::kind::sum.

This feature may improve performance for cases like residual learning blocks, where the result of convo-
lution is accumulated to the previously computed activations. The parameter scale may be used for the
integer-based computations when the result and previous activations have different logical scaling factors.

In the simplest case when the accumulation is the only post-op, the computations would be dst[:] :=
scale * dst[:] + op(...) instead of dst[:] := op(...).

If data_type is specified, the original dst tensor will be reinterpreted as a tensor with the provided data
type. Because it is a reinterpretation, data_type and dst data type should have the same size. As a re-
sult, computations would be dst[:] <- scale * as_data_type(dst[:]) + op(...) instead of
dst[:] <- op(...).

Note: This post-op executes in-place and does not change the destination layout.

Parameters
data_type – Data type.

void get_params_sum(int index, float &scale) const
Returns the parameters of an accumulation (sum) post-op.

Parameters

• index – Index of the sum post-op.

• scale – Scaling factor of the sum post-op.

4.5. Primitives 86

oneAPI Specification, Release 1.4-provisional-rev-1

void get_params_sum(int index, float &scale, memory::data_type &data_type) const
Returns the parameters of an accumulation (sum) post-op.

Parameters

• index – Index of the sum post-op.

• scale – Scaling factor of the sum post-op.

• data_type – Data type of the sum post-op.

void append_eltwise(algorithm aalgorithm, float alpha, float beta)
Appends an elementwise post-op.

The kind of this post-op is dnnl::primitive::kind::eltwise.

In the simplest case when the elementwise is the only post-op, the computations would be dst[:] :=
scale * eltwise_op (op(...)) instead of dst[:] <- op(...), where eltwise_op is configured
with the given parameters.

Parameters

• aalgorithm – Elementwise algorithm.

• alpha – Alpha parameter for the elementwise algorithm.

• beta – Beta parameter for the elementwise algorithm.

void get_params_eltwise(int index, algorithm &aalgorithm, float &alpha, float &beta) const
Returns parameters of an elementwise post-up.

Parameters

• index – Index of the post-op.

• aalgorithm – Output elementwise algorithm kind.

• alpha – Output alpha parameter for the elementwise algorithm.

• beta – Output beta parameter for the elementwise algorithm.

void append_binary(algorithm aalgorithm, const memory::desc &src1_desc)
Appends a binary post-op.

The kind of this post operation is dnnl::primitive::kind::binary.

In the simplest case when the binary is the only post operation, the computations would be:

dst[:] <- binary_op (dst[:], another_input[:])

where binary_op is configured with the given parameters. binary_op supports broadcast semantics for a
second operand.

Parameters

• aalgorithm – Binary algorithm for the post-op.

• src1_desc – Memory descriptor of a second operand.

void get_params_binary(int index, algorithm &aalgorithm, memory::desc &src1_desc) const
Returns the parameters of a binary post-op.

Parameters

• index – Index of the binary post-op.

4.5. Primitives 87

oneAPI Specification, Release 1.4-provisional-rev-1

• aalgorithm – Output binary algorithm kind.

• src1_desc – Output memory descriptor of a second operand.

Scratchpad Mode

Some primitives might require a temporary buffer while performing their computations. For instance, the operations
that do not have enough independent work to utilize all cores on a system might use parallelization over the reduction
dimension (the K dimension in the GEMM notation). In this case different threads compute partial results in private
temporary buffers, and then the private results are added to produce the final result. Another example is using matrix
multiplication (GEMM) to implement convolution. Before calling GEMM, the source activations need to be trans-
formed using the im2col operation. The transformation result is written to a temporary buffer that is then used as an
input for the GEMM.

In both of these examples, the temporary buffer is no longer required once the primitive computation is completed.
oneDNN refers to such kind of a memory buffer as a scratchpad.

Both types of implementation might need extra space for the reduction in case there are too few independent tasks. The
amount of memory required by the im2col transformation is proportional to the size of the source image multiplied
by the weights spatial size. The size of a buffer for reduction is proportional to the tensor size to be reduced (e.g.,
diff_weights in the case of backward by weights) multiplied by the number of threads in the reduction groups (the
upper bound is the total number of threads).

By contrast, some other primitives might require very little extra space. For instance, one of the implementation of the
dnnl::sum primitive requires temporary space only to store the pointers to data for each and every input array (that
is, the size of the scratchpad is n * sizeof(void *), where n is the number of summands).

oneDNN supports two modes for handling scratchpads:

enum class dnnl::scratchpad_mode
Scratchpad mode.

Values:

enumerator library
The library manages the scratchpad allocation. There may be multiple implementation-specific policies
that can be configured via mechanisms that fall outside of the scope of this specification.

enumerator user
The user manages the scratchpad allocation by querying and providing the scratchpad memory to primi-
tives. This mode is thread-safe as long as the scratchpad buffers are not used concurrently by two primitive
executions.

The scratchpad mode is controlled though the dnnl::primitive_attr::set_scratchpad_mode() primitive at-
tributes.

If the user provides scratchpad memory to a primitive, this memory must be created using the same engine that the
primitive uses.

All primitives support both scratchpad modes.

Note: Primitives are not thread-safe by default. The only way to make the primitive execution fully thread-safe is to
use the dnnl::scratchpad_mode::user mode and not pass the same scratchpad memory to two primitives that are
executed concurrently.

4.5. Primitives 88

oneAPI Specification, Release 1.4-provisional-rev-1

Examples

Library Manages Scratchpad

As mentioned above, this is a default behavior. We only want to highlight how a user can query the amount of memory
consumed by a primitive due to a scratchpad.

// Use default attr, hence the library allocates scratchpad
dnnl::primitive::primitive_desc op_pd(params, /* other arguments */);

// Print how much memory would be hold by a primitive due to scratchpad
std::cout << "primitive will use "

<< op_pd.query_s64(dnnl::query::memory_consumption_s64)
<< " bytes" << std::endl;

// In this case scratchpad is internal, hence user visible scratchpad memory
// descriptor should be empty:
auto zero_md = dnnl::memory::desc();

User Manages Scratchpad

// Create an empty (default) attributes
dnnl::primitive_attr attr;

// Default scratchpad mode is `library`:
assert(attr.get_scratchpad_mode() == dnnl::scratchpad_mode::library);

// Set scratchpad mode to `user`
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);

// Create a primitive descriptor with custom attributes
dnnl::primitive::primitive_desc op_pd(op_d, attr, engine);

// Query the scratchpad memory descriptor
dnnl::memory::desc scratchpad_md = op_pd.scratchpad_desc();

// Note, that a primitive doesn't consume memory in this configuration:
assert(op_pd.query_s64(dnnl::query::memory_consumption_s64) == 0);

// Create a primitive
dnnl::primitive prim(op_pd);

// ... more code ..

// Create a scratchpad memory
// NOTE: if scratchpad is not required for a particular primitive the
// scratchpad_md.get_size() will return 0. It is fine to have
// scratchpad_ptr == nullptr in this case.
void *scratchpad_ptr = user_memory_manager::allocate(scratchpad_md.get_size());
// NOTE: engine here must much the engine of the primitive
dnnl::memory scratchpad(scratchpad_md, engine, scratchpad_ptr);

(continues on next page)

4.5. Primitives 89

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// Pass a scratchpad memory to a primitive
prim.execute(stream, { /* other arguments */,

{DNNL_ARG_SCRATCHPAD, scratchpad}});

Quantization

Primitives may support reduced precision computations which require quantization. This process is explained in more
details in the Quantization Model section.

Quantization Attributes (scales and zero-points)

oneDNN provides dnnl::primitive_attr::set_scales_mask() and dnnl::primitive_attr::set_zero_points_mask()
for setting the quantization parameter for a given argument of a primitive.

The primitives may not support passing quantization parameters if source (and weights) tensors are not of the int8 data
type. In other words, convolution operating on the single precision floating point data type may not scale and/or shift
its inputs and outputs.

Broadcast semantic for quantization parameters is handled through masks that are explicitly passed to
the dnnl::primitive_attr::set_scales_mask() and dnnl::primitive_attr::set_zero_points_mask()
methods. For example, if the primitive destination is a 𝐷0 × ...×𝐷𝑛−1 tensor and we want to have a scale per 𝑑𝑖 di-
mension (where 0 ≤ 𝑑𝑖 < 𝑛), then 𝑚𝑎𝑠𝑘 =

∑︀
𝑑𝑖

2𝑑𝑖 and the number of scales should be scales.size() =
∏︀
𝑑𝑖

𝐷𝑑𝑖 . The

mask should be set in attributes during primitive creation, and the actual scales and zero-points are passed as argument
to the primitive execution function.

The quantization parameters are applied in the single precision floating point data type
(dnnl::memory::data_type::f32). Before it is stored, the result is converted to the destination data type
with saturation if required. The rounding happens according to the current hardware setting.

When using Post-ops, the same dnnl::primitive_attr::set_scales_mask() and
dnnl::primitive_attr::set_zero_points_mask() are used to pass quantization parameters to a given
post-ops arguments.

Example 1: weights quantization with per-output-channel scaling

// weights dimensions
const int OC, IC, KH, KW;

// original f32 weights in plain format
dnnl::memory::desc wei_plain_f32_md(

{OC, IC, KH, KW}, // dims
dnnl::memory::data_type::f32, // the data originally in f32
dnnl::memory::format_tag::hwigo // the plain memory format
);

// the scaling factors for quantized weights
// An unique scale for each output-channel.
std::vector<float> wei_scales(OC) = { /* values */ };
dnnl::memory();

(continues on next page)

4.5. Primitives 90

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// int8 convolution primitive descriptor
dnnl::convolution_forward::primitive_desc conv_pd(/* see the next example */);

// query the convolution weights memory descriptor
dnnl::memory::desc wei_conv_s8_md = conv_pd.weights_desc();

// prepare the attributes for the reorder
dnnl::primitive_attr attr;
const int quantization_mask = 0

| (1 << 0); // scale per OC dimension, which is the dim #0
attr.set_scales_mask(DNNL_ARG_DST, quantization_mask);

// create reorder that would perform:
// wei_s8(oc, ic, kh, kw) <- wei_f32(oc, ic, kh, kw) / scale(oc)
// including the data format conversion.
auto wei_reorder_pd = dnnl::reorder::primitive_desc(

wei_plain_f32_md, engine, // source
wei_conv_s8_md, engine, // destination,
attr);

auto wei_reorder = dnnl::reorder(wei_reorder_pd);

Example 2: convolution with groups, with per-output-channel quantization

This example is complementary to the previous example (which should ideally be the first one). Let’s say we want to
create an int8 convolution with per-output channel scaling.

const float src_scale; // src_f32[:] = src_scale * src_s8[:]
const float dst_scale; // dst_f32[:] = dst_scale * dst_s8[:]

// the scaling factors for quantized weights (as declared above)
// An unique scale for each group and output-channel.
std::vector<float> wei_scales(OC) = {...};

// Src, weights, and dst memory descriptors for convolution,
// with memory format tag == any to allow a convolution implementation
// to chose the appropriate memory format

dnnl::memory::desc src_conv_s8_any_md(
{BATCH, IC, IH, IW}, // dims
dnnl::memory::data_type::s8, // the data originally in s8
dnnl::memory::format_tag::any // let convolution to choose
);

dnnl::memory::desc wei_conv_s8_any_md(
{OC, IC, KH, KW}, // dims
dnnl::memory::data_type::s8, // the data originally in s8
dnnl::memory::format_tag::any // let convolution to choose
);

(continues on next page)

4.5. Primitives 91

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

dnnl::memory::desc dst_conv_s8_any_md(...); // ditto

// prepare the attributes for the convolution
dnnl::primitive_attr attr;
const int data_mask = 0; // scale and zero-point per tensor for source and destination
const int wei_mask = 0

| (1 << 1); // scale per OC dimension, which is the dim #0 on weights tensor:
// (OC, IC, KH, KW)
// 0 1 2 3

attr.set_scales_mask(DNNL_ARG_SRC, data_mask);
attr.set_zero_points_mask(DNNL_ARG_SRC, data_mask);

attr.set_scales_mask(DNNL_ARG_WEIGHTS, wei_mask);

attr.set_scales_mask(DNNL_ARG_DST, data_mask);
attr.set_zero_points_mask(DNNL_ARG_DST, data_mask);

// create a convolution primitive descriptor
auto conv_pd = dnnl::convolution_forward::primitive_desc(

dnnl::prop_kind::forward_inference,
dnnl::algorithm::convolution_direct,
src_conv_s8_any_md, // what's important is that
wei_conv_s8_any_md, // we specified that we want
dst_conv_s8_any_md, // computations in s8
strides, padding_l, padding_r,
dnnl::padding_kind::zero
attr); // the attributes describe the quantization flow

Implicit downconversions and floating-point math mode

oneDNN provides dnnl::primitive_attr::set_fpmath_mode() to allow implicit downconversions from fp32 to
lower accuracy datatypes during primitive execution. For some applications, it allows to speedup computations without
noticeable impact on accuracy.

The dnnl::primitive_attr::set_fpmath_mode() primitive attribute specifies which implicit down-conversions
are allowed for that given primitive. Only down-conversions from f32 to narrower data-types (f16, bf16, or tf32) are
currently allowed. Furthermore these down-conversions are allowed only during computation, and do not affect the
storage datatype (which must remain f32).

The dnnl::primitive_attr::set_fpmath_mode() primitive attribute can take 3 types of values:

• the strict mode disables any down-conversion (default).

• the any mode allows all conversions from f32 to a smaller floating-point datatype (f16, bf16, or tf32).

• a specific datatype (f16, bf16, or tf32) which specifically allows down-conversion only from f32 to a datatype at
least as accurate as the specified data-type (at least same number of exponent and mantissa bits).

The default value for this attribute shall be strict. However, it is allowed to expose global functions or environment
variables to change this default value.

This attribute is ignored if a primitive computation data-type is integral.

4.5. Primitives 92

oneAPI Specification, Release 1.4-provisional-rev-1

Attribute Related Error Handling

Since the attributes are created separately from the corresponding primitive descriptor, consistency checks are delayed.
Users can successfully set attributes in whatever configuration they want. However, when they try to create a primitive
descriptor with the attributes they set, it might happen that there is no primitive implementation that supports such a
configuration. In this case the library will throw the dnnl::error exception.

API

struct primitive_attr
Primitive attributes.

Public Functions

primitive_attr()

Constructs default (empty) primitive attributes.

scratchpad_mode get_scratchpad_mode() const
Returns the scratchpad mode.

void set_scratchpad_mode(scratchpad_mode mode)
Sets scratchpad mode.

Parameters
mode – Specified scratchpad mode.

fpmath_mode get_fpmath_mode() const
Returns the fpmath mode.

void set_fpmath_mode(fpmath_mode mode)
Sets fpmath mode.

Parameters
mode – Specified fpmath mode.

int get_scales_mask(int arg) const
Returns scaling factors correspondence mask for a given memory argument.

Parameters
arg – Parameter argument index as passed to the primitive::execute() call.

void set_scales_mask(int arg, int mask)
Sets scaling factors correspondance mask for a given memory argument.

See also:

dnnl::primitive_attr::set_scales_mask

Note: The order of dimensions does not depend on how elements are laid out in memory. For example:

• for a 2D CNN activations tensor the order is always (n, c)

• for a 4D CNN activations tensor the order is always (n, c, h, w)

• for a 5D CNN weights tensor the order is always

4.5. Primitives 93

oneAPI Specification, Release 1.4-provisional-rev-1

Parameters

• arg – Parameter argument index as passed to the primitive::execute() call.

• mask – Scaling factors correspondence mask that defines the correspondence between the
arg tensor dimensions and the scales vector. Setting the i-th bit indicates that a dedicated
scaling factor is used for each index along that dimension. Set the mask to 0 to use a
common scaling factor for the whole tensor. The scales must be passed at execution time
as an argument with index DNNL_ARG_ATTR_SCALES.

void set_zero_points_mask(int arg, int mask)
Sets zero points for primitive operations for a given memory argument.

See also:

dnnl::primitive_attr::set_output_scales

Parameters

• arg – Parameter argument index as passed to the primitive::execute() call.

• mask – Zero point correspondence mask that defines the correspondence between the tensor
dimensions and the zero_points vector. The set i-th bit indicates that a dedicated zero
point is used for each index along that dimension. Set the mask to 0 to use a common zero
point for the whole output tensor. The zero points must be passed at execution time as an
argument with index DNNL_ARG_ATTR_ZERO_POINTS.

const post_ops get_post_ops() const
Returns post-ops previously set via set_post_ops().

Returns
Post-ops.

void set_post_ops(const post_ops ops)
Sets post-ops.

Note: There is no way to check whether the post-ops would be supported by the target primitive. Any
error will be reported by the respective primitive descriptor constructor.

Parameters
ops – Post-ops object to copy post-ops from.

void set_rnn_data_qparams(float scale, float shift)
Sets quantization scale and shift parameters for RNN data tensors.

For performance reasons, the low-precision configuration of the RNN primitives expect input activations to
have the unsigned 8-bit integer data type. The scale and shift parameters are used to quantize floating-point
data to unsigned integer and must be passed to the RNN primitive using attributes.

The quantization formula is scale * (data + shift).

Example usage:

4.5. Primitives 94

oneAPI Specification, Release 1.4-provisional-rev-1

// RNN parameters
int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32;
// Activations quantization parameters
float scale = 2.0f, shift = 0.5f;

primitive_attr attr;

// Set scale and shift for int8 quantization of activation
attr.set_rnn_data_qparams(scale, shift);

// Create and configure rnn op_desc
vanilla_rnn_forward::desc rnn_d(/* arguments */);
vanilla_rnn_forward::primitive_desc rnn_d(rnn_d, attr, engine);

Note: Quantization scale and shift are common for src_layer, src_iter, dst_iter, and dst_layer.

Parameters

• scale – The value to scale the data by.

• shift – The value to shift the data by.

void set_rnn_weights_qparams(int mask, const std::vector<float> &scales)
Sets quantization scaling factors for RNN weights tensors. The low-precision configuration of the RNN
primitives expect input weights to use the signed 8-bit integer data type. The scaling factors are used to
quantize floating-point data to signed integer and must be passed to RNN primitives using attributes.

Note: The dimension order is always native and does not depend on the actual layout used. For example,
five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.

Note: Quantization scales are common for weights_layer and weights_iteration

Parameters

• mask – Scaling factors correspondence mask that defines the correspondence between the
output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated
scaling factor should be used each index along that dimension. Set the mask to 0 to use a
common scaling factor for the whole output tensor.

• scales – Constant vector of output scaling factors. The following equality must hold:
𝑠𝑐𝑎𝑙𝑒𝑠.𝑠𝑖𝑧𝑒() =

∏︀
𝑑∈𝑚𝑎𝑠𝑘

𝑤𝑒𝑖𝑔ℎ𝑡𝑠.𝑑𝑖𝑚𝑠[𝑑]. Violations can only be detected when the at-

tributes are used to create a primitive descriptor.

4.5. Primitives 95

oneAPI Specification, Release 1.4-provisional-rev-1

4.5.3 Batch Normalization

The batch normalization primitive performs a forward or backward batch normalization operation on tensors with
number of dimensions equal to 2 or more. Variable names follow the standard Conventions.

The batch normalization operation is defined by the following formulas. We show formulas only for 2D spatial data
which are straightforward to generalize to cases of higher and lower dimensions.

The different flavors of the primitive are controlled by the flags parameter that is passed to the primitive descrip-
tor initialization function like dnnl::batch_normalization_forward::primitive_desc. Multiple flags can be
combined using the bitwise OR operator (|).

Forward

dst(𝑛, 𝑐, ℎ, 𝑤) = 𝛾(𝑐) · src(𝑛, 𝑐, ℎ, 𝑤)− 𝜇(𝑐)√︀
𝜎2(𝑐) + 𝜀

+ 𝛽(𝑐),

where

• 𝛾(𝑐) and 𝛽(𝑐) are optional scale and shift for a channel (controlled using the use_scale and use_shift flags),

• 𝜇(𝑐) and 𝜎2(𝑐) are mean and variance for a channel (controlled using the use_global_stats flag), and

• 𝜀 is a constant to improve numerical stability.

Mean and variance are computed at runtime or provided by a user. When mean and variance are computed at runtime,
the following formulas are used:

• 𝜇(𝑐) = 1
𝑁𝐻𝑊

∑︀
𝑛ℎ𝑤

src(𝑛, 𝑐, ℎ, 𝑤),

• 𝜎2(𝑐) = 1
𝑁𝐻𝑊

∑︀
𝑛ℎ𝑤

(src(𝑛, 𝑐, ℎ, 𝑤)− 𝜇(𝑐))2.

The 𝛾(𝑐) and 𝛽(𝑐) tensors are considered learnable.

In the training mode, the primitive also optionally supports fusion with ReLU activation with zero negative slope
applied to the result (see fuse_norm_relu flag).

Note: The batch normalization primitive computes population mean and variance and not the sample or unbiased
versions that are typically used to compute running mean and variance. * Using the mean and variance computed by
the batch normalization primitive, running mean and variance �̂�𝑖 and �̂�2

𝑖 where 𝑖 is iteration number, can be computed
as:

�̂�𝑖+1 = 𝛼 · �̂�𝑖 + (1− 𝛼) · 𝜇,
�̂�2
𝑖+1 = 𝛼 · �̂�2

𝑖 + (1− 𝛼) · 𝜎2.

Difference Between Forward Training and Forward Inference

• If mean and variance are computed at runtime (i.e., use_global_stats is not set), they become outputs for the
propagation kind forward_training (because they would be required during the backward propagation) and
are not exposed for the propagation kind forward_inference.

• If batch normalization is created with ReLU fusion (i.e., fuse_norm_relu is set), for the propagation kind
forward_training the primitive would produce a workspace memory as one extra output. This mem-
ory is required to compute the backward propagation. When the primitive is executed with propagation kind
forward_inference, the workspace is not produced. Behavior would be the same as creating a batch normal-
ization primitive with ReLU as a post-op (see section below).

4.5. Primitives 96

oneAPI Specification, Release 1.4-provisional-rev-1

Backward

The backward propagation computes diff_src(𝑛, 𝑐, ℎ, 𝑤), diff_𝛾(𝑐)*, and diff_𝛽(𝑐)* based on diff_dst(𝑛, 𝑐, ℎ, 𝑤),
src(𝑛, 𝑐, ℎ, 𝑤), 𝜇(𝑐), 𝜎2(𝑐), 𝛾(𝑐)*, and 𝛽(𝑐)*.

The tensors marked with an asterisk are used only when the primitive is configured to use 𝛾(𝑐) and 𝛽(𝑐) (i.e.,
use_scale and use_shift are set).

Execution Arguments

Depending on the flags and propagation kind, the batch normalization primitive requires different inputs and outputs.
For clarity, a summary is shown below.

forward_inferenceforward_training backward backward_data

none In: src; Out:
dst

In: src; Out: dst, 𝜇,
𝜎2

In: diff_dst, src, 𝜇,
𝜎2; Out: diff_src

Same as for backward

use_global_statsIn: src, 𝜇, 𝜎2;
Out: dst

In: src, 𝜇, 𝜎2; Out:
dst

In: diff_dst, src, 𝜇,
𝜎2; Out: diff_src

Same as for backward

use_scale In: src, 𝛾; Out:
dst

In: src, 𝛾; Out: dst,
𝜇, 𝜎2

In: diff_dst, src,
𝜇, 𝜎2, 𝛾; Out:
diff_src, diff_𝛾

Not supported

use_shift In: src, 𝛽; Out:
dst

In: src, 𝛽; Out: dst,
𝜇, 𝜎2

In: diff_dst, src,
𝜇, 𝜎2, 𝛽; Out:
diff_src, diff_𝛽

Not supported

use_scale |
use_shift

In: src, 𝛾, 𝛽;
Out: dst

In: src, 𝛾, 𝛽; Out:
dst, 𝜇, 𝜎2

In: diff_dst, src,
𝜇, 𝜎2, 𝛾, 𝛽; Out:
diff_src, diff_𝛾,
diff_𝛽

Not supported

use_global_stats
| use_scale |
use_shift

In: src, 𝜇, 𝜎2,
𝛾, 𝛽; Out: dst

In: src, 𝜇, 𝜎2, 𝛾, 𝛽;
Out: dst

In: diff_dst, src,
𝜇, 𝜎2, 𝛾, 𝛽; Out:
diff_src, diff_𝛾,
diff_𝛽

Not supported

flags |
fuse_norm_relu

In: same as
with flags;
Out: same as
with flags

In: same as with
flags; Out: same
as with flags,
workspace

In: same as with
flags, workspace;
Out: same as with
flags

Same as for backward if flags
do not contain use_scale or
use_shift; not supported oth-
erwise

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

4.5. Primitives 97

oneAPI Specification, Release 1.4-provisional-rev-1

Primitive input/output Execution argument index
src DNNL_ARG_SRC
𝛾 DNNL_ARG_SCALE
𝛽 DNNL_ARG_SHIFT
mean (𝜇) DNNL_ARG_MEAN
variance (𝜎) DNNL_ARG_VARIANCE
dst DNNL_ARG_DST
workspace DNNL_ARG_WORKSPACE
diff_dst DNNL_ARG_DIFF_DST
diff_src DNNL_ARG_DIFF_SRC
diff_𝛾 DNNL_ARG_DIFF_SCALE
diff_𝛽 DNNL_ARG_DIFF_SHIFT

Operation Details

1. For forward propagation, the mean and variance might be either computed at runtime (in which case they are
outputs of the primitive) or provided by a user (in which case they are inputs). In the latter case, a user must set
the use_global_stats flag. For the backward propagation, the mean and variance are always input parameters.

2. The memory format and data type for src and dst are assumed to be the same, and in the API they are typically
referred to as data (e.g., see data_desc in dnnl::batch_normalization_forward::primitive_desc).
The same is true for diff_src and diff_dst. The corresponding memory descriptors are referred to as
diff_data_desc.

3. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In case
of an in-place operation, the original data will be overwritten. Note, however, that backward propagation requires
original src, hence the corresponding forward propagation should not be performed in-place.

4. As mentioned above, the batch normalization primitive can be fused with ReLU activation even in the training
mode. In this case, on the forward propagation the primitive has one additional output, workspace, that should
be passed during the backward propagation.

Data Types Support

The operation supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination Mean / Variance / Scale / Shift
forward / backward f32, bf16 f32
forward f16 f32
forward s8 f32

4.5. Primitives 98

oneAPI Specification, Release 1.4-provisional-rev-1

Data Representation

Source, Destination, and Their Gradients

Like other CNN primitives, the batch normalization primitive expects data to be 𝑁 × 𝐶 × 𝑆𝑃𝑛 × · · · × 𝑆𝑃0 tensor.

The batch normalization primitive is optimized for the following memory formats:

Spatial Logical tensor Implementations optimized for memory formats
0D NC nc (ab)
1D NCW ncw (abc), nwc (acb), optimized
2D NCHW nchw (abcd), nhwc (acdb), optimized
3D NCDHW ncdhw (abcde), ndhwc (acdeb), optimized

Here optimized means the format chosen by the preceding compute-intensive primitive.

Statistics Tensors

The mean (𝜇) and variance (𝜎2) are separate 1D tensors of size 𝐶.

The format of the corresponding memory object must be x (a).

If used, the scale (𝛾) and shift (𝛽) are combined in a single 2D tensor of shape 2× 𝐶.

The format of the corresponding memory object must be nc (ab).

Post-ops and Attributes

Propagation Type Operation Description
forward post-op eltwise Applies an eltwise operation to the output.

Note: Using ReLU as a post-op does not produce additional output in the workspace that is required to compute
backward propagation correctly. Hence, one should use the fuse_norm_relu flag for training.

API

struct batch_normalization_forward : public dnnl::primitive
Batch normalization forward propagation primitive.

4.5. Primitives 99

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

batch_normalization_forward()

Default constructor. Produces an empty object.

batch_normalization_forward(const primitive_desc &pd)
Constructs a batch normalization forward propagation primitive.

Parameters
pd – Primitive descriptor for a batch normalization forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a batch normalization forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &src_desc, const
memory::desc &dst_desc, float epsilon, normalization_flags flags, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a batch normalization forward propagation primitive.

Note: In-place operation is supported: the dst can refer to the same memory as the src.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training and dnnl::prop_kind::forward_inference.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• epsilon – Batch normalization epsilon parameter.
• flags – Batch normalization flags (dnnl::normalization_flags).
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

4.5. Primitives 100

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns
Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns
Memory descriptor for variance.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

float get_epsilon() const
Returns an epsilon.

Returns
An epsilon.

Returns
Zero if the primitive does not have an epsilon parameter.

normalization_flags get_flags() const
Returns normalization flags.

Returns
Normalization flags.

struct batch_normalization_backward : public dnnl::primitive
Batch normalization backward propagation primitive.

4.5. Primitives 101

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

batch_normalization_backward()

Default constructor. Produces an empty object.

batch_normalization_backward(const primitive_desc &pd)
Constructs a batch normalization backward propagation primitive.

Parameters
pd – Primitive descriptor for a batch normalization backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a batch normalization backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &src_desc, float epsilon,
normalization_flags flags, const batch_normalization_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a batch normalization backward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are dnnl::prop_kind::backward_data

and dnnl::prop_kind::backward (diffs for all parameters are computed in this case).
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• src_desc – Source memory descriptor.
• epsilon – Batch normalization epsilon parameter.
• flags – Batch normalization flags (dnnl::normalization_flags).
• hint_fwd_pd – Primitive descriptor for a batch normalization forward propagation

primitive. It is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

4.5. Primitives 102

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_weights_desc()
Returns a diff weights memory descriptor.

Returns
Diff weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns
Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns
Memory descriptor for variance.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

float get_epsilon() const
Returns an epsilon.

Returns
An epsilon.

4.5. Primitives 103

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Zero if the primitive does not have an epsilon parameter.

normalization_flags get_flags() const
Returns normalization flags.

Returns
Normalization flags.

4.5.4 Binary

The binary primitive computes a result of a binary elementwise operation between tensors source 0 and source 1.

dst(𝑥) = src0(𝑥) 𝑜𝑝 src1(𝑥),

where 𝑥 = (𝑥0, . . . , 𝑥𝑛) and 𝑜𝑝 is an operator like addition, multiplication, maximum or minimum. Variable names
follow the standard Conventions.

Forward and Backward

The binary primitive does not have a notion of forward or backward propagations.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src0 DNNL_ARG_SRC_0
src1 DNNL_ARG_SRC_1
dst DNNL_ARG_DST

Operation Details

• The binary primitive requires all source and destination tensors to have the same number of dimensions.

• The binary primitive supports implicit broadcast semantics for source 1. It means that if some dimension has
value of one, this value will be used to compute an operation with each point of source 0 for this dimension.

• The dst memory format can be either specified explicitly or by dnnl::memory::format_tag::any (recom-
mended), in which case the primitive will derive the most appropriate memory format based on the format of the
source 0 tensor.

• Destination memory descriptor should completely match source 0 memory descriptor.

• The binary primitive supports in-place operations, meaning that source 0 tensor may be used as the destination,
in which case its data will be overwritten.

4.5. Primitives 104

oneAPI Specification, Release 1.4-provisional-rev-1

Post-ops and Attributes

The following attributes should be supported:

Type Opera-
tion

Description Restric-
tions

At-
tribute

Scales Sets scale(s) for the corresponding tensor(s)

post-op Eltwise Applies an elementwise operation to the result
post-op Binary Applies a binary operation to the result
post-op Sum Adds the operation result to the destination tensor instead of overwriting

it

Data Types Support

The source and destination tensors may have dnnl::memory::data_type::f32,
dnnl::memory::data_type::bf16, dnnl::memory::data_type::s8 or dnnl::memory::data_type::u8
data types.

Data Representation

The binary primitive works with arbitrary data tensors. There is no special meaning associated with any of tensors
dimensions.

API

struct binary : public dnnl::primitive
Elementwise binary operator primitive.

Public Functions

binary()

Default constructor. Produces an empty object.

binary(const primitive_desc &pd)
Constructs an elementwise binary operation primitive.

Parameters
pd – Primitive descriptor for an elementwise binary operation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an elementwise binary operator primitive.

4.5. Primitives 105

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src0, const
memory::desc &src1, const memory::desc &dst, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an elementwise binary operator primitive.
Parameters

• aengine – Engine to use.
• aalgorithm – Elementwise binary algorithm.
• src0 – Memory descriptor for source tensor #0.
• src1 – Memory descriptor for source tensor #1.
• dst – Memory descriptor for destination tensor.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc(int idx = 0) const
Returns a source memory descriptor.

Parameters
idx – Source index.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter with index pdx.

memory::desc src0_desc() const
Returns the memory descriptor for source #0.

memory::desc src1_desc() const
Returns the memory descriptor for source #1.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

4.5. Primitives 106

oneAPI Specification, Release 1.4-provisional-rev-1

4.5.5 Concat

A primitive to concatenate data by arbitrary dimension.

The concat primitive concatenates 𝑁 tensors over concat_dimension (here denoted as 𝐶), and is defined as

dst(𝑜𝑢, 𝑐, 𝑖𝑛) = src𝑖(𝑜𝑢, 𝑐
′, 𝑖𝑛),

where

• 𝑐 = 𝐶1 + . . .+ 𝐶𝑖−1 + 𝑐′,

• 𝑜𝑢 is the outermost indices (to the left from concat axis),

• 𝑖𝑛 is the innermost indices (to the right from concat axis), and

Variable names follow the standard Conventions.

Forward and Backward

The concat primitive does not have a notion of forward or backward propagations. The backward propagation for the
concatenation operation is simply an identity operation.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_MULTIPLE_SRC
dst DNNL_ARG_DST

Operation Details

1. The dst memory format can be either specified by a user or derived by the primitive. The recommended way is
to allow the primitive to choose the most appropriate format.

2. The concat primitive requires all source and destination tensors to have the same shape except for the
concat_dimension. The destination dimension for the concat_dimension must be equal to the sum of the
concat_dimension dimensions of the sources (i.e. 𝐶 =

∑︀
𝑖 𝐶𝑖). Implicit broadcasting is not supported.

Data Types Support

The concat primitive supports arbitrary data types for source and destination tensors. However, it is required that all
source tensors are of the same data type (but not necessarily matching the data type of the destination tensor).

4.5. Primitives 107

oneAPI Specification, Release 1.4-provisional-rev-1

Data Representation

The concat primitive does not assign any special meaning associated with any logical dimensions.

Post-ops and Attributes

The concat primitive does not support any post-ops or attributes.

API

struct concat : public dnnl::primitive
Tensor concatenation (concat) primitive.

Public Functions

concat()

Default constructor. Produces an empty object.

concat(const primitive_desc &pd)
Constructs a concatenation primitive.

Parameters
pd – Primitive descriptor for concatenation primitive.

struct primitive_desc : public dnnl::primitive_desc_base
Primitive descriptor for a concat primitive.

Public Functions

primitive_desc()

Default constructor. Produces an empty object.

primitive_desc(const memory::desc &dst, int concat_dimension, const std::vector<memory::desc>
&srcs, const engine &aengine, const primitive_attr &attr = primitive_attr())

Constructs a primitive descriptor for an out-of-place concatenation primitive.
Parameters

• dst – Destination memory descriptor.
• concat_dimension – Source tensors will be concatenated over dimension with this

index. Note that order of dimensions does not depend on memory format.
• srcs – Vector of source memory descriptors.
• aengine – Engine to perform the operation on.
• attr – Primitive attributes to use (optional).

primitive_desc(int concat_dimension, const std::vector<memory::desc> &srcs, const engine
&aengine, const primitive_attr &attr = primitive_attr())

Constructs a primitive descriptor for an out-of-place concatenation primitive.

This version derives the destination memory descriptor automatically.
Parameters

• concat_dimension – Source tensors will be concatenated over dimension with this
index. Note that order of dimensions does not depend on memory format.

4.5. Primitives 108

oneAPI Specification, Release 1.4-provisional-rev-1

• srcs – Vector of source memory descriptors.
• aengine – Engine to perform the operation on.
• attr – Primitive attributes to use (optional).

memory::desc src_desc(int idx = 0) const
Returns a source memory descriptor.

Parameters
idx – Source index.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter with index pdx.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

4.5.6 Convolution and Deconvolution

The convolution and deconvolution primitives compute forward, backward, or weight update for a batched convolution
or deconvolution operations on 1D, 2D, or 3D spatial data with bias.

The operations are defined by the following formulas. We show formulas only for 2D spatial data which are straight-
forward to generalize to cases of higher and lower dimensions. Variable names follow the standard Conventions.

Forward

Let src, weights and dst be 𝑁 × 𝐼𝐶 × 𝐼𝐻 × 𝐼𝑊 , 𝑂𝐶 × 𝐼𝐶 ×𝐾𝐻 ×𝐾𝑊 , and 𝑁 × 𝑂𝐶 × 𝑂𝐻 × 𝑂𝑊 tensors
respectively. Let bias be a 1D tensor with 𝑂𝐶 elements.

Furthermore, let the remaining convolution parameters be:

Parameter Depth Height Width Comment
Padding: Front, top,
and left

𝑃𝐷𝐿 𝑃𝐻𝐿 𝑃𝑊𝐿 In the API padding_l indicates the corresponding vector of
paddings (_l in the name stands for left)

Padding: Back, bot-
tom, and right

𝑃𝐷𝑅 𝑃𝐻𝑅 𝑃𝑊𝑅 In the API padding_r indicates the corresponding vector of
paddings (_r in the name stands for right)

Stride 𝑆𝐷 𝑆𝐻 𝑆𝑊 Convolution without strides is defined by setting the stride parame-
ters to 1

Dilation 𝐷𝐷 𝐷𝐻 𝐷𝑊 Non-dilated convolution is defined by setting the dilation parameters
to 0

The following formulas show how oneDNN computes convolutions. They are broken down into several types to sim-
plify the exposition, but in reality the convolution types can be combined.

To further simplify the formulas, we assume that src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = 0 if 𝑖ℎ < 0, or 𝑖ℎ ≥ 𝐼𝐻 , or 𝑖𝑤 < 0, or 𝑖𝑤 ≥ 𝐼𝑊 .

4.5. Primitives 109

oneAPI Specification, Release 1.4-provisional-rev-1

Regular Convolution

dst(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = bias(𝑜𝑐)

+

𝐼𝐶−1∑︁
𝑖𝑐=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑖𝑐, 𝑜ℎ′, 𝑜𝑤′) · weights(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤).

Here:

• 𝑜ℎ′ = 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ− 𝑃𝐻𝐿,

• 𝑜𝑤′ = 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 − 𝑃𝑊𝐿,

• 𝑂𝐻 =
⌊︀
𝐼𝐻−𝐾𝐻+𝑃𝐻𝐿+𝑃𝐻𝑅

𝑆𝐻

⌋︀
+ 1,

• 𝑂𝑊 =
⌊︀
𝐼𝑊−𝐾𝑊+𝑃𝑊𝐿+𝑃𝑊𝑅

𝑆𝑊

⌋︀
+ 1.

Convolution with Groups

oneDNN adds a separate groups dimension to memory objects representing weights tensors and represents weights as
𝐺×𝑂𝐶𝐺 × 𝐼𝐶𝐺 ×𝐾𝐻 ×𝐾𝑊 5D tensors for 2D convolutions with groups.

dst(𝑛, 𝑔 ·𝑂𝐶𝐺 + 𝑜𝑐𝑔, 𝑜ℎ, 𝑜𝑤) = bias(𝑔 ·𝑂𝐶𝐺 + 𝑜𝑐𝑔)

+

𝐼𝐶𝐺−1∑︁
𝑖𝑐𝑔=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑔 · 𝐼𝐶𝐺 + 𝑖𝑐𝑔, 𝑜ℎ
′, 𝑜𝑤′) · weights(𝑔, 𝑜𝑐𝑔, 𝑖𝑐𝑔, 𝑘ℎ, 𝑘𝑤),

where

• 𝐼𝐶𝐺 = 𝐼𝐶
𝐺 ,

• 𝑂𝐶𝐺 = 𝑂𝐶
𝐺 , and

• 𝑜𝑐𝑔 ∈ [0, 𝑂𝐶𝐺).

The case when 𝑂𝐶𝐺 = 𝐼𝐶𝐺 = 1 is also known as a depthwise convolution.

Convolution with Dilation

dst(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = bias(𝑜𝑐)+

+

𝐼𝐶−1∑︁
𝑖𝑐=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑖𝑐, 𝑜ℎ′′, 𝑜𝑤′′) · weights(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤).

Here:

• 𝑜ℎ′′ = 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ · (𝐷𝐻 + 1)− 𝑃𝐻𝐿,

• 𝑜𝑤′′ = 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 · (𝐷𝑊 + 1)− 𝑃𝑊𝐿,

• 𝑂𝐻 =
⌊︀
𝐼𝐻−𝐷𝐾𝐻+𝑃𝐻𝐿+𝑃𝐻𝑅

𝑆𝐻

⌋︀
+ 1, where 𝐷𝐾𝐻 = 1 + (𝐾𝐻 − 1) · (𝐷𝐻 + 1), and

• 𝑂𝑊 =
⌊︀
𝐼𝑊−𝐷𝐾𝑊+𝑃𝑊𝐿+𝑃𝑊𝑅

𝑆𝑊

⌋︀
+ 1, where 𝐷𝐾𝑊 = 1 + (𝐾𝑊 − 1) · (𝐷𝑊 + 1).

4.5. Primitives 110

oneAPI Specification, Release 1.4-provisional-rev-1

Deconvolution (Transposed Convolution)

Deconvolutions (also called fractionally-strided convolutions or transposed convolutions) can be defined by swapping
the forward and backward passes of a convolution. One way to put it is to note that the weights define a convolution, but
whether it is a direct convolution or a transposed convolution is determined by how the forward and backward passes
are computed.

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src based on diff_dst and weights.

The weights update computes diff_weights and diff_bias based on diff_dst and src.

Note: The optimized memory formats src and weights might be different on forward propagation, backward propa-
gation, and weights update.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
weights DNNL_ARG_WEIGHTS
bias DNNL_ARG_BIAS
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_weights DNNL_ARG_DIFF_WEIGHTS
diff_bias DNNL_ARG_DIFF_BIAS
diff_dst DNNL_ARG_DIFF_DST

Operation Details

N/A

4.5. Primitives 111

oneAPI Specification, Release 1.4-provisional-rev-1

Data Types Support

Convolution primitive supports the following combination of data types for source, destination, and weights memory
objects.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source Weights Destination Bias
forward / backward f32 f32 f32 f32
forward f16 f16 f16 f16
forward u8, s8 s8 u8, s8, s32, f32 u8, s8, s32, f32
forward bf16 bf16 f32, bf16 f32, bf16
backward f32, bf16 bf16 bf16
weights update bf16 f32, bf16 bf16 f32, bf16

Data Representation

Like other CNN primitives, the convolution primitive expects the following tensors:

Spatial Source / Destination Weights
1D 𝑁 × 𝐶 ×𝑊 [𝐺×]𝑂𝐶 × 𝐼𝐶 ×𝐾𝑊
2D 𝑁 × 𝐶 ×𝐻 ×𝑊 [𝐺×]𝑂𝐶 × 𝐼𝐶 ×𝐾𝐻 ×𝐾𝑊
3D 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊 [𝐺×]𝑂𝐶 × 𝐼𝐶 ×𝐾𝐷 ×𝐾𝐻 ×𝐾𝑊

Memory format of data and weights memory objects is critical for convolution primitive performance. In the oneDNN
programming model, convolution is one of the few primitives that support the placeholder memory format tag any and
can define data and weight memory objects format based on the primitive parameters. When using any it is necessary to
first create a convolution primitive descriptor and then query it for the actual data and weight memory objects formats.

While convolution primitives can be created with memory formats specified explicitly, the performance is likely to be
suboptimal.

The table below shows the combinations for which plain memory formats the convolution primitive is optimized for.

4.5. Primitives 112

oneAPI Specification, Release 1.4-provisional-rev-1

Spatial Convolution Type Data /
Weights logical tensor

Implementation
optimized
for memory formats

1D, 2D, 3D any optimized
1D f32, bf16 NCW / OIW, GOIW ncw (abc) / oiw (abc),

goiw (abcd)
1D f32, bf16 NCW / OIW, GOIW nwc (acb) / wio (cba),

wigo (dcab)
1D int8 NCW / OIW nwc (acb) / wio (cba)
2D f32, bf16 NCHW / OIHW, GOIHW nchw (abcd) / oihw

(abcd), goihw (abcde)
2D f32, bf16 NCHW / OIHW, GOIHW nhwc (acdb) / hwio

(cdba), hwigo (decab)
2D int8 NCHW / OIHW, GOIHW nhwc (acdb) / hwio

(cdba), hwigo (decab)
3D f32, bf16 NCDHW / OIDHW,

GOIDHW
ncdhw (abcde) / oidhw
(abcde), goidhw
(abcdef)

3D f32, bf16 NCDHW / OIDHW,
GOIDHW

ndhwc (acdeb) / dhwio
(cdeba), dhwigo
(defcab)

3D int8 NCDHW / OIDHW ndhwc (acdeb) / dhwio
(cdeba)

Post-ops and Attributes

Post-ops and attributes enable you to modify the behavior of the convolution primitive by applying quantization pa-
rameters to the result of the primitive and by chaining certain operations after the primitive. The following attributes
and post-ops are supported:

Type Operation Description Restrictions
At-
tribute

Scales Sets scale(s) for the corresponding tensor(s) Int8 computations
only

At-
tribute

Zero
points

Sets zero point(s) for the corresponding tensors Int8 computations
only

post-op Eltwise Applies an elementwise operation to the result
post-op Binary Applies a binary operation to the result
post-op Sum Adds the operation result to the destination tensor instead of over-

writing it

The primitive supports dynamic quantization via run-time scales. That means a user could configure the scales and
zero-point attributes at the primitive descriptor creation stage. The user must then provide the scales and zero-points
as an additional input memory objects with argument DNNL_ARG_ATTR_SCALES and DNNL_ARG_ATTR_ZERO_POINTS
during the execution stage (more details are provided in the Quantization section).

Note: The library does not prevent using post-ops in training, but note that not all post-ops are feasible for training
usage. For instance, using ReLU with non-zero negative slope parameter as a post-op would not produce an additional

4.5. Primitives 113

oneAPI Specification, Release 1.4-provisional-rev-1

output workspace that is required to compute backward propagation correctly. Hence, in this particular case one
should use separate convolution and eltwise primitives for training.

The following post-ops chaining should be supported by the library:

Type of convolutions Post-ops sequence supported
f32 and bf16 convolution eltwise, sum, sum -> eltwise
int8 convolution eltwise, sum, sum -> eltwise, eltwise -> sum

The operations during attributes and post-ops applying are done in single precision floating point data type. The
conversion to the actual destination data type happens just before the actual storing.

Example 1

Consider the following pseudo code:

attribute attr;
attr.set_post_ops({

{ sum={scale=beta} },
{ eltwise={scale=gamma, type=tanh, alpha=ignore, beta=ignored }

});

convolution_forward(src, weights, dst, attr)

The would lead to the following:

dst(𝑥) = 𝛾 · tanh (𝛼 · 𝑐𝑜𝑛𝑣(src,weights) + 𝛽 · dst(𝑥))

Example 2

The following pseudo code:

attribute attr;
attr.set_output_scale(alpha);
attr.set_post_ops({

{ eltwise={scale=gamma, type=relu, alpha=eta, beta=ignored }
{ sum={scale=beta} },

});

convolution_forward(src, weights, dst, attr)

That would lead to the following:

dst(𝑥) = 𝛽 · dst(𝑥) + 𝛾 ·𝑅𝑒𝐿𝑈 (𝛼 · 𝑐𝑜𝑛𝑣(src,weights), 𝜂)

4.5. Primitives 114

oneAPI Specification, Release 1.4-provisional-rev-1

Algorithms

oneDNN implementations may implement convolution primitives using several different algorithms which can be cho-
sen by the user.

• Direct (dnnl::algorithm::convolution_direct). The convolution operation is computed directly using
SIMD instructions. This also includes implicit GEMM formulations which notably may require workspace.

• Winograd (dnnl::algorithm::convolution_winograd). This algorithm reduces computational complex-
ity of convolution at the expense of accuracy loss and additional memory operations. The implementation is
based on the Fast Algorithms for Convolutional Neural Networks by A. Lavin and S. Gray. The Winograd algo-
rithm often results in the best performance, but it is applicable only to particular shapes. Moreover, Winograd
only supports int8 and f32 data types.

• Auto (dnnl::algorithm::convolution_auto). In this case the library should automatically select the best
algorithm based on the heuristics that take into account tensor shapes and the number of logical processors
available.

API

struct convolution_forward : public dnnl::primitive
Convolution forward propagation primitive.

Public Functions

convolution_forward()

Default constructor. Produces an empty object.

convolution_forward(const primitive_desc &pd)
Constructs a convolution forward propagation primitive.

Parameters
pd – Primitive descriptor for a convolution forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a convolution forward propagation primitive.

Public Functions

primitive_desc()

Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&bias_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &padding_l, const memory::dims &padding_r, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution forward propagation primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

4.5. Primitives 115

https://arxiv.org/abs/1509.09308

oneAPI Specification, Release 1.4-provisional-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&dst_desc, const memory::dims &strides, const memory::dims &padding_l, const
memory::dims &padding_r, const primitive_attr &attr = default_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for a convolution forward propagation primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.

4.5. Primitives 116

oneAPI Specification, Release 1.4-provisional-rev-1

• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&bias_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &dilates, const memory::dims &padding_l, const memory::dims
&padding_r, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution forward propagation primitive with bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&dst_desc, const memory::dims &strides, const memory::dims &dilates, const
memory::dims &padding_l, const memory::dims &padding_r, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

4.5. Primitives 117

oneAPI Specification, Release 1.4-provisional-rev-1

Constructs a primitive descriptor for a convolution forward propagation primitive without bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

4.5. Primitives 118

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns
The bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a bias parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

struct convolution_backward_data : public dnnl::primitive
Convolution backward propagation primitive.

4.5. Primitives 119

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

convolution_backward_data()

Default constructor. Produces an empty object.

convolution_backward_data(const primitive_desc &pd)
Constructs a convolution backward propagation primitive.

Parameters
pd – Primitive descriptor for a convolution backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a convolution backward propagation primitive.

Public Functions

primitive_desc()

Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &padding_l, const memory::dims
&padding_r, const convolution_forward::primitive_desc &hint_fwd_pd, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution backward propagation primitive.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It
is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.

4.5. Primitives 120

oneAPI Specification, Release 1.4-provisional-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &dilates, const memory::dims
&padding_l, const memory::dims &padding_r, const
convolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution backward propagation primitive.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It
is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

4.5. Primitives 121

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

struct convolution_backward_weights : public dnnl::primitive
Convolution weights gradient primitive.

4.5. Primitives 122

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

convolution_backward_weights()

Default constructor. Produces an empty object.

convolution_backward_weights(const primitive_desc &pd)
Constructs a convolution weights gradient primitive.

Parameters
pd – Primitive descriptor for a convolution weights gradient primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a convolution weights gradient primitive.

Public Functions

primitive_desc()

Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_bias_desc, const
memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&padding_l, const memory::dims &padding_r, const
convolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution weights gradient primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It
is used as a hint for deciding which memory format to use.

4.5. Primitives 123

oneAPI Specification, Release 1.4-provisional-rev-1

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &padding_l, const memory::dims
&padding_r, const convolution_forward::primitive_desc &hint_fwd_pd, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution weights gradient primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It
is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_bias_desc, const
memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&dilates, const memory::dims &padding_l, const memory::dims &padding_r, const
convolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution weights gradient primitive with bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

4.5. Primitives 124

oneAPI Specification, Release 1.4-provisional-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It
is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &dilates, const memory::dims
&padding_l, const memory::dims &padding_r, const
convolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a convolution weights gradient primitive without bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.

4.5. Primitives 125

oneAPI Specification, Release 1.4-provisional-rev-1

• dilates – Dilations for each spatial dimension. A zero value means no dilation in the
corresponding dimension.

• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It
is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns
Diff weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_bias_desc() const
Returns the diff bias memory descriptor.

Returns
The diff bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a diff bias parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

4.5. Primitives 126

oneAPI Specification, Release 1.4-provisional-rev-1

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

struct deconvolution_forward : public dnnl::primitive
Deconvolution forward propagation primitive.

Public Functions

deconvolution_forward()

Default constructor. Produces an empty object.

deconvolution_forward(const primitive_desc &pd)
Constructs a deconvolution forward propagation primitive.

Parameters
pd – Primitive descriptor for a deconvolution forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a deconvolution forward propagation primitive.

4.5. Primitives 127

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&bias_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &padding_l, const memory::dims &padding_r, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution forward propagation primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and

dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&dst_desc, const memory::dims &strides, const memory::dims &padding_l, const
memory::dims &padding_r, const primitive_attr &attr = default_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for a deconvolution forward propagation primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

4.5. Primitives 128

oneAPI Specification, Release 1.4-provisional-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and

dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&bias_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &dilates, const memory::dims &padding_l, const memory::dims
&padding_r, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution forward propagation primitive with bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and

dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.

4.5. Primitives 129

oneAPI Specification, Release 1.4-provisional-rev-1

• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&dst_desc, const memory::dims &strides, const memory::dims &dilates, const
memory::dims &padding_l, const memory::dims &padding_r, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution forward propagation primitive without bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and

dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

4.5. Primitives 130

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns
The bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a bias parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

4.5. Primitives 131

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

struct deconvolution_backward_data : public dnnl::primitive
Deconvolution backward propagation primitive.

Public Functions

deconvolution_backward_data()

Default constructor. Produces an empty object.

deconvolution_backward_data(const primitive_desc &pd)
Constructs a deconvolution backward propagation primitive.

Parameters
pd – Primitive descriptor for a deconvolution backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a deconvolution backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &padding_l, const memory::dims
&padding_r, const deconvolution_forward::primitive_desc &hint_fwd_pd, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution backward propagation primitive.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Deconvolution algorithm (dnnl::algorithm::convolution_direct,

dnnl::algorithm::convolution_winograd).
• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.

4.5. Primitives 132

oneAPI Specification, Release 1.4-provisional-rev-1

• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &dilates, const memory::dims
&padding_l, const memory::dims &padding_r, const
deconvolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution backward propagation primitive.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Deconvolution algorithm (dnnl::algorithm::convolution_direct,

dnnl::algorithm::convolution_winograd).
• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

4.5. Primitives 133

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

4.5. Primitives 134

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

struct deconvolution_backward_weights : public dnnl::primitive
Deconvolution weights gradient primitive.

Public Functions

deconvolution_backward_weights()

Default constructor. Produces an empty object.

deconvolution_backward_weights(const primitive_desc &pd)
Constructs a deconvolution weights gradient primitive.

Parameters
pd – Primitive descriptor for a deconvolution weights gradient primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a deconvolution weights gradient primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_bias_desc, const
memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&padding_l, const memory::dims &padding_r, const
deconvolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution weights gradient primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.

4.5. Primitives 135

oneAPI Specification, Release 1.4-provisional-rev-1

• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &padding_l, const memory::dims
&padding_r, const deconvolution_forward::primitive_desc &hint_fwd_pd, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution weights gradient primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_bias_desc, const
memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&dilates, const memory::dims &padding_l, const memory::dims &padding_r, const
deconvolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution weights gradient primitive with bias.

4.5. Primitives 136

oneAPI Specification, Release 1.4-provisional-rev-1

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &diff_weights_desc, const memory::desc &diff_dst_desc, const
memory::dims &strides, const memory::dims &dilates, const memory::dims
&padding_l, const memory::dims &padding_r, const
deconvolution_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution weights gradient primitive without bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.

4.5. Primitives 137

oneAPI Specification, Release 1.4-provisional-rev-1

• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns
Diff weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_bias_desc() const
Returns the diff bias memory descriptor.

Returns
The diff bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a diff bias parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

4.5. Primitives 138

oneAPI Specification, Release 1.4-provisional-rev-1

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

4.5.7 Elementwise

The elementwise primitive applies an operation to every element of the tensor. Variable names follow the standard
Conventions.

dst(𝑥) = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(src(𝑥)),

for 𝑥 = (𝑥0, . . . , 𝑥𝑛).

4.5. Primitives 139

oneAPI Specification, Release 1.4-provisional-rev-1

Forward

The following forward operations are supported. Here 𝑠 and 𝑑 denote src and dst, tensor values respectively.

Elementwise algorithm Forward formula

eltwise_abs 𝑑 =

{︃
𝑠 if 𝑠 > 0

−𝑠 if 𝑠 ≤ 0

eltwise_clip, eltwise_clip_use_dst_for_bwd 𝑑 =

⎧⎪⎨⎪⎩
𝛽 if 𝑠 > 𝛽 ≥ 𝛼

𝑠 if 𝛼 < 𝑠 ≤ 𝛽

𝛼 if 𝑠 ≤ 𝛼

eltwise_elu, eltwise_elu_use_dst_for_bwd 𝑑 =

{︃
𝑠 if 𝑠 > 0

𝛼(𝑒𝑠 − 1) if 𝑠 ≤ 0

eltwise_exp, eltwise_exp_use_dst_for_bwd 𝑑 = 𝑒𝑠

eltwise_gelu_erf 𝑑 = 0.5𝑠(1 + 𝑒𝑟𝑓 [𝑠√
2
])

eltwise_gelu_tanh 𝑑 = 0.5𝑠(1 + 𝑡𝑎𝑛ℎ[
√︁

2
𝜋 (𝑠+ 0.044715𝑠3)])

eltwise_hardsigmoid 𝑑 = max(0,min(1, 𝛼𝑠+ 𝛽))
eltwise_hardswish 𝑑 = 𝑠 · ℎ𝑎𝑟𝑑𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠)
eltwise_linear 𝑑 = 𝛼𝑠+ 𝛽
eltwise_log 𝑑 = log𝑒 𝑠
eltwise_logistic, eltwise_logistic_use_dst_for_bwd 𝑑 = 1

1+𝑒−𝑠

eltwise_mish 𝑑 = 𝑠 · tanh (log𝑒(1 + 𝑒𝑠))
eltwise_pow 𝑑 = 𝛼𝑠𝛽

eltwise_relu, eltwise_relu_use_dst_for_bwd 𝑑 =

{︃
𝑠 if 𝑠 > 0

𝛼𝑠 if 𝑠 ≤ 0

eltwise_round 𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑠)
eltwise_soft_relu 𝑑 = 1

𝛼 log𝑒(1 + 𝑒𝛼𝑠)
eltwise_sqrt, eltwise_sqrt_use_dst_for_bwd 𝑑 =

√
𝑠

eltwise_square 𝑑 = 𝑠2

eltwise_swish 𝑑 = 𝑠
1+𝑒−𝛼𝑠

eltwise_tanh , eltwise_tanh_use_dst_for_bwd 𝑑 = tanh 𝑠

Backward

The backward propagation computes diff_src(𝑠), based on diff_dst(𝑠) and src(𝑠). However, some operations support a
computation using dst(𝑠)memory produced during forward propagation. Refer to the table above for a list of operations
supporting destination as input memory and the corresponding formulas.

The following backward operations are supported. Here 𝑠, 𝑑, 𝑑𝑠 and 𝑑𝑑 denote src, dst, diff_src, and a diff_dst tensor
values respectively.

4.5. Primitives 140

oneAPI Specification, Release 1.4-provisional-rev-1

Elementwise
algorithm

Backward formula

eltwise_abs 𝑑𝑠 =

⎧⎪⎨⎪⎩
𝑑𝑑 if 𝑠 > 0

−𝑑𝑑 if 𝑠 < 0

0 if 𝑠 = 0

eltwise_clip 𝑑𝑠 =

{︃
𝑑𝑑 if 𝛼 < 𝑠 < 𝛽

0 otherwise

eltwise_clip_use_dst_for_bwd𝑑𝑠 =

{︃
𝑑𝑑 if 𝛼 < 𝑑 < 𝛽

0 otherwise

eltwise_elu 𝑑𝑠 =

{︃
𝑑𝑑 if 𝑠 > 0

𝑑𝑑 · 𝛼𝑒𝑠 if 𝑠 ≤ 0

eltwise_elu_use_dst_for_bwd𝑑𝑠 =

{︃
𝑑𝑑 if 𝑑 > 0

𝑑𝑑 · (𝑑+ 𝛼) if 𝑑 ≤ 0
only if

𝛼 ≥ 0
eltwise_exp 𝑑𝑠 = 𝑑𝑑 · 𝑒𝑠
eltwise_exp_use_dst_for_bwd𝑑𝑠 = 𝑑𝑑 · 𝑑
eltwise_gelu_erf𝑑𝑠 = 𝑑𝑑 ·(︁

0.5 + 0.5 erf
(︁

𝑠√
2

)︁
+ 𝑠√

2𝜋
𝑒−0.5𝑠

2
)︁

eltwise_gelu_tanh

𝑑𝑠 = 𝑑𝑑

·0.5(1 + tanh[
√︁

2
𝜋 (𝑠+ 0.044715𝑠3)])

·(1 +
√︁

2
𝜋 (𝑠+ 0.134145𝑠3)

·(1− tanh[
√︁

2
𝜋 (𝑠+ 0.044715𝑠3)]))

eltwise_hardsigmoid𝑑𝑠 =

{︃
𝑑𝑑 · 𝛼 if 0 < 𝛼𝑠+ 𝛽 < 1

0 otherwise
eltwise_hardswish𝑑𝑠 =⎧⎪⎨⎪⎩

𝑑𝑑 · (2𝛼+ 𝛽) if 0 < 𝛼𝑠+ 𝛽 < 1

𝑑𝑑 if 𝛼 · 𝑠+ 𝛽 ≥ 1

0 otherwise
eltwise_linear 𝑑𝑠 = 𝛼 · 𝑑𝑑
eltwise_log 𝑑𝑠 = 𝑑𝑑

𝑠

eltwise_logistic𝑑𝑠 = 𝑑𝑑
1+𝑒−𝑠 · (1− 1

1+𝑒−𝑠)

eltwise_mish 𝑑𝑠 = 𝑑𝑑 · 𝑒𝑠·𝜔
𝛿2 with 𝜔 = 𝑒3𝑠 + 4 ·

𝑒2𝑠 + 𝑒𝑠 · (4 · 𝑠+ 6) + 4 · (𝑠+ 1) and
𝛿 = 𝑒2𝑠 + 2 · 𝑒𝑠 + 2

eltwise_logistic_use_dst_for_bwd𝑑𝑠 = 𝑑𝑑 · 𝑑 · (1− 𝑑)
eltwise_pow 𝑑𝑠 = 𝑑𝑑 · 𝛼𝛽𝑠𝛽−1

eltwise_relu 𝑑𝑠 =

{︃
𝑑𝑑 if 𝑠 > 0

𝛼 · 𝑑𝑑 if 𝑠 ≤ 0

eltwise_relu_use_dst_for_bwd𝑑𝑠 =

{︃
𝑑𝑑 if 𝑑 > 0

𝛼 · 𝑑𝑑 if 𝑑 ≤ 0
only if

𝑎𝑙𝑝ℎ𝑎 ≥ 0
eltwise_soft_relu𝑑𝑠 = 𝑑𝑑

1+𝑒−𝛼𝑠

eltwise_sqrt 𝑑𝑠 = 𝑑𝑑
2
√
𝑠

eltwise_sqrt_use_dst_for_bwd𝑑𝑠 = 𝑑𝑑
2𝑑

eltwise_square 𝑑𝑠 = 𝑑𝑑 · 2𝑠
eltwise_swish 𝑑𝑠 = 𝑑𝑑

1+𝑒−𝛼𝑠 (1 + 𝛼𝑠(1− 1
1+𝑒−𝛼𝑠))

eltwise_tanh 𝑑𝑠 = 𝑑𝑑 · (1− tanh2 𝑠)
eltwise_tanh_use_dst_for_bwd𝑑𝑠 = 𝑑𝑑 · (1− 𝑑2)

4.5. Primitives 141

oneAPI Specification, Release 1.4-provisional-rev-1

Difference Between Forward Training and Forward Inference

There is no difference between the #dnnl_forward_training and #dnnl_forward_inference propagation kinds.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. The dnnl::eltwise_forward::primitive_desc and dnnl::eltwise_backward::primitive_desc
constructors take both parameters 𝛼, and 𝛽. These parameters are ignored if they are unused by the algorithm.

2. The memory format and data type for src and dst are assumed to be the same. The same holds for diff_src and
diff_dst.

3. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In case
of an in-place operation, the original data will be overwritten. Note, however, that some algorithms for backward
propagation require original src, hence the corresponding forward propagation should not be performed in-place
for those algorithms. Algorithms that use dst for backward propagation can be safely done in-place.

4. For some operations it might be beneficial to compute backward propagation based on dst(𝑠), rather than on
src(𝑠), for improved performance.

Note: For operations supporting destination memory as input, dst can be used instead of src when backward propa-
gation is computed. This enables several performance optimizations (see the tips below).

Data Type Support

The eltwise primitive should support the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination Intermediate data type
forward / backward f32, bf16 f32
forward f16 f16
forward s32 / s8 / u8 f32

4.5. Primitives 142

oneAPI Specification, Release 1.4-provisional-rev-1

Here the intermediate data type means that the values coming in are first converted to the intermediate data type, then
the operation is applied, and finally the result is converted to the output data type.

Data Representation

The eltwise primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions.

Post-ops and Attributes

Type Operation Description Restrictions
Post-op Binary Applies a binary operation to the result

API

struct eltwise_forward : public dnnl::primitive
Elementwise unary operation forward propagation primitive.

Public Functions

eltwise_forward()

Default constructor. Produces an empty object.

eltwise_forward(const primitive_desc &pd)
Constructs an eltwise forward propagation primitive.

Parameters
pd – Primitive descriptor for an eltwise forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an elementwise forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &dst_desc, const primitive_attr &attr
= default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an elementwise forward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Elementwise algorithm kind.
• src_desc – Source memory descriptor.

4.5. Primitives 143

oneAPI Specification, Release 1.4-provisional-rev-1

• dst_desc – Destination memory descriptor.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &dst_desc, float alpha, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an elementwise forward propagation primitive with an alpha pa-
rameter.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Elementwise algorithm kind.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• alpha – The alpha parameter for the elementwise operation. Specific meaning depends

on the algorithm.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &dst_desc, float alpha, float beta, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an elementwise forward propagation primitive with an alpha and
beta parameters.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Elementwise algorithm kind.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• alpha – The alpha parameter for the elementwise operation. Specific meaning depends

on the algorithm.
• beta – The beta parameter for the elementwise operation. Specific meaning depends on

the algorithm.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

4.5. Primitives 144

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

dnnl::algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

float get_alpha() const
Returns an alpha.

Returns
An alpha.

Returns
Zero if the primitive does not have an alpha parameter.

float get_beta() const
Returns a beta.

Returns
A beta.

Returns
Zero if the primitive does not have a beta parameter.

struct eltwise_backward : public dnnl::primitive
Elementwise unary operation backward propagation primitive.

See also:

eltwise_forward

Public Functions

eltwise_backward()

Default constructor. Produces an empty object.

eltwise_backward(const primitive_desc &pd)
Constructs an eltwise backward propagation primitive.

Parameters
pd – Primitive descriptor for an eltwise backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for eltwise backward propagation.

4.5. Primitives 145

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &data_desc, const
eltwise_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an elementwise backward propagation primitive with an alpha
parameter.

Parameters
• aengine – Engine to use.
• aalgorithm – Elementwise algorithm kind.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• data_desc – Destination memory descriptor if one of the “use_dst_for_bwd” algorithms

are used (such as dnnl::algorithm::eltwise_relu_use_dst_for_bwd), source memory de-
scriptor otherwise.

• hint_fwd_pd – Primitive descriptor for an elementwise forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &data_desc, float alpha,
const eltwise_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an elementwise backward propagation primitive with an alpha
parameter.

Parameters
• aengine – Engine to use.
• aalgorithm – Elementwise algorithm kind.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• data_desc – Destination memory descriptor if one of the “use_dst_for_bwd” algorithms

are used (such as dnnl::algorithm::eltwise_relu_use_dst_for_bwd), source memory de-
scriptor otherwise.

• alpha – The alpha parameter for the elementwise operation. Specific meaning depends
on the algorithm.

• hint_fwd_pd – Primitive descriptor for an elementwise forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &data_desc, float alpha,
float beta, const eltwise_forward::primitive_desc &hint_fwd_pd, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an elementwise backward propagation primitive with an alpha

4.5. Primitives 146

oneAPI Specification, Release 1.4-provisional-rev-1

and beta parameters.
Parameters

• aengine – Engine to use.
• aalgorithm – Elementwise algorithm kind.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• data_desc – Destination memory descriptor if one of the “use_dst_for_bwd” algorithms

are used (such as dnnl::algorithm::eltwise_relu_use_dst_for_bwd), source memory de-
scriptor otherwise.

• alpha – The alpha parameter for the elementwise operation. Specific meaning depends
on the algorithm.

• beta – The beta parameter for the elementwise operation. Specific meaning depends on
the algorithm.

• hint_fwd_pd – Primitive descriptor for an elementwise forward propagation primitive.
It is used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

dnnl::algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

4.5. Primitives 147

oneAPI Specification, Release 1.4-provisional-rev-1

float get_alpha() const
Returns an alpha.

Returns
An alpha.

Returns
Zero if the primitive does not have an alpha parameter.

float get_beta() const
Returns a beta.

Returns
A beta.

Returns
Zero if the primitive does not have a beta parameter.

4.5.8 Inner Product

The inner product primitive (sometimes called fully connected layer) treats each activation in the minibatch as a vector
and computes its product with a weights 2D tensor producing a 2D tensor as an output.

Forward

Let src, weights, bias and dst be 𝑁 × 𝐼𝐶, 𝑂𝐶 × 𝐼𝐶, 𝑂𝐶, and 𝑁 ×𝑂𝐶 tensors, respectively. Variable names follow
the standard Conventions. Then:

dst(𝑛, 𝑜𝑐) = bias(𝑜𝑐) +

𝐼𝐶−1∑︁
𝑖𝑐=0

src(𝑛, 𝑖𝑐) · weights(𝑜𝑐, 𝑖𝑐)

In cases where the src andweights tensors have spatial dimensions, they are flattened to 2D. For example, if they are 4D
𝑁×𝐼𝐶 ′×𝐼𝐻×𝐼𝑊 and 𝑂𝐶×𝐼𝐶 ′×𝐾𝐻×𝐾𝑊 tensors, then the formula above is applied with 𝐼𝐶 = 𝐼𝐶 ′ ·𝐼𝐻 ·𝐼𝑊 .
In such cases, the src and weights tensors must have equal spatial dimensions (e.g. 𝐾𝐻 = 𝐼𝐻 and 𝐾𝑊 = 𝐼𝑊 for
4D tensors).

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src based on diff_dst and weights.

The weights update computes diff_weights and diff_bias based on diff_dst and src.

Note: The optimized memory formats src and weights might be different on forward propagation, backward propa-
gation, and weights update.

4.5. Primitives 148

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
weights DNNL_ARG_WEIGHTS
bias DNNL_ARG_BIAS
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_weights DNNL_ARG_DIFF_WEIGHTS
diff_bias DNNL_ARG_DIFF_BIAS
diff_dst DNNL_ARG_DIFF_DST

Operation Details

N/A

Data Types Support

Inner product primitive supports the following combination of data types for source, destination, weights, and bias.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source Weights Destination Bias
forward / backward f32 f32 f32 f32
forward f16 f16 f16 f16
forward u8, s8 s8 u8, s8, s32, f32 u8, s8, s32, f32
forward bf16 bf16 f32, bf16 f32, bf16
backward f32, bf16 bf16 bf16
weights update bf16 f32, bf16 bf16 f32, bf16

Data Representation

Like other CNN primitives, the inner product primitive expects the following tensors:

Spatial Source Destination Weights
1D 𝑁 × 𝐶 ×𝑊 𝑁 × 𝐶 𝑂𝐶 × 𝐼𝐶 ×𝐾𝑊
2D 𝑁 × 𝐶 ×𝐻 ×𝑊 𝑁 × 𝐶 𝑂𝐶 × 𝐼𝐶 ×𝐾𝐻 ×𝐾𝑊
3D 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊 𝑁 × 𝐶 𝑂𝐶 × 𝐼𝐶 ×𝐾𝐷 ×𝐾𝐻 ×𝐾𝑊

Memory format of data and weights memory objects is critical for inner product primitive performance. In the oneDNN
programming model, inner product primitive is one of the few primitives that support the placeholder format any and
can define data and weight memory objects formats based on the primitive parameters. When using any it is necessary

4.5. Primitives 149

oneAPI Specification, Release 1.4-provisional-rev-1

to first create an inner product primitive descriptor and then query it for the actual data and weight memory objects
formats.

The table below shows the combinations for which plain memory formats the inner product primitive is optimized for.
For the destination tensor (which is always 𝑁 × 𝐶) the memory format is always nc (ab).

Spatial Source / Weights logical tensor Implementation optimized for memory formats
0D NC / OI nc (ab) / oi (ab)
0D NC / OI nc (ab) / io (ba)
1D NCW / OIW ncw (abc) / oiw (abc)
1D NCW / OIW nwc (acb) / wio (cba)
2D NCHW / OIHW nchw (abcd) / oihw (abcd)
2D NCHW / OIHW nhwc (acdb) / hwio (cdba)
3D NCDHW / OIDHW ncdhw (abcde) / oidhw (abcde)
3D NCDHW / OIDHW ndhwc (acdeb) / dhwio (cdeba)

Post-ops and Attributes

The following post-ops should be supported by inner product primitives:

Type Operation Description Restrictions
At-
tribute

Scales Sets scale(s) for the corresponding tensor(s) Int8 computations
only

At-
tribute

Zero
points

Sets zero point(s) for the corresponding tensors Int8 computations
only

Post-op Eltwise Applies an elementwise operation to the result
Post-op Binary Applies a binary operation to the result
Post-op Sum Adds the operation result to the destination tensor instead of over-

writing it

API

struct inner_product_forward : public dnnl::primitive
Inner product forward propagation primitive.

Public Functions

inner_product_forward()

Default constructor. Produces an empty object.

inner_product_forward(const primitive_desc &pd)
Constructs an inner product forward propagation primitive.

Parameters
pd – Primitive descriptor for an inner product forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an inner product forward propagation primitive.

4.5. Primitives 150

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &src_desc, const
memory::desc &weights_desc, const memory::desc &bias_desc, const memory::desc
&dst_desc, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an inner product forward propagation primitive with bias.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Memory descriptor for src.
• weights_desc – Memory descriptor for weights.
• bias_desc – Memory descriptor for bias.
• dst_desc – Memory descriptor for dst.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &src_desc, const
memory::desc &weights_desc, const memory::desc &dst_desc, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an inner product forward propagation primitive.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Memory descriptor for src.
• weights_desc – Memory descriptor for weights.
• dst_desc – Memory descriptor for dst.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

4.5. Primitives 151

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns
The bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a bias parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

struct inner_product_backward_data : public dnnl::primitive
Inner product backward propagation primitive.

Public Functions

inner_product_backward_data()

Default constructor. Produces an empty object.

inner_product_backward_data(const primitive_desc &pd)
Constructs an inner product backward propagation primitive.

Parameters
pd – Primitive descriptor for an inner product backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an inner product backward propagation primitive.

4.5. Primitives 152

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, const memory::desc &diff_src_desc, const memory::desc
&weights_desc, const memory::desc &diff_dst_desc, const
inner_product_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an inner product backward propagation primitive.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• diff_src_desc – Memory descriptor for diff src.
• weights_desc – Memory descriptor for weights.
• diff_dst_desc – Memory descriptor for diff dst.
• hint_fwd_pd – Primitive descriptor for an inner product forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

4.5. Primitives 153

oneAPI Specification, Release 1.4-provisional-rev-1

struct inner_product_backward_weights : public dnnl::primitive
Inner product weights gradient primitive.

Public Functions

inner_product_backward_weights()

Default constructor. Produces an empty object.

inner_product_backward_weights(const primitive_desc &pd)
Constructs an inner product weights gradient primitive.

Parameters
pd – Primitive descriptor for an inner product weights gradient primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an inner product weights gradient primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, const memory::desc &src_desc, const memory::desc
&diff_weights_desc, const memory::desc &diff_bias_desc, const memory::desc
&diff_dst_desc, const inner_product_forward::primitive_desc &hint_fwd_pd, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an inner product weights update primitive with bias.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• src_desc – Memory descriptor for src.
• diff_weights_desc – Memory descriptor for diff weights.
• diff_bias_desc – Memory descriptor for diff bias.
• diff_dst_desc – Memory descriptor for diff dst.
• hint_fwd_pd – Primitive descriptor for an inner product forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, const memory::desc &src_desc, const memory::desc
&diff_weights_desc, const memory::desc &diff_dst_desc, const
inner_product_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an inner product weights update primitive.

4.5. Primitives 154

oneAPI Specification, Release 1.4-provisional-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• src_desc – Memory descriptor for src.
• diff_weights_desc – Memory descriptor for diff weights.
• diff_dst_desc – Memory descriptor for diff dst.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• hint_fwd_pd – Primitive descriptor for an inner product forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns
Diff weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_bias_desc() const
Returns the diff bias memory descriptor.

Returns
The diff bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a diff bias parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

4.5. Primitives 155

oneAPI Specification, Release 1.4-provisional-rev-1

4.5.9 Layer normalization

The layer normalization primitive performs a forward or backward layer normalization operation on a 2-5D data tensor.

The layer normalization operation performs normalization over the last logical axis of the data tensor and is defined by
the following formulas. We show formulas only for 3D data, which are straightforward to generalize to cases of higher
dimensions. Variable names follow the standard Conventions.

Forward

dst(𝑡, 𝑛, 𝑐) = 𝛾(𝑐) · src(𝑡, 𝑛, 𝑐)− 𝜇(𝑡, 𝑛)√︀
𝜎2(𝑡, 𝑛) + 𝜀

+ 𝛽(𝑐),

where

• 𝛾(𝑐), 𝛽(𝑐) are optional scale and shift for a channel (see the use_scale and use_shift flag),

• 𝜇(𝑡, 𝑛), 𝜎2(𝑡, 𝑛) are mean and variance (see use_global_stats flag), and

• 𝜀 is a constant to improve numerical stability.

Mean and variance are computed at runtime or provided by a user. When mean and variance are computed at runtime,
the following formulas are used:

• 𝜇(𝑡, 𝑛) = 1
𝐶

∑︀
𝑐
src(𝑡, 𝑛, 𝑐),

• 𝜎2(𝑡, 𝑛) = 1
𝐶

∑︀
𝑐
(src(𝑡, 𝑛, 𝑐)− 𝜇(𝑡, 𝑛))2.

The 𝛾(𝑐) and 𝛽(𝑐) tensors are considered learnable.

Difference Between Forward Training and Forward Inference

If mean and variance are computed at runtime (i.e., use_global_stats is not set), they become out-
puts for the propagation kind forward_training (because they would be required during the backward
propagation). Data layout for mean and variance must be specified during initialization of the layer
normalization descriptor by passing the memory descriptor for statistics (e.g., by passing stat_desc in
dnnl::layer_normalization_forward::primtive_desc). Mean and variance are not exposed for the propa-
gation kind forward_inference.

Backward

The backward propagation computes diff_src(𝑡, 𝑛, 𝑐), diff_𝛾(𝑐)*, and diff_𝛽(𝑐)* based on diff_dst(𝑡, 𝑛, 𝑐),
𝑠𝑟𝑐(𝑡, 𝑛, 𝑐), 𝜇(𝑡, 𝑛), 𝜎2(𝑡, 𝑛), 𝛾(𝑐)*, and 𝛽(𝑐)*.

The tensors marked with an asterisk are used only when the primitive is configured to use 𝛾(𝑐), and 𝛽(𝑐) (i.e.
use_scale and use_shift is set).

4.5. Primitives 156

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

Depending on the flags and propagation kind, the layer normalization primitive requires different inputs and outputs.
For clarity, a summary is shown below.

forward_inferenceforward_trainingbackward backward_data

none In: src Out:
dst

In: src Out:
dst, 𝜇, 𝜎2

In: diff_dst, src, 𝜇, 𝜎2 Out:
diff_src

Same as for
backward

use_global_stats In: src, 𝜇, 𝜎2

Out: dst
In: src, 𝜇, 𝜎2

Out: dst
In: diff_dst, src, 𝜇, 𝜎2 Out:
diff_src

Same as for
backward

use_scale In: src, 𝛾 Out:
dst

In: src, 𝛾 Out:
dst, 𝜇, 𝜎2

In: diff_dst, src, 𝜇, 𝜎2, 𝛾 Out:
diff_src, diff_𝛾

Not sup-
ported

use_shift In: src, 𝛽 Out:
dst

In: src, 𝛽 Out:
dst, 𝜇, 𝜎2

In: diff_dst, src, 𝜇, 𝜎2, 𝛽 Out:
diff_src, diff_𝛽

Not sup-
ported

use_scale | use_shift In: src, 𝛾, 𝛽
Out: dst

In: src, 𝛾, 𝛽
Out: dst, 𝜇, 𝜎2

In: diff_dst, src, 𝜇, 𝜎2, 𝛾, 𝛽
Out: diff_src, diff_𝛾, diff_𝛽

Not sup-
ported

use_global_stats |
use_scale | use_shift

In: src, 𝜇, 𝜎2,
𝛾, 𝛽 Out: dst

In: src, 𝜇, 𝜎2,
𝛾, 𝛽 Out: dst

In: diff_dst, src, 𝜇, 𝜎2, 𝛾, 𝛽
Out: diff_src, diff_𝛾, diff_𝛽

Not sup-
ported

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
𝛾, 𝛽 DNNL_ARG_SCALE
𝛽 DNNL_ARG_SHIFT
mean (𝜇) DNNL_ARG_MEAN
variance (𝜎) DNNL_ARG_VARIANCE
dst DNNL_ARG_DST
diff_dst DNNL_ARG_DIFF_DST
diff_src DNNL_ARG_DIFF_SRC
diff_𝛾 DNNL_ARG_DIFF_SCALE
diff_𝛽 DNNL_ARG_DIFF_SHIFT

Operation Details

1. The different flavors of the primitive are partially controlled by the flags parameter that is passed to the primitive
descriptor initialization function (e.g., dnnl::layer_normalization_forward::primtive_desc). Multi-
ple flags can be combined using the bitwise OR operator (|).

2. For forward propagation, the mean and variance might be either computed at runtime (in which case they are
outputs of the primitive) or provided by a user (in which case they are inputs). In the latter case, a user must set
the use_global_stats flag. For the backward propagation, the mean and variance are always input parameters.

3. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In case
of an in-place operation, the original data will be overwritten. Note, however, that backward propagation requires
original src, hence the corresponding forward propagation should not be performed in-place.

4.5. Primitives 157

oneAPI Specification, Release 1.4-provisional-rev-1

Data Types Support

The layer normalization supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination Mean / Variance / Scale / Shift
forward / backward f32 f32
forward f16 f32

Data Representation

Mean and Variance

The mean (𝜇) and variance (𝜎2) are separate tensors with number of dimensions equal to (𝑑𝑎𝑡𝑎_𝑛𝑑𝑖𝑚𝑠− 1) and size
(𝑑𝑎𝑡𝑎_𝑑𝑖𝑚[0], 𝑑𝑎𝑡𝑎_𝑑𝑖𝑚[1], ..., 𝑑𝑎𝑡𝑎_𝑑𝑖𝑚[𝑛𝑑𝑖𝑚𝑠− 2]).

The corresponding memory object can have an arbitrary memory format. Unless mean and variance are computed
at runtime and not exposed (i.e., propagation kind is forward_inference and use_global_stats is not set), the
user should provide a memory descriptor for statistics when initializing the layer normalization descriptor. For best
performance, it is advised to use the memory format that follows the data memory format; i.e., if the data format is tnc,
the best performance can be expected for statistics with the tn format and suboptimal for statistics with the nt format.

Scale and Shift

If used, the scale (𝛾) and shift (𝛽) are combined in a single 2D tensor of shape 2× 𝐶.

The format of the corresponding memory object must be nc (ab).

Source, Destination, and Their Gradients

The layer normalization primitive works with an arbitrary data tensor; however, it was designed for RNN data tensors
(i.e., nc, tnc, ldnc). Unlike CNN data tensors, RNN data tensors have a single feature dimension. Layer normaliza-
tion performs normalization over the last logical dimension (feature dimension for RNN tensors) across non-feature
dimensions.

The layer normalization primitive is optimized for the following memory formats:

Logical tensor Implementations optimized for memory formats
NC nc (ab)
TNC tnc (abc), ntc (bac)
LDNC ldnc (abcd)

4.5. Primitives 158

oneAPI Specification, Release 1.4-provisional-rev-1

API

struct layer_normalization_forward : public dnnl::primitive
Layer normalization forward propagation primitive.

Public Functions

layer_normalization_forward()

Default constructor. Produces an empty object.

layer_normalization_forward(const primitive_desc &pd)
Constructs a layer normalization forward propagation primitive.

Parameters
pd – Primitive descriptor for a layer normalization forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a layer normalization forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &src_desc, const
memory::desc &dst_desc, const memory::desc &stat_desc, float epsilon,
normalization_flags flags, const primitive_attr &attr = default_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for a layer normalization forward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• stat_desc – Statistics memory descriptors.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &src_desc, const
memory::desc &dst_desc, float epsilon, normalization_flags flags, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a layer normalization forward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Source memory descriptor.

4.5. Primitives 159

oneAPI Specification, Release 1.4-provisional-rev-1

• dst_desc – Destination memory descriptor.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns
Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns
Memory descriptor for variance.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

float get_epsilon() const
Returns an epsilon.

4.5. Primitives 160

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
An epsilon.

Returns
Zero if the primitive does not have an epsilon parameter.

normalization_flags get_flags() const
Returns normalization flags.

Returns
Normalization flags.

struct layer_normalization_backward : public dnnl::primitive
Layer normalization backward propagation primitive.

Public Functions

layer_normalization_backward()

Default constructor. Produces an empty object.

layer_normalization_backward(const primitive_desc &pd)
Constructs a layer normalization backward propagation primitive.

Parameters
pd – Primitive descriptor for a layer normalization backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a layer normalization backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &src_desc, const
memory::desc &stat_desc, float epsilon, normalization_flags flags, const
layer_normalization_forward::primitive_desc &hint_fwd_pd, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a layer normalization backward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are dnnl::prop_kind::backward_data

and dnnl::prop_kind::backward (diffs for all parameters are computed in this case).
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• src_desc – Source memory descriptor.
• stat_desc – Statistics memory descriptors.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• hint_fwd_pd – Primitive descriptor for a layer normalization forward propagation prim-

itive. It is used as a hint for deciding which memory format to use.

4.5. Primitives 161

oneAPI Specification, Release 1.4-provisional-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &src_desc, float epsilon,
normalization_flags flags, const layer_normalization_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a layer normalization backward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are dnnl::prop_kind::backward_data

and dnnl::prop_kind::backward (diffs for all parameters are computed in this case).
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• src_desc – Source memory descriptor.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• hint_fwd_pd – Primitive descriptor for a layer normalization forward propagation prim-

itive. It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

4.5. Primitives 162

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns
Diff weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns
Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns
Memory descriptor for variance.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

float get_epsilon() const
Returns an epsilon.

Returns
An epsilon.

Returns
Zero if the primitive does not have an epsilon parameter.

normalization_flags get_flags() const
Returns normalization flags.

Returns
Normalization flags.

4.5. Primitives 163

oneAPI Specification, Release 1.4-provisional-rev-1

4.5.10 Local Response Normalization

The LRN primitive performs a forward or backward local response normalization operation defined by the following
formulas. Variable names follow the standard Conventions.

Forward

LRN with algorithm lrn_across_channels:

dst(𝑛, 𝑐, ℎ, 𝑤) =

⎧⎨⎩𝑘 +
𝛼

𝑛𝑙

(𝑛𝑙+1)/2−1∑︁
𝑖=−(𝑛𝑙−1)/2

(src(𝑛, 𝑐+ 𝑖, ℎ, 𝑤))2

⎫⎬⎭
−𝛽

· src(𝑛, 𝑐, ℎ, 𝑤),

LRN with algorithm lrn_within_channel:

dst(𝑛, 𝑐, ℎ, 𝑤) =

⎧⎨⎩𝑘 +
𝛼

𝑛𝑙

(𝑛𝑙+1)/2−1∑︁
𝑖=−(𝑛𝑙−1)/2

(𝑛𝑙+1)/2−1∑︁
𝑗=−(𝑛𝑙−1)/2

(src(𝑛, 𝑐, ℎ+ 𝑖, 𝑤 + 𝑗))2

⎫⎬⎭
−𝛽

· src(𝑛, 𝑐, ℎ, 𝑤),

where 𝑛𝑙 is the local_size. Formulas are provided for 2D spatial data case.

Backward

The backward propagation computes diff_src(𝑛, 𝑐, ℎ, 𝑤), based on diff_dst(𝑛, 𝑐, ℎ, 𝑤) and src(𝑛, 𝑐, ℎ, 𝑤).

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
workspace DNNL_ARG_WORKSPACE
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. During training, LRN might or might not require a workspace on forward and backward passes. The behav-
ior is implementation specific. Optimized implementations typically require a workspace and use it to save
some intermediate results from the forward pass that accelerate computations on the backward pass. To check
whether a workspace is required, query the LRN primitive descriptor for the workspace. Success indicates that
the workspace is required and its description will be returned.

4.5. Primitives 164

oneAPI Specification, Release 1.4-provisional-rev-1

Data Type Support

The LRN primitive supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward f32, bf16
forward f16

Data Representation

Source, Destination, and Their Gradients

Like most other primitives, the LRN primitive expects the following tensors:

Spatial Source / Destination
0D 𝑁 × 𝐶
1D 𝑁 × 𝐶 ×𝑊
2D 𝑁 × 𝐶 ×𝐻 ×𝑊
3D 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊

The LRN primitive is optimized for the following memory formats:

Spatial Logical tensor Implementations optimized for memory formats
2D NCHW nchw (abcd), nhwc (acdb), optimized

Here optimized means the format chosen by the preceding compute-intensive primitive.

Post-ops and Attributes

The LRN primitive does not support any post-ops or attributes.

API

struct lrn_forward : public dnnl::primitive
Local response normalization (LRN) forward propagation primitive.

4.5. Primitives 165

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

lrn_forward()

Default constructor. Produces an empty object.

lrn_forward(const primitive_desc &pd)
Constructs an LRN forward propagation primitive.

Parameters
pd – Primitive descriptor for an LRN forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an LRN forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &dst_desc, memory::dim local_size,
float alpha, float beta, float k, const primitive_attr &attr = default_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for an LRN forward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – LRN algorithm kind: either dnnl::algorithm::lrn_across_channels, or

dnnl::algorithm::lrn_within_channel.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• local_size – Regularization local size.
• alpha – The alpha regularization parameter.
• beta – The beta regularization parameter.
• k – The k regularization parameter.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

4.5. Primitives 166

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

float get_alpha() const
Returns an alpha.

Returns
An alpha.

Returns
Zero if the primitive does not have an alpha parameter.

float get_beta() const
Returns a beta.

Returns
A beta.

Returns
Zero if the primitive does not have a beta parameter.

memory::dim get_local_size() const
Returns an LRN local size parameter.

Returns
An LRN local size parameter.

Returns
Zero if the primitive does not have an LRN local size parameter.

float get_k() const
Returns an LRN K parameter.

Returns
An LRN K parameter.

Returns
Zero if the primitive does not have an LRN K parameter.

struct lrn_backward : public dnnl::primitive
Local response normalization (LRN) backward propagation primitive.

4.5. Primitives 167

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

lrn_backward()

Default constructor. Produces an empty object.

lrn_backward(const primitive_desc &pd)
Constructs an LRN backward propagation primitive.

Parameters
pd – Primitive descriptor for an LRN backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an LRN backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &src_desc, memory::dim
local_size, float alpha, float beta, float k, const lrn_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an LRN backward propagation primitive.
Parameters

• aengine – Engine to use.
• aalgorithm – LRN algorithm kind: either dnnl::algorithm::lrn_across_channels, or

dnnl::algorithm::lrn_within_channel.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• src_desc – Source memory descriptor.
• local_size – Regularization local size.
• alpha – The alpha regularization parameter.
• beta – The beta regularization parameter.
• k – The k regularization parameter.
• hint_fwd_pd – Primitive descriptor for an LRN forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

4.5. Primitives 168

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

float get_alpha() const
Returns an alpha.

Returns
An alpha.

Returns
Zero if the primitive does not have an alpha parameter.

float get_beta() const
Returns a beta.

Returns
A beta.

Returns
Zero if the primitive does not have a beta parameter.

memory::dim get_local_size() const
Returns an LRN local size parameter.

Returns
An LRN local size parameter.

Returns
Zero if the primitive does not have an LRN local size parameter.

float get_k() const
Returns an LRN K parameter.

Returns
An LRN K parameter.

Returns
Zero if the primitive does not have an LRN K parameter.

4.5. Primitives 169

oneAPI Specification, Release 1.4-provisional-rev-1

4.5.11 Matrix Multiplication

The matrix multiplication (MatMul) primitive computes the product of two 2D tensors with optional bias addition.
Variable names follow the standard Conventions.

dst(𝑚,𝑛) =

𝐾−1∑︁
𝑘=0

(src(𝑚, 𝑘) · weights(𝑘, 𝑛)) + bias(𝑚,𝑛)

The MatMul primitive also supports batching multiple independent matrix multiplication operations, in which case the
tensors must be 3D:

dst(𝑚𝑏,𝑚, 𝑛) =

𝐾−1∑︁
𝑘=0

(src(𝑚𝑏,𝑚, 𝑘) · weights(𝑚𝑏, 𝑘, 𝑛)) + bias(𝑚𝑏,𝑚, 𝑛)

The bias tensor is optional and supports implicit broadcast semantics: any of its dimensions can be 1 and the same
value would be used across the corresponding dimension. However, bias must have the same number of dimensions as
the dst.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
weights DNNL_ARG_WEIGHTS
bias DNNL_ARG_BIAS
dst DNNL_ARG_DST

Operation Details

The MatMul primitive supports input and output tensors with run-time specified shapes and memory formats. The
run-time specified dimensions or strides are specified using the DNNL_RUNTIME_DIM_VAL wildcard value during the
primitive initialization and creation stage. At the execution stage, the user must pass fully specified memory objects so
that the primitive is able to perform the computations. Note that the less information about shapes or format is available
at the creation stage, the less performant execution will be. In particular, if the shape is not known at creation stage,
one cannot use the special format tag any to enable an implementation to choose the most appropriate memory format
for the corresponding input or output shapes. On the other hand, run-time specified shapes enable users to create a
primitive once and use it in different situations.

Data Types Support

The MatMul primitive supports the following combinations of data types for source, destination, weights, and bias
tensors.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

4.5. Primitives 170

oneAPI Specification, Release 1.4-provisional-rev-1

Source Weights Destination Bias
f32 f32 f32 f32
f16 f16 f16 f16
bf16 bf16 bf16 bf16, f32
u8, s8 s8, u8 u8, s8, s32, f32 u8, s8, s32, f32

Data Representation

The MatMul primitive expects the following tensors:

Dims Source Weights Destination Bias (optional)
2D 𝑀 ×𝐾 𝐾 ×𝑁 𝑀 ×𝑁 (𝑀 or 1) ×(𝑁 or 1)
3D 𝑀𝐵 ×𝑀 ×𝐾 𝑀𝐵 ×𝐾 ×𝑁 𝑀𝐵 ×𝑀 ×𝑁 (𝑀𝐵 or 1) ×(𝑀 or 1) ×(𝑁 or 1)

The MatMul primitive is generally optimized for the case in which memory objects use plain memory formats (with
some restrictions; see the table below). However, it is recommended to use the placeholder memory format any if
an input tensor is reused across multiple executions. In this case, the primitive will set the most appropriate memory
format for the corresponding input tensor.

The table below shows the combinations of memory formats for which the MatMul primitive is optimized. The memory
format of the destination tensor should always be ab for the 2D case and abc for the 3D one.

Dims Logical tensors MatMul is optimized for the following memory for-
mats

2D Source: 𝑀 ×𝐾, Weights: 𝐾 ×𝑁 Source: ab or ba, Weights: ab or ba
3D Source: 𝑀𝐵×𝑀×𝐾, Weights: 𝑀𝐵×𝐾×𝑁 Source: abc or acb, Weights: abc or acb

Attributes and Post-ops

Attributes and post-ops enable modifying the behavior of the MatMul primitive. The following attributes and post-ops
are supported:

Type Operation Description Restrictions
At-
tribute

Scales Sets scale(s) for the corresponding tensor(s)

At-
tribute

Zero points Sets zero point(s) for the corresponding tensors Int8 computations
only

Post-
op

Eltwise | Applies an elementwise operation to the result

Post-
op

Binary | Applies a binary operation to the result

Post-
op

Sum Adds the operation result to the destination tensor instead of over-
writing it

The primitive supports dynamic quantization via run-time scales. That means a user could configure the scales and
zero-point attributes at the primitive descriptor creation stage. The user must then provide the scales and zero-points

4.5. Primitives 171

oneAPI Specification, Release 1.4-provisional-rev-1

as an additional input memory objects with argument DNNL_ARG_ATTR_SCALES and DNNL_ARG_ATTR_ZERO_POINTS
during the execution stage (more details are provided in the Quantization section).

API

struct matmul : public dnnl::primitive
Matrix multiplication (matmul) primitive.

Public Functions

matmul()

Default constructor. Produces an empty object.

matmul(const primitive_desc &pd)
Constructs a matmul primitive.

Parameters
pd – Primitive descriptor for a matmul primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a matmul primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &dst_desc, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a matmul primitive without bias.
Parameters

• aengine – Engine to use.
• src_desc – Memory descriptor for source (matrix A).
• weights_desc – Memory descriptor for weights (matrix B).
• dst_desc – Memory descriptor for destination (matrix C).
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &bias_desc, const memory::desc &dst_desc,
const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a matmul primitive with bias.
Parameters

• aengine – Engine to use.
• src_desc – Memory descriptor for source (matrix A).
• weights_desc – Memory descriptor for weights (matrix B).
• dst_desc – Memory descriptor for destination (matrix C).
• bias_desc – Memory descriptor for bias.

4.5. Primitives 172

oneAPI Specification, Release 1.4-provisional-rev-1

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns
Weights memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns
The bias memory descriptor.

Returns
A zero memory descriptor of the primitive does not have a bias parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

4.5.12 Pooling

The pooling primitive performs forward or backward max or average pooling operation on 1D, 2D, or 3D spatial data.

The pooling operation is defined by the following formulas. We show formulas only for 2D spatial data which are
straightforward to generalize to cases of higher and lower dimensions. Variable names follow the standard Conventions.

Forward

Max pooling:

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) = max
𝑘ℎ,𝑘𝑤

(src(𝑛, 𝑐, 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ− 𝑃𝐻𝐿, 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 − 𝑃𝑊𝐿))

Average pooling:

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) =
1

𝐷𝐸𝑁𝑂𝑀

∑︁
𝑘ℎ,𝑘𝑤

src(𝑛, 𝑐, 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ− 𝑃𝐻𝐿, 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 − 𝑃𝑊𝐿)

Here output spatial dimensions are calculated similarly to how they are done for Convolution and Deconvolution.

Average pooling supports two algorithms:

• pooling_avg_include_padding, in which case 𝐷𝐸𝑁𝑂𝑀 = 𝐾𝐻 ·𝐾𝑊 ,

4.5. Primitives 173

oneAPI Specification, Release 1.4-provisional-rev-1

• pooling_avg_exclude_padding, in which case 𝐷𝐸𝑁𝑂𝑀 equals to the size of overlap between an averaging
window and images.

Difference Between Forward Training and Forward Inference

Max pooling requires a workspace for the forward_training propagation kind, and does not require it for
forward_inference (see details below).

Backward

The backward propagation computes diff_src(𝑛, 𝑐, ℎ, 𝑤), based on diff_dst(𝑛, 𝑐, ℎ, 𝑤) and, in case of max pooling,
workspace.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
workspace DNNL_ARG_WORKSPACE
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. During training, max pooling requires a workspace on forward (forward_training) and backward passes to
save indices where a maximum was found. The workspace format is opaque, and the indices cannot be restored
from it. However, one can use backward pooling to perform up-sampling (used in some detection topologies).
The workspace can be created via dnnl::pooling_forward::primitive_desc::workspace_desc().

2. A user can use memory format tag any for dst memory descriptor when creating pooling forward propagation.
The library would derive the appropriate format from the src memory descriptor. However, the src itself must
be defined. Similarly, a user can use memory format tag any for the diff_srcmemory descriptor when creating
pooling backward propagation.

Data Type Support

The pooling primitive supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

4.5. Primitives 174

oneAPI Specification, Release 1.4-provisional-rev-1

Propagation Source / Destination Accumulation data type (used for average pooling only)
forward / backward f32, bf16 f32
forward f16 f16
forward s8, u8, s32 s32

Data Representation

Source, Destination, and Their Gradients

Like other CNN primitives, the pooling primitive expects data to be an 𝑁 × 𝐶 ×𝑊 tensor for the 1D spatial case, an
𝑁 × 𝐶 ×𝐻 ×𝑊 tensor for the 2D spatial case, and an 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊 tensor for the 3D spatial case.

The pooling primitive is optimized for the following memory formats:

Spatial Logical tensor Data type Implementations optimized for memory formats
1D NCW f32 ncw (abc), nwc (acb), optimized^
1D NCW s32, s8, u8 nwc (acb), optimized^
2D NCHW f32 nchw (abcd), nhwc (acdb), optimized^
2D NCHW s32, s8, u8 nhwc (acdb), optimized^
3D NCDHW f32 ncdhw (abcde), ndhwc (acdeb), optimized^
3D NCDHW s32, s8, u8 ndhwc (acdeb), optimized^

Here optimized^ means the format that comes out of any preceding compute-intensive primitive.

Post-ops and Attributes

The pooling primitive does not support any post-ops or attributes.

API

struct pooling_forward : public dnnl::primitive
Pooling forward propagation primitive.

Public Functions

pooling_forward()

Default constructor. Produces an empty object.

pooling_forward(const primitive_desc &pd)
Constructs a pooling forward propagation primitive.

Parameters
pd – Primitive descriptor for a pooling forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a pooling forward propagation primitive.

4.5. Primitives 175

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &dst_desc, const memory::dims
&strides, const memory::dims &kernel, const memory::dims &dilation, const
memory::dims &padding_l, const memory::dims &padding_r, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for pooling forward propagation primitive.

Arrays strides, kernel, dilation, padding_l and padding_r contain values for spatial dimen-
sions only and hence must have the same number of elements as there are spatial dimensions. The
order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors),
and width.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Pooling algorithm kind: either dnnl::algorithm::pooling_max,

dnnl::algorithm::pooling_avg_include_padding, or dnnl::algorithm::pooling_avg_exclude_padding.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• kernel – Vector of kernel spatial dimensions.
• dilation – Array of dilations for spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

4.5. Primitives 176

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_kernel() const
Returns a pooling kernel parameter.

Returns
A pooling kernel parameter.

Returns
An empty dnnl::memory::dims if the primitive does not have a pooling kernel parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

struct pooling_backward : public dnnl::primitive
Pooling backward propagation primitive.

4.5. Primitives 177

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

pooling_backward()

Default constructor. Produces an empty object.

pooling_backward(const primitive_desc &pd)
Constructs a pooling backward propagation primitive.

Parameters
pd – Primitive descriptor for a pooling backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a pooling backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const
memory::dims &kernel, const memory::dims &dilation, const memory::dims
&padding_l, const memory::dims &padding_r, const pooling_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a pooling backward propagation primitive.

Arrays strides, kernel, dilation, padding_l and padding_r contain values for spatial dimen-
sions only and hence must have the same number of elements as there are spatial dimensions. The
order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors),
and width.

Parameters
• aengine – Engine to use.
• aalgorithm – Pooling algorithm kind: either dnnl::algorithm::pooling_max,

dnnl::algorithm::pooling_avg_include_padding, or dnnl::algorithm::pooling_avg_exclude_padding.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• kernel – Vector of kernel spatial dimensions.
• dilation – Array of dilations for spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

• hint_fwd_pd – Primitive descriptor for a pooling forward propagation primitive. It is
used as a hint for deciding which memory format to use.

• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

4.5. Primitives 178

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

memory::dims get_strides() const
Returns strides.

Returns
Strides.

Returns
An empty dnnl::memory::dims if the primitive does not have a strides parameter.

memory::dims get_kernel() const
Returns a pooling kernel parameter.

Returns
A pooling kernel parameter.

Returns
An empty dnnl::memory::dims if the primitive does not have a pooling kernel parameter.

memory::dims get_dilations() const
Returns dilations.

Returns
Dilations.

Returns
An empty dnnl::memory::dims if the primitive does not have a dilations parameter.

memory::dims get_padding_l() const
Returns a left padding.

Returns
A left padding.

4.5. Primitives 179

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
An empty dnnl::memory::dims if the primitive does not have a left padding parameter.

memory::dims get_padding_r() const
Returns a right padding.

Returns
A right padding.

Returns
An empty dnnl::memory::dims if the primitive does not have a right padding parameter.

4.5.13 Prelu

The prelu primitive (Leaky ReLU with trainable alpha parameter) performs forward or backward operation on data
tensor. Weights (alpha) tensor supports broadcast-semantics.

Broadcast configuration is assumed based on src and weights dimensions.

Forward

The prelu operation is defined by the following formulas. We show formulas only for 2D spatial data which are straight-
forward to generalize to cases of higher and lower dimensions. Variable names follow the standard Conventions.

dst(𝑛, 𝑐, ℎ, 𝑤) =

{︃
src(𝑛, 𝑐, ℎ, 𝑤) if src(𝑛, 𝑐, ℎ, 𝑤) > 0

src(𝑛, 𝑐, ℎ, 𝑤) · weights(𝑛, 𝑐, ℎ, 𝑤) if src(𝑛, 𝑐, ℎ, 𝑤) ≤ 0

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src and diff_weights. For no broadcast case, results are calculated using
formula:

diff_src(𝑛, 𝑐, ℎ, 𝑤) =

{︃
diff_dst(𝑛, 𝑐, ℎ, 𝑤) 𝑖𝑓 src(𝑛, 𝑐, ℎ, 𝑤) > 0

diff_dst(𝑛, 𝑐, ℎ, 𝑤) · weights(𝑛, 𝑐, ℎ, 𝑤) 𝑖𝑓 src(𝑛, 𝑐, ℎ, 𝑤) ≤ 0

diff_weights(𝑛, 𝑐, ℎ, 𝑤) = min(src(𝑛, 𝑐, ℎ, 𝑤), 0) · diff_dst(𝑛, 𝑐, ℎ, 𝑤)

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

4.5. Primitives 180

oneAPI Specification, Release 1.4-provisional-rev-1

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
weights DNNL_ARG_WEIGHTS
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST
diff_weights DNNL_ARG_DIFF_WEIGHTS

Operation Details

1. All input and output tensors must have the same number of dimensions.

2. weights tensor dimensions must follow broadcast semantics. Each dimension can either be equal to the corre-
sponding data dimension or equal to 1 to indicate a broadcasted dimension.

Post-ops and Attributes

The prelu primitive does not have to support any post-ops or attributes.

Data Types Support

The PReLU primitive supports the following combinations of data types:

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward f32, s32, bf16, f16, s8, u8

Data Representation

Source, Destination, and Their Gradients

The PReLU primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions.

API

struct prelu_forward : public dnnl::primitive
PReLU forward propagation primitive.

4.5. Primitives 181

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

prelu_forward() = default
Default constructor. Produces an empty object.

prelu_forward(const primitive_desc &pd)
Constructs a prelu forward propagation primitive.

Parameters
pd – Primitive descriptor for a prelu forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a PReLU forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &src_desc, const
memory::desc &weight_desc, const memory::desc &dst_desc, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a PReLU forward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Source memory descriptor.
• weight_desc – Alpha parameters memory descriptor.
• dst_desc – Destination memory descriptor.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

4.5. Primitives 182

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

struct prelu_backward : public dnnl::primitive
PReLU backward propagation primitive.

Public Functions

prelu_backward() = default
Default constructor. Produces an empty object.

prelu_backward(const primitive_desc &pd)
Constructs a prelu backward propagation primitive.

Parameters
pd – Primitive descriptor for a prelu backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for prelu backward propagation.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, const memory::desc &src_desc, const memory::desc
&weight_desc, const memory::desc &diff_src_desc, const memory::desc
&diff_weights_desc, const memory::desc &diff_dst_desc, const
prelu_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a descriptor for a PReLU backward propagation primitive.
Parameters

• aengine – Engine to use.
• src_desc – Source memory descriptor.
• weight_desc – Alpha parameters memory descriptor.
• diff_src_desc – Diff source memory descriptor.
• diff_weights_desc – Diff alpha parameters memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• hint_fwd_pd – Primitive descriptor for a PReLU forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

4.5. Primitives 183

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

4.5.14 Reduction

The reduction primitive performs a reduction operation on one or multiple arbitrary dimensions, with respect to a
specified algorithm. Variable names follow the standard Conventions.

dst(𝑓) = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑜𝑝
𝑟∈𝑅

src(𝑟),

where 𝑟𝑒𝑑𝑢𝑐𝑒_𝑜𝑝 can be max, min, sum, mul, mean, Lp-norm and Lp-norm-power-p, 𝑓 is an index in an idle dimension
and 𝑟 is an index in a reduction dimension 𝑅.

The reduction algorithms are specified as follow.

Mean:

dst(𝑓) =

∑︀
𝑟∈𝑅

src(𝑟)

‖𝑅‖
,

where |𝑅| is the size of a reduction dimension.

Lp-norm:

dst(𝑓) = 𝑝

√︃
𝑒𝑝𝑠_𝑜𝑝(

∑︁
𝑟∈𝑅
|𝑠𝑟𝑐(𝑟)|𝑝, 𝑒𝑝𝑠),

where 𝑒𝑝𝑠_𝑜𝑝 can be max and sum.

Lp-norm-power-p:

dst(𝑓) = 𝑒𝑝𝑠_𝑜𝑝(
∑︁
𝑟

|𝑠𝑟𝑐(𝑟)|𝑝, 𝑒𝑝𝑠),

where 𝑒𝑝𝑠_𝑜𝑝 can be max and sum.

Note:

4.5. Primitives 184

oneAPI Specification, Release 1.4-provisional-rev-1

• The reduction primitive requires the source and destination tensors to have the same number of dimensions.

• Dimensions which are reduced are of size 1 in the destination tensor.

• The reduction primitive does not have a notion of forward or backward propagations.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST

Operation Details

The dst memory format can be either specified explicitly or by using the special format tag any (recommended), in
which case the primitive will derive the most appropriate memory format based on the format of the source tensor.

Data Types Support

The reduction primitive supports the following combinations of data types:

Propagation Source / Destination
forward / backward f32, s32, bf16, f16, s8, u8

Data Representation

The reduction primitive works with arbitrary data tensors. There is no special meaning associated with any of the
dimensions of a tensor.

Attributes and Post-ops

Type Operation Description Restrictions
Attribute Scales Sets scale(s) for the corresponding tensor(s) Int8 computations only
Attribute Zero points Sets zero point(s) for the corresponding tensors Int8 computations only
post-op Eltwise Applies an elementwise operation to the result
post-op Binary Applies a binary operation to the result

4.5. Primitives 185

oneAPI Specification, Release 1.4-provisional-rev-1

API

struct reduction : public dnnl::primitive
Reduction.

Public Functions

reduction() = default
Default constructor. Produces an empty object.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a reduction primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &src_desc, const
memory::desc &dst_desc, float p, float eps, const primitive_attr &attr = default_attr(),
bool allow_empty = false)

Constructs a primitive descriptor for a reduction primitive using algorithm specific parameters, source
and destination memory descriptors.

Note: Destination memory descriptor may be initialized with dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aalgorithm – reduction algorithm kind. Possible values: algorithm::reduction_max,

algorithm::reduction_min, algorithm::reduction_sum, algorithm::reduction_mul,
algorithm::reduction_mean, algorithm::reduction_norm_lp_max, algo-
rithm::reduction_norm_lp_sum, algorithm::reduction_norm_lp_power_p_max,
algorithm::reduction_norm_lp_power_p_sum.

• p – algorithm specific parameter.
• eps – algorithm specific parameter.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

4.5. Primitives 186

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

float get_p() const
Returns a reduction P parameter.

Returns
A reduction P parameter.

Returns
Zero if the primitive does not have a reduction P parameter.

float get_epsilon() const
Returns an epsilon.

Returns
An epsilon.

Returns
Zero if the primitive does not have an epsilon parameter.

algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

4.5.15 Reorder

A primitive to copy data between two memory objects. This primitive is typically used to change the way that the data
is laid out in memory.

The reorder primitive copies data between different memory formats but does not change the tensor from mathematical
perspective. Variable names follow the standard Conventions.

dst(𝑥) = src(𝑥)

for 𝑥 = (𝑥0, . . . , 𝑥𝑛).

As described in Introduction in order to achieve the best performance some primitives (such as convolution) require
special memory format which is typically referred to as an optimized memory format. The optimized memory format
may match or may not match memory format that data is currently kept in. In this case a user can use reorder primitive
to copy (reorder) the data between the memory formats.

Using the attributes and post-ops users can also use reorder primitive to quantize the data (and if necessary change the
memory format simultaneously).

4.5. Primitives 187

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_FROM
dst DNNL_ARG_TO

Operation Details

1. The reorder primitive requires the source and destination tensors to have the same shape. Implicit broadcasting
is not supported.

2. While in most of the cases the reorder should be able to handle arbitrary source and destination memory formats
and data types, it might happen than some combinations are not implemented. For instance:

• Reorder implementations between weights in non-plain memory formats might be limited (but if encoun-
tered in real practice should be treated as a bug and reported to oneDNN team);

• Weights in one Winograd format cannot be reordered to the weights of the other Winograd format;

• Quantized weights for convolution with #dnnl_s8 source data type cannot be dequantized back to the
#dnnl_f32 data type;

3. To alleviate the problem a user may rely on fact that the reorder from original plain memory format and user’s
data type to the optimized format with chosen data type should be always implemented.

Data Types Support

The reorder primitive supports arbitrary data types for the source and destination.

When converting the data from one data type to a smaller one saturation is used. For instance:

reorder(src={1024, data_type=f32}, dst={, data_type=s8})
// dst == {127}

reorder(src={-124, data_type=f32}, dst={, data_type=u8})
// dst == {0}

Data Representation

The reorder primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions.

4.5. Primitives 188

oneAPI Specification, Release 1.4-provisional-rev-1

Post-ops and Attributes

The reorder primitive should support the following attributes and post-ops:

Type Operation Description Restrictions
At-
tribute

Scales Sets scale(s) for the corresponding tensor(s) Int8 computations
only

At-
tribute

Zero
points

Sets zero point(s) for the corresponding tensors Int8 computations
only

post-op Sum Adds the operation result to the destination tensor instead of over-
writing it

For instance, the following pseudo-code

reorder(
src = {dims={N, C, H, W}, data_type=dt_src, memory_format=fmt_src},
dst = {dims={N, C, H, W}, data_type=dt_dst, memory_format=fmt_dst},
attr ={

output_scale=alpha,
post-ops = { sum={scale=beta} },

})

would lead to the following operation:

dst(𝑥) = 𝛼 · src(𝑥) + 𝛽 · dst(𝑥)

Note: The intermediate operations are being done using single precision floating point data type.

API

struct reorder : public dnnl::primitive
Reorder primitive.

Public Functions

reorder()

Default constructor. Produces an empty object.

reorder(const primitive_desc &pd)
Constructs a reorder primitive.

Parameters
pd – Primitive descriptor for reorder primitive.

reorder(const memory &src, const memory &dst, const primitive_attr &attr = primitive_attr())
Constructs a reorder primitive that would reorder data between memory objects having the same memory
descriptors as memory objects src and dst.

Parameters

4.5. Primitives 189

oneAPI Specification, Release 1.4-provisional-rev-1

• src – Source memory object.

• dst – Destination memory object.

• attr – Primitive attributes to use (optional).

void execute(const stream &astream, memory &src, memory &dst) const
Executes the reorder primitive.

Parameters

• astream – Stream object. The stream must belong to the same engine as the primitive.

• src – Source memory object.

• dst – Destination memory object.

struct primitive_desc : public dnnl::primitive_desc_base
Primitive descriptor for a reorder primitive.

Public Functions

primitive_desc()

Default constructor. Produces an empty object.

primitive_desc(const engine &src_engine, const memory::desc &src_md, const engine &dst_engine,
const memory::desc &dst_md, const primitive_attr &attr = primitive_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for reorder primitive.

Note: If allow_empty is true, the constructor does not throw if a primitive descriptor cannot be
created.

Parameters
• src_engine – Engine on which the source memory object will be located.
• src_md – Source memory descriptor.
• dst_engine – Engine on which the destination memory object will be located.
• dst_md – Destination memory descriptor.
• attr – Primitive attributes to use (optional).
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const memory &src, const memory &dst, const primitive_attr &attr = primitive_attr(),
bool allow_empty = false)

Constructs a primitive descriptor for reorder primitive.
Parameters

• src – Source memory object. It is used to obtain the source memory descriptor and
engine.

• dst – Destination memory object. It is used to obtain the destination memory descriptor
and engine.

• attr – Primitive attributes to use (optional).
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

4.5. Primitives 190

oneAPI Specification, Release 1.4-provisional-rev-1

engine get_src_engine() const
Returns the engine on which the source memory is allocated.

Returns
The engine on which the source memory is allocated.

engine get_dst_engine() const
Returns the engine on which the destination memory is allocated.

Returns
The engine on which the destination memory is allocated.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

4.5.16 Resampling

The resampling primitive computes forward or backward resampling operation on 1D, 2D, or 3D spatial data. Resam-
pling performs spatial scaling of original tensor using one of the supported interpolation algorithms:

• Nearest Neighbor

• Linear (or Bilinear for 2D spatial tensor, Trilinear for 3D spatial tensor).

Resampling operation is defined by the source tensor and scaling factors in each spatial dimension. Upsampling and
downsampling are the alternative terms for resampling that are used when all scaling factors are greater (upsampling)
or less (downsampling) than one.

The resampling operation is defined by the following formulas. We show formulas only for 2D spatial data which are
straightforward to generalize to cases of higher and lower dimensions. Variable names follow the standard Conventions.

Let src and dst be 𝑁 ×𝐶 × 𝐼𝐻 × 𝐼𝑊 and 𝑁 ×𝐶 ×𝑂𝐻 ×𝑂𝑊 tensors respectively. Let 𝐹ℎ = 𝑂𝐻
𝐼𝐻 and 𝐹𝑤 = 𝑂𝑊

𝐼𝑊
define scaling factors in each spatial dimension.

The following formulas show how oneDNN computes resampling for nearest neighbor and bilinear interpolation meth-
ods. To further simplify the formulas, we assume the following:

• src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = 0 if 𝑖ℎ < 0 or 𝑖𝑤 < 0,

• src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = src(𝑛, 𝑖𝑐, 𝐼𝐻 − 1, 𝑖𝑤) if 𝑖ℎ ≥ 𝐼𝐻 ,

• src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝐼𝑊 − 1) if 𝑖𝑤 ≥ 𝐼𝑊 .

4.5. Primitives 191

oneAPI Specification, Release 1.4-provisional-rev-1

Forward

Nearest Neighbor Resampling

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) = src(𝑛, 𝑐, 𝑖ℎ, 𝑖𝑤)

where

• 𝑖ℎ = [𝑜ℎ+0.5
𝐹ℎ

− 0.5],

• 𝑖𝑤 = [𝑜𝑤+0.5
𝐹𝑤

− 0.5].

Bilinear Resampling

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) = src(𝑛, 𝑐, 𝑖ℎ0, 𝑖𝑤0) ·𝑊𝑖ℎ ·𝑊𝑖𝑤+

src(𝑛, 𝑐, 𝑖ℎ1, 𝑖𝑤0) · (1−𝑊𝑖ℎ) ·𝑊𝑖𝑤+

src(𝑛, 𝑐, 𝑖ℎ0, 𝑖𝑤1) ·𝑊𝑖ℎ · (1−𝑊𝑖𝑤)+

src(𝑛, 𝑐, 𝑖ℎ1, 𝑖𝑤1) · (1−𝑊𝑖ℎ) · (1−𝑊𝑖𝑤)

where

• 𝑖ℎ0 =
⌊︁
𝑜ℎ+0.5

𝐹ℎ
− 0.5

⌋︁
,

• 𝑖ℎ1 =
⌈︁
𝑜ℎ+0.5

𝐹ℎ
− 0.5

⌉︁
,

• 𝑖𝑤0 =
⌊︁
𝑜𝑤+0.5

𝐹𝑤
− 0.5

⌋︁
,

• 𝑖𝑤1 =
⌈︁
𝑜𝑤+0.5

𝐹𝑤
− 0.5

⌉︁
,

• 𝑊𝑖ℎ = 𝑜ℎ+0.5
𝐹ℎ

− 0.5− 𝑖ℎ0,

• 𝑊𝑖𝑤 = 𝑜𝑤+0.5
𝐹𝑤

− 0.5− 𝑖𝑤0.

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src based on diff_dst.

4.5. Primitives 192

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. Resampling implementation supports data with arbitrary data tag (nchw, nhwc, etc.) but memory tags for src
and dst are expected to be the same. Resampling primitive supports dst and diff_src memory tag any and
can define destination format based on source format.

2. Resampling descriptor can be created by specifying the source and destination memory descriptors, only the
source descriptor and floating point factors, or the source and destination memory descriptors and factors. In
case when user does not provide the destination descriptor, the destination dimensions are deduced using the
factors: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒 =

⌊︁
𝑖𝑛𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒

𝐹

⌋︁
.

Note: Resampling algorithm uses factors as defined by the relation 𝐹 = 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒
𝑖𝑛𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒 that do not necessarily

equal to the ones passed by the user.

Data Types Support

Resampling primitive supports the following combination of data types for source and destination memory objects.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward f32, bf16
forward f16, s8, u8

Post-ops and Attributes

The resampling primitive does not support any post-ops or attributes.

4.5. Primitives 193

oneAPI Specification, Release 1.4-provisional-rev-1

API

struct resampling_forward : public dnnl::primitive
Resampling forward propagation.

Public Functions

resampling_forward()

Default constructor. Produces an empty object.

resampling_forward(const primitive_desc &pd)
Constructs a resampling forward propagation primitive.

Parameters
pd – Primitive descriptor for a resampling forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a resampling forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &dst_desc, const primitive_attr &attr
= default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a resampling forward propagation primitive using source and
destination memory descriptors.

Note: Destination memory descriptor may be initialized with dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
std::vector<float> &factors, const memory::desc &src_desc, const primitive_attr
&attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a resampling forward propagation primitive using source memory
descriptor and factors.

4.5. Primitives 194

oneAPI Specification, Release 1.4-provisional-rev-1

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• factors – Vector of scaling factors for spatial dimension.
• src_desc – Source memory descriptor.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
std::vector<float> &factors, const memory::desc &src_desc, const memory::desc
&dst_desc, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a resampling forward propagation primitive.

Note: The destination memory descriptor may be initialized with dnnl::memory::format_tag::any
value of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• factors – Vector of scaling factors for spatial dimension.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

struct resampling_backward : public dnnl::primitive
Resampling backward propagation primitive.

4.5. Primitives 195

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

resampling_backward()

Default constructor. Produces an empty object.

resampling_backward(const primitive_desc &pd)
Constructs a resampling backward propagation primitive.

Parameters
pd – Primitive descriptor for a resampling backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for resampling backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const resampling_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a resampling backward propagation primitive using source and
destination memory descriptors.

Parameters
• aengine – Engine to use.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• hint_fwd_pd – Primitive descriptor for a resampling forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, algorithm aalgorithm, const std::vector<float> &factors, const
memory::desc &diff_src_desc, const memory::desc &diff_dst_desc, const
resampling_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for resampling backward propagation primitive.
Parameters

• aengine – Engine to use.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• factors – Vector of scaling factors for spatial dimension.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• hint_fwd_pd – Primitive descriptor for a resampling forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.

4.5. Primitives 196

oneAPI Specification, Release 1.4-provisional-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

4.5.17 RNN

The RNN primitive computes a stack of unrolled recurrent cells, as depicted in Figure 1. bias, src_iter and dst_iter are
optional parameters. If not provided, bias and src_iter default to 0. Variable names follow the standard Conventions.

The RNN primitive supports four modes for evaluation direction:

• left2right will process the input data timestamps by increasing order,

• right2left will process the input data timestamps by decreasing order,

• bidirectional_concat will process all the stacked layers from left2right and from right2left indepen-
dently, and will concatenate the output in dst_layer over the channel dimension,

• bidirectional_sum will process all the stacked layers from left2right and from right2left indepen-
dently, and will sum the two outputs to dst_layer.

Even though the RNN primitive supports passing a different number of channels for src_layer, src_iter, dst_layer,
and dst_iter, we always require the following conditions in order for the dimension to be consistent:

• 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_layer) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter),

• when 𝑇 > 1, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(src_iter) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter),

• when 𝐿 > 1, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(src_layer) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_layer),

• when using the bidirectional_concat direction, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_layer) = 2 * 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter).

4.5. Primitives 197

oneAPI Specification, Release 1.4-provisional-rev-1

The general formula for the execution of a stack of unrolled recurrent cells depends on the current iteration of the
previous layer (ℎ𝑡,𝑙−1 and 𝑐𝑡,𝑙−1) and the previous iteration of the current layer (ℎ𝑡−1,𝑙). Here is the exact equation for
non-LSTM cells:

ℎ𝑡,𝑙 = 𝐶𝑒𝑙𝑙(ℎ𝑡,𝑙−1, ℎ𝑡−1,𝑙)

where 𝑡, 𝑙 are the indices of the timestamp and the layer of the cell being executed.

And here is the equation for LSTM cells:

(ℎ𝑡,𝑙, 𝑐𝑡,𝑙) = 𝐶𝑒𝑙𝑙(ℎ𝑡,𝑙−1, ℎ𝑡−1,𝑙, 𝑐𝑡−1,𝑙)

where 𝑡, 𝑙 are the indices of the timestamp and the layer of the cell being executed.

Cell Functions

The RNN API provides six cell functions:

• Vanilla RNN , a single-gate recurrent cell,

• LSTM, a four-gate long short-term memory cell,

• GRU, a three-gate gated recurrent unit cell,

• Linear-before-reset GRU, a three-gate recurrent unit cell with the linear layer before the reset gate.

• AUGRU, a three-gate gated recurrent unit cell with the attention update gate,

• Linear-before-reset AUGRU, a three-gate recurrent unit cell with the linear layer before the reset gate and the
attention update gate.

Vanilla RNN

A single-gate recurrent cell initialized with dnnl::vanilla_rnn_forward::primitive_desc or
dnnl::vanilla_rnn_forward::primitive_desc as in the following example.

auto vanilla_rnn_pd =
dnnl::vanilla_rnn_forward::primitive_desc(engine, aprop,
activation, direction, src_layer_desc, src_iter_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_desc, attr);

The Vanilla RNN cell should support the ReLU, Tanh and Sigmoid activation functions. The following equations
defines the mathematical operation performed by the Vanilla RNN cell for the forward pass:

𝑎𝑡 = 𝑊 · ℎ𝑡,𝑙−1 + 𝑈 · ℎ𝑡−1,𝑙 +𝐵

ℎ𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑎𝑡)

4.5. Primitives 198

oneAPI Specification, Release 1.4-provisional-rev-1

LSTM

LSTM (or Vanilla LSTM)

A four-gate long short-term memory recurrent cell initialized with dnnl::lstm_forward::primitive_desc or
dnnl::lstm_backward::primitive_desc as in the following example.

auto lstm_pd = dnnl::lstm_forward::primitive_desc(engine, aprop,
direction, src_layer_desc, src_iter_h_desc, src_iter_c_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_h_desc, dst_iter_c_desc, attr);

Note that for all tensors with a dimension depending on the gates number, we implicitly require the order of these gates
to be 𝑖, 𝑓 , 𝑐, and 𝑜. The following equation gives the mathematical description of these gates and output for the forward
pass:

𝑖𝑡 = 𝜎(𝑊𝑖 · ℎ𝑡,𝑙−1 + 𝑈𝑖 · ℎ𝑡−1,𝑙 +𝐵𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 · ℎ𝑡,𝑙−1 + 𝑈𝑓 · ℎ𝑡−1,𝑙 +𝐵𝑓)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · ℎ𝑡,𝑙−1 + 𝑈𝑐 · ℎ𝑡−1,𝑙 +𝐵𝑐)

𝑐𝑡 = 𝑓𝑡 * 𝑐𝑡−1 + 𝑖𝑡 * 𝑐𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · ℎ𝑡−1,𝑙 +𝐵𝑜)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡) * 𝑜𝑡

where 𝑊* are stored in weights_layer, 𝑈* are stored in weights_iter and 𝐵* are stored in bias.

Note: In order for the dimensions to be consistent, we require 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(src_iter_c) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter_c) =
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter).

LSTM with Peephole

A four-gate long short-term memory recurrent cell with peephole initialized with
dnnl::lstm_forward::primitive_desc or dnnl::lstm_backward::primitive_desc as in the follow-
ing example.

auto lstm_pd = dnnl::lstm_forward::primitive_desc(engine, aprop,
direction, src_layer_desc, src_iter_h_desc, src_iter_c_desc,
weights_layer_desc, weights_iter_desc, weights_peephole_desc,
bias_desc, dst_layer_desc, dst_iter_h_desc, dst_iter_c_desc,
attr);

Similarly to vanilla LSTM, we implicitly require the order of these gates to be 𝑖, 𝑓 , 𝑐, and 𝑜. For peephole weights, the
gates order is:math:i, 𝑓 , 𝑜. The following equation gives the mathematical description of these gates and output for the

4.5. Primitives 199

oneAPI Specification, Release 1.4-provisional-rev-1

forward pass:

𝑖𝑡 = 𝜎(𝑊𝑖 · ℎ𝑡,𝑙−1 + 𝑈𝑖 · ℎ𝑡−1,𝑙 + 𝑃𝑖 · 𝑐𝑡−1 +𝐵𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 · ℎ𝑡,𝑙−1 + 𝑈𝑓 · ℎ𝑡−1,𝑙 + 𝑃𝑓 · 𝑐𝑡−1 +𝐵𝑓)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · ℎ𝑡,𝑙−1 + 𝑈𝑐 · ℎ𝑡−1,𝑙 +𝐵𝑐)

𝑐𝑡 = 𝑓𝑡 * 𝑐𝑡−1 + 𝑖𝑡 * 𝑐𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · ℎ𝑡−1,𝑙 + 𝑃𝑜 · 𝑐𝑡 +𝐵𝑜)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡) * 𝑜𝑡

where 𝑃* are stored in weights_peephole, and the other parameters are the same as in vanilla LSTM.

Note: If the weights_peephole_desc passed to the primitive descriptor constructor is a zero memory descriptor,
the primitive will behave the same as in LSTM primitive without peephole.

LSTM with Projection

A four-gate long short-term memory recurrent cell with projection initialized with
dnnl::lstm_forward::primitive_desc or dnnl::lstm_backward::primitive_desc as in the follow-
ing example.

auto lstm_pd = dnnl::lstm_forward::primitive_desc(engine, aprop,
direction, src_layer_desc, src_iter_h_desc, src_iter_c_desc,
weights_layer_desc, weights_iter_desc, weights_peephole_desc,
weights_projection_desc, bias_desc, dst_layer_desc,
dst_iter_h_desc, dst_iter_c_desc, attr);

Similarly to vanilla LSTM, we implicitly require the order of the gates to be i, 𝑓 , 𝑐, and 𝑜 for all tensors with a dimension
depending on the gates. The following equation gives the mathematical description of these gates and output for the
forward pass (for simplicity, LSTM without peephole is shown):

𝑖𝑡 = 𝜎(𝑊𝑖 · ℎ𝑡,𝑙−1 + 𝑈𝑖 · ℎ𝑡−1,𝑙 +𝐵𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 · ℎ𝑡,𝑙−1 + 𝑈𝑓 · ℎ𝑡−1,𝑙 +𝐵𝑓)

𝑐𝑡 = tanh(𝑊𝑐 · ℎ𝑡,𝑙−1 + 𝑈𝑐 · ℎ𝑡−1,𝑙 +𝐵𝑐)

𝑐𝑡 = 𝑓𝑡 * 𝑐𝑡−1 + 𝑖𝑡 * 𝑐𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · ℎ𝑡−1,𝑙 +𝐵𝑜)

ℎ𝑡 = 𝑅 · (tanh(𝑐𝑡) * 𝑜𝑡)

where 𝑅 is stored in weights_projection, and the other parameters are the same as in vanilla LSTM.

Note: If the weights_projection_desc passed to the primitive descriptor constructor is a zero memory descriptor,
the primitive will behave the same as in LSTM primitive without projection.

4.5. Primitives 200

oneAPI Specification, Release 1.4-provisional-rev-1

GRU

A three-gate gated recurrent unit cell, initialized with dnnl::gru_forward::primitive_desc or
dnnl::gru_backward::primitive_desc as in the following example.

auto gru_pd = dnnl::gru_forward::primitive_desc(engine, aprop,
direction, src_layer_desc, src_iter_desc, weights_layer_desc,
weights_iter_desc, bias_desc, dst_layer_desc, dst_iter_desc,
attr);

Note that for all tensors with a dimension depending on the gates number, we implicitly require the order of these gates
to be:math:u, 𝑟, and 𝑜. The following equation gives the mathematical definition of these gates.

𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 +𝐵𝑢)

𝑟𝑡 = 𝜎(𝑊𝑟 · ℎ𝑡,𝑙−1 + 𝑈𝑟 · ℎ𝑡−1,𝑙 +𝐵𝑟)

𝑜𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · (𝑟𝑡 * ℎ𝑡−1,𝑙) +𝐵𝑜)

ℎ𝑡 = 𝑢𝑡 * ℎ𝑡−1,𝑙 + (1− 𝑢𝑡) * 𝑜𝑡

where 𝑊* are in weights_layer, 𝑈* are in weights_iter, and 𝐵* are stored in bias.

Note: If you need to replace 𝑢𝑡 by (1− 𝑢𝑡) when computing ℎ𝑡, you can achieve this by multiplying 𝑊𝑢, 𝑈𝑢 and 𝐵𝑢

by −1. This is possible as 𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 +𝐵𝑢), and 1˘𝜎(𝑎) = 𝜎(−𝑎).

Linear-Before-Reset GRU

A three-gate gated recurrent unit cell with linear layer applied before the reset gate, initialized with
dnnl::lbr_gru_forward::primitive_desc or dnnl::lbr_gru_backward::primitive_desc as in the follow-
ing example.

auto lbr_gru_pd = dnnl::lbr_gru_forward::primitive_desc(engine,
aprop, direction, src_layer_desc, src_iter_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_desc, attr);

The following equation describes the mathematical behavior of the Linear-Before-Reset GRU cell.

𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 +𝐵𝑢)

𝑟𝑡 = 𝜎(𝑊𝑟 · ℎ𝑡,𝑙−1 + 𝑈𝑟 · ℎ𝑡−1,𝑙 +𝐵𝑟)

𝑜𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑟𝑡 * (𝑈𝑜 · ℎ𝑡−1,𝑙 +𝐵𝑢′) +𝐵𝑜)

ℎ𝑡 = 𝑢𝑡 * ℎ𝑡−1,𝑙 + (1− 𝑢𝑡) * 𝑜𝑡

Note that for all tensors with a dimension depending on the gates number, except the bias, we implicitly require the
order of these gates to be 𝑢, 𝑟, and 𝑜. For the bias tensor, we implicitly require the order of the gates to be 𝑢, 𝑟, 𝑜, and
𝑢′.

Note: If you need to replace 𝑢𝑡 by (1− 𝑢𝑡) when computing ℎ𝑡, you can achieve this by multiplying 𝑊𝑢, 𝑈𝑢 and 𝐵𝑢

by −1. This is possible as 𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 +𝐵𝑢), and 1˘𝜎(𝑎) = 𝜎(−𝑎).

4.5. Primitives 201

oneAPI Specification, Release 1.4-provisional-rev-1

AUGRU

A three-gate gated recurrent unit cell, initialized with dnnl::augru_forward::primitive_desc or
dnnl::augru_backward::primitive_desc as in the following example.

auto augru_pd = dnnl::augru_forward::primitive_desc(engine, aprop,
direction, src_layer_desc, src_iter_desc, attention_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_desc, attr);

Note that for all tensors with a dimension depending on the gate number, we implicitly require the order of these gates
to be 𝑢, 𝑟, and 𝑜. The following equation gives the mathematical definition of these gates.

𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 +𝐵𝑢)

𝑟𝑡 = 𝜎(𝑊𝑟 · ℎ𝑡,𝑙−1 + 𝑈𝑟 · ℎ𝑡−1,𝑙 +𝐵𝑟)

𝑜𝑡 = tanh(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · (𝑟𝑡 * ℎ𝑡−1,𝑙) +𝐵𝑜)

�̃�𝑡 = (1− 𝑎𝑡) * 𝑢𝑡

ℎ𝑡 = �̃�𝑡 * ℎ𝑡−1,𝑙 + (1− �̃�𝑡) * 𝑜𝑡

where 𝑊* are in weightslayer, 𝑈* are in weightsiter, and 𝐵* are stored in bias.

Linear-Before-Reset AUGRU

A three-gate gated recurrent unit cell with linear layer applied before the reset gate, initialized with
dnnl::lbr_augru_forward::primitive_desc or dnnl::lbr_augru_backward::primitive_desc as in the
following example.

auto lbr_augru_pd =
dnnl::lbr_augru_forward::primitive_desc(engine, aprop,
direction, src_layer_desc, src_iter_desc, attention_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_desc, attr);

The following equation describes the mathematical behavior of the Linear-Before-Reset AUGRU cell.

𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 +𝐵𝑢)

𝑟𝑡 = 𝜎(𝑊𝑟 · ℎ𝑡,𝑙−1 + 𝑈𝑟 · ℎ𝑡−1,𝑙 +𝐵𝑟)

𝑜𝑡 = tanh(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑟𝑡 * (𝑈𝑜 · ℎ𝑡−1,𝑙 +𝐵𝑢′) +𝐵𝑜)

�̃�𝑡 = (1− 𝑎𝑡) * 𝑢𝑡

ℎ𝑡 = �̃�𝑡 * ℎ𝑡−1,𝑙 + (1− �̃�𝑡) * 𝑜𝑡

Note that for all tensors with a dimension depending on the gate number, except the bias, we implicitly require the order
of these gates to be 𝑢, 𝑟, and 𝑜. For the bias tensor, we implicitly require the order of the gates to be 𝑢, 𝑟, 𝑜, and 𝑢′.

4.5. Primitives 202

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src_layer DNNL_ARG_SRC_LAYER
src_iter DNNL_ARG_SRC_ITER
src_iter_c DNNL_ARG_SRC_ITER_C
weights_layer DNNL_ARG_WEIGHTS_LAYER
weights_iter DNNL_ARG_WEIGHTS_ITER
weights_peephole DNNL_ARG_WEIGHTS_PEEPHOLE
weights_projection DNNL_ARG_WEIGHTS_PROJECTION
bias DNNL_ARG_BIAS
dst_layer DNNL_ARG_DST_LAYER
dst_iter DNNL_ARG_DST_ITER
dst_iter_c DNNL_ARG_DST_ITER_C
workspace DNNL_ARG_WORKSPACE
diff_src_layer DNNL_ARG_DIFF_SRC_LAYER
diff_src_iter DNNL_ARG_DIFF_SRC_ITER
diff_src_iter_c DNNL_ARG_DIFF_SRC_ITER_C
diff_weights_layer DNNL_ARG_DIFF_WEIGHTS_LAYER
diff_weights_iter DNNL_ARG_DIFF_WEIGHTS_ITER
diff_weights_peephole DNNL_ARG_DIFF_WEIGHTS_PEEPHOLE
diff_weights_projection DNNL_ARG_DIFF_WEIGHTS_PROJECTION
diff_bias DNNL_ARG_DIFF_BIAS
diff_dst_layer DNNL_ARG_DIFF_DST_LAYER
diff_dst_iter DNNL_ARG_DIFF_DST_ITER
diff_dst_iter_c DNNL_ARG_DIFF_DST_ITER_C

Operation Details

N/A

Data Types Support

The following table lists the combination of data types that should be supported by the RNN primitive for each input
and output memory object.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Cell Function Input Data Recurrent Data (1) Weights Bias Output Data
Forward / Backward All f32 f32 f32 f32 f32
Forward / Backward (2) All (3) bf16 bf16 bf16 f32 bf16
Forward All (3) f16 f16 f16 f16 f16
Forward inference Vanilla LSTM u8 u8 s8 f32 u8, f32

(1) With LSTM and Peephole LSTM cells, the cell state data type is always f32.

4.5. Primitives 203

oneAPI Specification, Release 1.4-provisional-rev-1

(2) In backward propagation, all diff_* tensors are in f32.

(3) Projection LSTM is not defined yet.

Data Representation

In the oneDNN programming model, the RNN primitive is one of a few that support the placeholder memory format
#dnnl::memory::format_tag::any (shortened to any from now on) and can define data and weight memory objects
format based on the primitive parameters.

The following table summarizes the data layouts supported by the RNN primitive.

Input/Output
Data

Recurrent
Data

Layer and Iteration
Weights

Peephole Weights
and Bias

Projection LSTM
Weights

any any any ldgo any, ldio (Forward prop-
agation)

ntc, tnc ldnc ldigo, ldgoi ldgo any, ldio (Forward prop-
agation)

While an RNN primitive can be created with memory formats specified explicitly, the performance is likely to be sub-
optimal. When using any it is necessary to first create an RNN primitive descriptor and then query it for the actual
data and weight memory objects formats.

Note: The RNN primitive should support padded tensors and views. So even if two memory descriptors share the
same data layout, they might still be different.

Post-ops and Attributes

Currently post-ops and attributes are only used by the int8 variant of LSTM.

API

enum class dnnl::rnn_flags : unsigned
RNN cell flags.

Values:

enumerator undef
Undefined RNN flags.

enum class dnnl::rnn_direction
A direction of RNN primitive execution.

Values:

enumerator undef
Undefined RNN direction.

4.5. Primitives 204

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator unidirectional_left2right
Unidirectional execution of RNN primitive from left to right.

enumerator unidirectional_right2left
Unidirectional execution of RNN primitive from right to left.

enumerator bidirectional_concat
Bidirectional execution of RNN primitive with concatenation of the results.

enumerator bidirectional_sum
Bidirectional execution of RNN primitive with summation of the results.

enumerator unidirectional
Alias for dnnl::rnn_direction::unidirectional_left2right.

struct vanilla_rnn_forward : public dnnl::primitive
Vanilla RNN forward propagation primitive.

Public Functions

vanilla_rnn_forward()

Default constructor. Produces an empty object.

vanilla_rnn_forward(const primitive_desc &pd)
Constructs a vanilla RNN forward propagation primitive.

Parameters
pd – Primitive descriptor for a vanilla RNN forward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for a vanilla RNN forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm activation, rnn_direction
direction, const memory::desc &src_layer_desc, const memory::desc &src_iter_desc,
const memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc,
const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, const primitive_attr &attr = default_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for a vanilla RNN forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc,
• bias_desc,
• dst_iter_desc.

4.5. Primitives 205

oneAPI Specification, Release 1.4-provisional-rev-1

This would then indicate that the RNN forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors except src_iter_desc can be initialized with an
dnnl::memory::format_tag::any value of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• activation – Activation kind. Possible values are dnnl::algorithm::eltwise_relu,

dnnl::algorithm::eltwise_tanh, or dnnl::algorithm::eltwise_logistic.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm activation, rnn_direction
direction, const memory::desc &src_layer_desc, const memory::desc &src_iter_desc,
const memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc,
const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, float alpha, const primitive_attr &attr = default_attr(),
bool allow_empty = false)

Constructs a primitive descriptor for a vanilla RNN forward propagation primitive with alpha param-
eter.

The following arguments may point to a zero memory descriptor:
• src_iter_desc,
• bias_desc,
• dst_iter_desc.

This would then indicate that the RNN forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors except src_iter_desc can be initialized with an
dnnl::memory::format_tag::any value of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• activation – Activation kind. Possible values are dnnl::algorithm::eltwise_relu,

dnnl::algorithm::eltwise_tanh, or dnnl::algorithm::eltwise_logistic.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.

4.5. Primitives 206

oneAPI Specification, Release 1.4-provisional-rev-1

• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• alpha – Negative slope if activation is dnnl::algorithm::eltwise_relu.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

4.5. Primitives 207

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

algorithm get_activation_kind() const
Returns an RNN activation kind parameter.

Returns
An RNN activation kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN activation kind parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

float get_alpha() const
Returns an alpha.

Returns
An alpha.

Returns
Zero if the primitive does not have an alpha parameter.

float get_beta() const
Returns a beta.

Returns
A beta.

Returns
Zero if the primitive does not have a beta parameter.

struct vanilla_rnn_backward : public dnnl::primitive
Vanilla RNN backward propagation primitive.

4.5. Primitives 208

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

vanilla_rnn_backward()

Default constructor. Produces an empty object.

vanilla_rnn_backward(const primitive_desc &pd)
Constructs a vanilla RNN backward propagation primitive.

Parameters
pd – Primitive descriptor for a vanilla RNN backward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an RNN backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm activation, rnn_direction
direction, const memory::desc &src_layer_desc, const memory::desc &src_iter_desc,
const memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc,
const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, const memory::desc &diff_src_layer_desc, const
memory::desc &diff_src_iter_desc, const memory::desc &diff_weights_layer_desc,
const memory::desc &diff_weights_iter_desc, const memory::desc &diff_bias_desc,
const memory::desc &diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc,
const vanilla_rnn_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr
= default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a vanilla RNN backward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with diff_src_iter_desc,
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with diff_dst_iter_desc.

This would then indicate that the RNN backward propagation primitive should not use the respective
data and should use zero values instead.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• activation – Activation kind. Possible values are dnnl::algorithm::eltwise_relu,

dnnl::algorithm::eltwise_tanh, or dnnl::algorithm::eltwise_logistic.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.

4.5. Primitives 209

oneAPI Specification, Release 1.4-provisional-rev-1

• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• hint_fwd_pd – Primitive descriptor for a vanilla RNN forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm activation, rnn_direction
direction, const memory::desc &src_layer_desc, const memory::desc &src_iter_desc,
const memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc,
const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, const memory::desc &diff_src_layer_desc, const
memory::desc &diff_src_iter_desc, const memory::desc &diff_weights_layer_desc,
const memory::desc &diff_weights_iter_desc, const memory::desc &diff_bias_desc,
const memory::desc &diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc,
float alpha, const vanilla_rnn_forward::primitive_desc &hint_fwd_pd, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a vanilla RNN backward propagation primitive with an alpha
parameter.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with diff_src_iter_desc,
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with diff_dst_iter_desc.

This would then indicate that the RNN backward propagation primitive should not use the respective
data and should use zero values instead.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• activation – Activation kind. Possible values are dnnl::algorithm::eltwise_relu,

dnnl::algorithm::eltwise_tanh, or dnnl::algorithm::eltwise_logistic.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.

4.5. Primitives 210

oneAPI Specification, Release 1.4-provisional-rev-1

• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• alpha – Negative slope if activation is dnnl::algorithm::eltwise_relu.
• hint_fwd_pd – Primitive descriptor for a vanilla RNN forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

4.5. Primitives 211

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns
Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns
Diff source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source iteration parameter.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns
Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns
Diff weights iteration memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns
Diff bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns
Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns
Diff destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination iteration param-
eter.

4.5. Primitives 212

oneAPI Specification, Release 1.4-provisional-rev-1

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

algorithm get_activation_kind() const
Returns an RNN activation kind parameter.

Returns
An RNN activation kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN activation kind parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

float get_alpha() const
Returns an alpha.

Returns
An alpha.

Returns
Zero if the primitive does not have an alpha parameter.

float get_beta() const
Returns a beta.

Returns
A beta.

Returns
Zero if the primitive does not have a beta parameter.

struct lstm_forward : public dnnl::primitive
LSTM forward propagation primitive.

4.5. Primitives 213

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

lstm_forward()

Default constructor. Produces an empty object.

lstm_forward(const primitive_desc &pd)
Constructs an LSTM forward propagation primitive.

Parameters
pd – Primitive descriptor for an LSTM forward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an LSTM forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &src_iter_c_desc, const memory::desc &weights_layer_desc, const
memory::desc &weights_iter_desc, const memory::desc &weights_peephole_desc,
const memory::desc &weights_projection_desc, const memory::desc &bias_desc,
const memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const
memory::desc &dst_iter_c_desc, const primitive_attr &attr = default_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for an LSTM (with or without peephole and with or without projec-
tion) forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc,
• weights_peephole_desc,
• bias_desc,
• dst_iter_desc together with dst_iter_c_desc.

This would then indicate that the LSTM forward propagation primitive should not use them and should
default to zero values instead.

The weights_projection_desc may point to a zero memory descriptor. This would then indicate
that the LSTM doesn’t have recurrent projection layer.

Note: All memory descriptors can be initialized with an dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.

4.5. Primitives 214

oneAPI Specification, Release 1.4-provisional-rev-1

• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-
put.

• weights_peephole_desc – Memory descriptor for the weights applied to the cell states
(according to the Peephole LSTM formula).

• weights_projection_desc – Memory descriptor for the weights applied to the hidden
states to get the recurrent projection (according to the Projection LSTM formula).

• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &src_iter_c_desc, const memory::desc &weights_layer_desc, const
memory::desc &weights_iter_desc, const memory::desc &weights_peephole_desc,
const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, const memory::desc &dst_iter_c_desc, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for an LSTM (with or without peephole) forward propagation prim-
itive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc,
• weights_peephole_desc,
• bias_desc,
• dst_iter_desc together with dst_iter_c_desc.

This would then indicate that the LSTM forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors can be initialized with an dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• weights_peephole_desc – Memory descriptor for the weights applied to the cell states

(according to the Peephole LSTM formula).
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.

4.5. Primitives 215

oneAPI Specification, Release 1.4-provisional-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &src_iter_c_desc, const memory::desc &weights_layer_desc, const
memory::desc &weights_iter_desc, const memory::desc &bias_desc, const
memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const
memory::desc &dst_iter_c_desc, const primitive_attr &attr = default_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for an LSTM forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc,
• bias_desc,
• dst_iter_desc together with dst_iter_c_desc.

This would then indicate that the LSTM forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors can be initialized with an dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

4.5. Primitives 216

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc src_iter_c_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc weights_peephole_desc() const
Returns weights peephole memory descriptor.

Returns
Weights peephole memory descriptor.

memory::desc weights_projection_desc() const
Returns weights projection memory descriptor.

Returns
Weights projection memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc dst_iter_c_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

4.5. Primitives 217

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

struct lstm_backward : public dnnl::primitive
LSTM backward propagation primitive.

Public Functions

lstm_backward()

Default constructor. Produces an empty object.

lstm_backward(const primitive_desc &pd)
Constructs an LSTM backward propagation primitive.

Parameters
pd – Primitive descriptor for an LSTM backward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an LSTM backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

4.5. Primitives 218

oneAPI Specification, Release 1.4-provisional-rev-1

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &src_iter_c_desc, const memory::desc &weights_layer_desc, const
memory::desc &weights_iter_desc, const memory::desc &weights_peephole_desc,
const memory::desc &weights_projection_desc, const memory::desc &bias_desc,
const memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const
memory::desc &dst_iter_c_desc, const memory::desc &diff_src_layer_desc, const
memory::desc &diff_src_iter_desc, const memory::desc &diff_src_iter_c_desc, const
memory::desc &diff_weights_layer_desc, const memory::desc
&diff_weights_iter_desc, const memory::desc &diff_weights_peephole_desc, const
memory::desc &diff_weights_projection_desc, const memory::desc &diff_bias_desc,
const memory::desc &diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc,
const memory::desc &diff_dst_iter_c_desc, const lstm_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs an LSTM (with or without peephole and with or without projection) primitive descriptor
for backward propagation using prop_kind, direction, and memory descriptors.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc, diff_src_iter_desc, and
diff_src_iter_c_desc,

• weights_peephole_desc together with diff_weights_peephole_desc
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with dst_iter_c_desc, diff_dst_iter_desc, and
diff_dst_iter_c_desc.

This would then indicate that the LSTM backward propagation primitive should not use them and
should default to zero values instead.

The weights_projection_desc together with diff_weights_projection_desc may point to a
zero memory descriptor. This would then indicate that the LSTM doesn’t have recurrent projection
layer.

Note: All memory descriptors can be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• weights_peephole_desc – Memory descriptor for the weights applied to the cell states

(according to the Peephole LSTM formula).
• weights_projection_desc – Memory descriptor for the weights applied to the hidden

states to get the recurrent projection (according to the Projection LSTM formula).
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.

4.5. Primitives 219

oneAPI Specification, Release 1.4-provisional-rev-1

• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state
vector.

• diff_src_iter_c_desc – Memory descriptor for the diff of input recurrent cell state
vector.

• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the
layer input.

• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the
recurrent input.

• diff_weights_peephole_desc – Memory descriptor for the diff of weights applied
to the cell states (according to the Peephole LSTM formula).

• diff_weights_projection_desc – Memory descriptor for the diff of weights applied
to the hidden states to get the recurrent projection (according to the Projection LSTM
formula).

• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• diff_dst_iter_c_desc – Memory descriptor for the diff of output recurrent cell state

vector.
• hint_fwd_pd – Primitive descriptor for an LSTM forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &src_iter_c_desc, const memory::desc &weights_layer_desc, const
memory::desc &weights_iter_desc, const memory::desc &weights_peephole_desc,
const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, const memory::desc &dst_iter_c_desc, const
memory::desc &diff_src_layer_desc, const memory::desc &diff_src_iter_desc, const
memory::desc &diff_src_iter_c_desc, const memory::desc &diff_weights_layer_desc,
const memory::desc &diff_weights_iter_desc, const memory::desc
&diff_weights_peephole_desc, const memory::desc &diff_bias_desc, const
memory::desc &diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc, const
memory::desc &diff_dst_iter_c_desc, const lstm_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs an LSTM (with or without peephole) primitive descriptor for backward propagation using
prop_kind, direction, and memory descriptors.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc, diff_src_iter_desc, and
diff_src_iter_c_desc,

• weights_peephole_desc together with diff_weights_peephole_desc
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with dst_iter_c_desc, diff_dst_iter_desc, and
diff_dst_iter_c_desc.

This would then indicate that the LSTM backward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of

4.5. Primitives 220

oneAPI Specification, Release 1.4-provisional-rev-1

format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• weights_peephole_desc – Memory descriptor for the weights applied to the cell states

(according to the Peephole LSTM formula).
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_src_iter_c_desc – Memory descriptor for the diff of input recurrent cell state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_weights_peephole_desc – Memory descriptor for the diff of weights applied

to the cell states (according to the Peephole LSTM formula).
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• diff_dst_iter_c_desc – Memory descriptor for the diff of output recurrent cell state

vector.
• hint_fwd_pd – Primitive descriptor for an LSTM forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &src_iter_c_desc, const memory::desc &weights_layer_desc, const
memory::desc &weights_iter_desc, const memory::desc &bias_desc, const
memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const
memory::desc &dst_iter_c_desc, const memory::desc &diff_src_layer_desc, const
memory::desc &diff_src_iter_desc, const memory::desc &diff_src_iter_c_desc, const
memory::desc &diff_weights_layer_desc, const memory::desc
&diff_weights_iter_desc, const memory::desc &diff_bias_desc, const memory::desc
&diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc, const memory::desc
&diff_dst_iter_c_desc, const lstm_forward::primitive_desc &hint_fwd_pd, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

4.5. Primitives 221

oneAPI Specification, Release 1.4-provisional-rev-1

Constructs an LSTM primitive descriptor for backward propagation using prop_kind, direction,
and memory descriptors.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc, diff_src_iter_desc, and
diff_src_iter_c_desc,

• bias_desc together with diff_bias_desc,
• dst_iter_desc together with dst_iter_c_desc, diff_dst_iter_desc, and
diff_dst_iter_c_desc.

This would then indicate that the LSTM backward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_src_iter_c_desc – Memory descriptor for the diff of input recurrent cell state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• diff_dst_iter_c_desc – Memory descriptor for the diff of output recurrent cell state

vector.
• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

4.5. Primitives 222

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc src_iter_c_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc weights_peephole_desc() const
Returns weights peephole memory descriptor.

Returns
Weights peephole memory descriptor.

memory::desc weights_projection_desc() const
Returns weights projection memory descriptor.

Returns
Weights projection memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

4.5. Primitives 223

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc dst_iter_c_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns
Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns
Diff source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source iteration parameter.

memory::desc diff_src_iter_c_desc() const
Returns diff source recurrent cell state memory descriptor.

Returns
Diff source recurrent cell state memory descriptor.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns
Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns
Diff weights iteration memory descriptor.

memory::desc diff_weights_peephole_desc() const
Returns diff weights peephole memory descriptor.

Returns
Diff weights peephole memory descriptor.

memory::desc diff_weights_projection_desc() const
Returns diff weights projection memory descriptor.

Returns
Diff weights projection memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns
Diff bias memory descriptor.

4.5. Primitives 224

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns
Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns
Diff destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination iteration param-
eter.

memory::desc diff_dst_iter_c_desc() const
Returns diff destination recurrent cell state memory descriptor.

Returns
Diff destination recurrent cell state memory descriptor.

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

struct gru_forward : public dnnl::primitive
GRU forward propagation primitive.

4.5. Primitives 225

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

gru_forward()

Default constructor. Produces an empty object.

gru_forward(const primitive_desc &pd)
Constructs a GRU forward propagation primitive.

Parameters
pd – Primitive descriptor for a GRU forward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for a GRU forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc, const
memory::desc &bias_desc, const memory::desc &dst_layer_desc, const memory::desc
&dst_iter_desc, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a GRU forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc,
• bias_desc,
• dst_iter_desc.

This would then indicate that the GRU forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors except src_iter_desc may be initialized with an
dnnl::memory::format_tag::any value of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

4.5. Primitives 226

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

4.5. Primitives 227

oneAPI Specification, Release 1.4-provisional-rev-1

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

struct gru_backward : public dnnl::primitive
GRU backward propagation primitive.

Public Functions

gru_backward()

Default constructor. Produces an empty object.

gru_backward(const primitive_desc &pd)
Constructs a GRU backward propagation primitive.

Parameters
pd – Primitive descriptor for a GRU backward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for a GRU backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc, const
memory::desc &bias_desc, const memory::desc &dst_layer_desc, const memory::desc
&dst_iter_desc, const memory::desc &diff_src_layer_desc, const memory::desc
&diff_src_iter_desc, const memory::desc &diff_weights_layer_desc, const
memory::desc &diff_weights_iter_desc, const memory::desc &diff_bias_desc, const
memory::desc &diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc, const
gru_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a GRU backward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with diff_src_iter_desc,
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with diff_dst_iter_desc.

4.5. Primitives 228

oneAPI Specification, Release 1.4-provisional-rev-1

This would then indicate that the GRU backward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• hint_fwd_pd – Primitive descriptor for a GRU forward propagation primitive. It is used

as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

4.5. Primitives 229

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns
Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns
Diff source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source iteration parameter.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns
Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns
Diff weights iteration memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

4.5. Primitives 230

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Diff bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns
Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns
Diff destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination iteration param-
eter.

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

struct lbr_gru_forward : public dnnl::primitive
LBR GRU forward propagation primitive.

Public Functions

lbr_gru_forward()

Default constructor. Produces an empty object.

lbr_gru_forward(const primitive_desc &pd)
Constructs an LBR GRU forward propagation primitive.

Parameters
pd – Primitive descriptor for an LBR GRU forward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an LBR GRU forward propagation primitive.

4.5. Primitives 231

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc, const
memory::desc &bias_desc, const memory::desc &dst_layer_desc, const memory::desc
&dst_iter_desc, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for LBR GRU forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc,
• bias_desc,
• dst_iter_desc.

This would then indicate that the LBR GRU forward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors except src_iter_desc may be initialized with an
dnnl::memory::format_tag::any value of format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

4.5. Primitives 232

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

4.5. Primitives 233

oneAPI Specification, Release 1.4-provisional-rev-1

struct lbr_gru_backward : public dnnl::primitive
LBR GRU backward propagation primitive.

Public Functions

lbr_gru_backward()

Default constructor. Produces an empty object.

lbr_gru_backward(const primitive_desc &pd)
Constructs an LBR GRU backward propagation primitive.

Parameters
pd – Primitive descriptor for an LBR GRU backward propagation primitive.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an LBR GRU backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, rnn_direction direction, const
memory::desc &src_layer_desc, const memory::desc &src_iter_desc, const
memory::desc &weights_layer_desc, const memory::desc &weights_iter_desc, const
memory::desc &bias_desc, const memory::desc &dst_layer_desc, const memory::desc
&dst_iter_desc, const memory::desc &diff_src_layer_desc, const memory::desc
&diff_src_iter_desc, const memory::desc &diff_weights_layer_desc, const
memory::desc &diff_weights_iter_desc, const memory::desc &diff_bias_desc, const
memory::desc &diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc, const
gru_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for LBR GRU backward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with diff_src_iter_desc,
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with diff_dst_iter_desc.

This would then indicate that the LBR GRU backward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aengine – Engine to use.
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.

4.5. Primitives 234

oneAPI Specification, Release 1.4-provisional-rev-1

• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-
put.

• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• hint_fwd_pd – Primitive descriptor for an LBR GRU forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns
Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns
Source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns
Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns
Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns
Bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns
Destination layer memory descriptor.

4.5. Primitives 235

oneAPI Specification, Release 1.4-provisional-rev-1

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns
Destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns
Workspace memory descriptor.

Returns
A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns
Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns
Diff source iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source iteration parameter.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns
Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns
Diff weights iteration memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns
Diff bias memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns
Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns
Diff destination iteration memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination iteration param-
eter.

4.5. Primitives 236

oneAPI Specification, Release 1.4-provisional-rev-1

algorithm get_cell_kind() const
Returns an RNN cell kind parameter.

Returns
An RNN cell kind parameter.

Returns
dnnl::algorithm::undef if the primitive does not have an RNN cell kind parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

rnn_direction get_direction() const
Returns an RNN direction parameter.

Returns
An RNN direction parameter.

Returns
dnnl::rnn_direction::undef if the primitive does not have an RNN direction parameter.

4.5.18 Shuffle

The shuffle primitive shuffles data along the shuffle axis (here is designated as 𝐶) with the group parameter 𝐺. Namely,
the shuffle axis is thought to be a 2D tensor of size (𝐶𝐺 × 𝐺) and it is being transposed to (𝐺 × 𝐶

𝐺). Variable names
follow the standard Conventions.

The formal definition is shown below:

Forward

dst(𝑜𝑢, 𝑐, 𝑖𝑛) = src(𝑜𝑢, 𝑐′, 𝑖𝑛)

where

• 𝑐 dimension is called a shuffle axis,

• 𝐺 is a group_size,

• 𝑜𝑢 is the outermost indices (to the left from shuffle axis),

• 𝑖𝑛 is the innermost indices (to the right from shuffle axis), and

• 𝑐′ and 𝑐 relate to each other as define by the system:{︃
𝑐 = 𝑢+ 𝑣 · 𝐶𝐺 ,

𝑐′ = 𝑢 ·𝐺+ 𝑣,

Here, 0 ≤ 𝑢 < 𝐶
𝐺 and 0 ≤ 𝑣 < 𝐺.

4.5. Primitives 237

oneAPI Specification, Release 1.4-provisional-rev-1

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src(𝑜𝑢, 𝑐, 𝑖𝑛), based on diff_dst(𝑜𝑢, 𝑐, 𝑖𝑛).

Essentially, backward propagation is the same as forward propagation with 𝑔 replaced by 𝐶/𝑔.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

Data Types Support

The shuffle primitive supports the following combinations of data types:

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward f32, bf16
forward s32, s8, u8

Data Layouts

The shuffle primitive works with arbitrary data tensors. There is no special meaning associated with any logical di-
mensions. However, the shuffle axis is typically referred to as channels (hence in formulas we use 𝑐).

Shuffle operation typically appear in CNN topologies. Hence, in the library the shuffle primitive is optimized for the
corresponding memory formats:

Spatial Logical tensor Shuffle Axis Implementations optimized for memory formats
2D NCHW 1 (C) nchw (abcd), nhwc (acdb), optimized^
3D NCDHW 1 (C) ncdhw (abcde), ndhwc (acdeb), optimized^

4.5. Primitives 238

oneAPI Specification, Release 1.4-provisional-rev-1

Here optimized^ means the format that comes out of any preceding compute-intensive primitive.

Post-ops and Attributes

The shuffle primitive does not have to support any post-ops or attributes.

API

struct shuffle_forward : public dnnl::primitive
Shuffle forward propagation primitive.

Public Functions

shuffle_forward()

Default constructor. Produces an empty object.

shuffle_forward(const primitive_desc &pd)
Constructs a shuffle forward propagation primitive.

Parameters
pd – Primitive descriptor for a shuffle forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a shuffle forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, const memory::desc &src_desc, const
memory::desc &dst_desc, int axis, int group_size, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a shuffle forward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• axis – The axis along which the data is shuffled.
• group_size – Shuffle group size.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

4.5. Primitives 239

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

int get_axis() const
Returns an axis.

Returns
An axis.

Returns
A negative number if the primitive does not have an axis parameter.

memory::dim get_group_size() const
Returns a shuffle group size parameter.

Returns
A shuffle group size parameter.

Returns
Zero if the primitive does not have a shuffle group size parameter.

struct shuffle_backward : public dnnl::primitive
Shuffle backward propagation primitive.

Public Functions

shuffle_backward()

Default constructor. Produces an empty object.

shuffle_backward(const primitive_desc &pd)
Constructs a shuffle backward propagation primitive.

Parameters
pd – Primitive descriptor for a shuffle backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a shuffle backward propagation primitive.

4.5. Primitives 240

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, const memory::desc &diff_src_desc, const memory::desc
&diff_dst_desc, int axis, int group_size, const shuffle_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a shuffle backward propagation primitive.
Parameters

• aengine – Engine to use.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• axis – The axis along which the data is shuffled.
• group_size – Shuffle group size.
• hint_fwd_pd – Primitive descriptor for a shuffle forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns
Diff destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff destination parameter.

prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

int get_axis() const
Returns an axis.

Returns
An axis.

Returns
A negative number if the primitive does not have an axis parameter.

memory::dim get_group_size() const
Returns a shuffle group size parameter.

Returns
A shuffle group size parameter.

4.5. Primitives 241

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Zero if the primitive does not have a shuffle group size parameter.

4.5.19 Softmax

The softmax primitive performs softmax along a particular axis on data with arbitrary dimensions. All other axes are
treated as independent (batch).

In general form, the operation is defined by the following formulas. The variable names follow the standard Conven-
tions.

Forward

When the specified algorithm is softmax:

dst(𝑜𝑢, 𝑐, 𝑖𝑛) =
𝑒src(𝑜𝑢,𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)∑︀

𝑖𝑐

𝑒src(𝑜𝑢,𝑖𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)
.

When the specified algorithm is logsoftmax, the following numerically stable formula is used:

dst(𝑜𝑢, 𝑐, 𝑖𝑛) = ln

⎛⎜⎝ 𝑒src(𝑜𝑢,𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)∑︀
𝑖𝑐

𝑒src(𝑜𝑢,𝑖𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)

⎞⎟⎠ =
(︀
src(𝑜𝑢, 𝑐, 𝑖𝑛)− 𝜈(𝑜𝑢, 𝑖𝑛)

)︀
− ln

(︃∑︁
𝑖𝑐

𝑒src(𝑜𝑢,𝑖𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)

)︃

where

• 𝑐 axis over which the softmax computation is computed on,

• 𝑜𝑢 is the outermost index (to the left of softmax axis),

• 𝑖𝑛 is the innermost index (to the right of softmax axis), and

• 𝜈 is used to produce more accurate results and defined as:

𝜈(𝑜𝑢, 𝑖𝑛) = max
𝑖𝑐

src(𝑜𝑢, 𝑖𝑐, 𝑖𝑛)

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src(𝑜𝑢, 𝑐, 𝑖𝑛), based on diff_dst(𝑜𝑢, 𝑐, 𝑖𝑛) and dst(𝑜𝑢, 𝑐, 𝑖𝑛).

4.5. Primitives 242

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In
case of in-place operation, the original data will be overwritten.

Post-ops and Attributes

The softmax primitive does not have to support any post-ops or attributes.

Data Types Support

The softmax primitive supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward bf16, f32
forward f16

Data Representation

Source, Destination, and Their Gradients

The softmax primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions. However, the softmax axis is typically referred to as channels (hence in formulas we use 𝑐).

4.5. Primitives 243

oneAPI Specification, Release 1.4-provisional-rev-1

API

struct softmax_forward : public dnnl::primitive
Softmax forward propagation primitive.

Public Functions

softmax_forward()

Default constructor. Produces an empty object.

softmax_forward(const primitive_desc &pd)
Constructs a softmax forward propagation primitive.

Parameters
pd – Primitive descriptor for a softmax forward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a softmax forward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, prop_kind aprop_kind, algorithm aalgorithm, const
memory::desc &src_desc, const memory::desc &dst_desc, int axis, const
primitive_attr &attr = default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a softmax forward propagation primitive.
Parameters

• aengine – Engine to use.
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Softmax algorithm kind: either dnnl::algorithm::softmax_accurate, or

dnnl::algorithm::softmax_log.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• axis – Axis over which softmax is computed.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns
Source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

4.5. Primitives 244

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

dnnl::algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

int get_axis() const
Returns an axis.

Returns
An axis.

Returns
A negative number if the primitive does not have an axis parameter.

struct softmax_backward : public dnnl::primitive
Softmax backward propagation primitive.

Public Functions

softmax_backward()

Default constructor. Produces an empty object.

softmax_backward(const primitive_desc &pd)
Constructs a softmax backward propagation primitive.

Parameters
pd – Primitive descriptor for a softmax backward propagation primitive.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a softmax backward propagation primitive.

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const engine &aengine, algorithm aalgorithm, const memory::desc &diff_src_desc,
const memory::desc &diff_dst_desc, const memory::desc &dst_desc, int axis, const
softmax_forward::primitive_desc &hint_fwd_pd, const primitive_attr &attr =
default_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a softmax backward propagation primitive.

4.5. Primitives 245

oneAPI Specification, Release 1.4-provisional-rev-1

Parameters
• aengine – Engine to use.
• aalgorithm – Softmax algorithm kind: either dnnl::algorithm::softmax_accurate, or

dnnl::algorithm::softmax_log.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• dst_desc – Destination memory descriptor.
• axis – Axis over which softmax is computed.
• hint_fwd_pd – Primitive descriptor for a softmax forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• attr – Primitive attributes to use. Attributes are optional and default to empty attributes.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns
Diff source memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

dnnl::algorithm get_algorithm() const
Returns an algorithm kind.

Returns
An algorithm kind.

Returns
dnnl::algorithm::undef if the primitive does not have an algorithm parameter.

dnnl::prop_kind get_prop_kind() const
Returns a propagation kind.

Returns
A propagation kind.

Returns
dnnl::prop_kind::undef if the primitive does not have a propagation parameter.

int get_axis() const
Returns an axis.

Returns
An axis.

Returns
A negative number if the primitive does not have an axis parameter.

4.5. Primitives 246

oneAPI Specification, Release 1.4-provisional-rev-1

4.5.20 Sum

The sum primitive sums 𝑁 tensors. The variable names follow the standard Conventions.

dst(𝑥) =

𝑁∑︁
𝑖=1

𝑠𝑐𝑎𝑙𝑒𝑠(𝑖) · src𝑖(𝑥)

The sum primitive does not have a notion of forward or backward propagations. The backward propagation for the sum
operation is simply an identity operation.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

primitive input/output execution argument index
src DNNL_ARG_MULTIPLE_SRC
dst DNNL_ARG_DST

Operation Details

• The dst memory format can be either specified by a user or derived the most appropriate one by the primitive.
The recommended way is to allow the primitive to choose the appropriate format.

• The sum primitive requires all source and destination tensors to have the same shape. Implicit broadcasting is
not supported.

Post-ops and Attributes

The sum primitive does not support any post-ops or attributes.

Data Types Support

The sum primitive supports arbitrary data types for source and destination tensors.

Data Representation

Sources, Destination

The sum primitive works with arbitrary data tensors. There is no special meaning associated with any logical dimen-
sions.

4.5. Primitives 247

oneAPI Specification, Release 1.4-provisional-rev-1

API

struct sum : public dnnl::primitive
Out-of-place summation (sum) primitive.

Public Functions

sum()

Default constructor. Produces an empty object.

sum(const primitive_desc &pd)
Constructs a sum primitive.

Parameters
pd – Primitive descriptor for sum primitive.

struct primitive_desc : public dnnl::primitive_desc_base
Primitive descriptor for a sum primitive.

Public Functions

primitive_desc()

Default constructor. Produces an empty object.

primitive_desc(const memory::desc &dst, const std::vector<float> &scales, const
std::vector<memory::desc> &srcs, const engine &aengine, const primitive_attr &attr
= primitive_attr())

Constructs a primitive descriptor for a sum primitive.
Parameters

• dst – Destination memory descriptor.
• scales – Vector of scales to multiply data in each source memory by.
• srcs – Vector of source memory descriptors.
• aengine – Engine to perform the operation on.
• attr – Primitive attributes to use (optional).

primitive_desc(const std::vector<float> &scales, const std::vector<memory::desc> &srcs, const
engine &aengine, const primitive_attr &attr = primitive_attr())

Constructs a primitive descriptor for a sum primitive.

This version derives the destination memory descriptor automatically.
Parameters

• scales – Vector of scales by which to multiply data in each source memory object.
• srcs – Vector of source memory descriptors.
• aengine – Engine on which to perform the operation.
• attr – Primitive attributes to use (optional).

memory::desc src_desc(int idx = 0) const
Returns a source memory descriptor.

Parameters
idx – Source index.

Returns
Source memory descriptor.

4.5. Primitives 248

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
A zero memory descriptor if the primitive does not have a source parameter with index pdx.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns
Destination memory descriptor.

Returns
A zero memory descriptor if the primitive does not have a destination parameter.

4.6 Graph extension

oneDNN Graph extension is a flexible graph interface to maximize operation fusions in a scalable way. oneDNN Graph
API accepts a full computational graph as input and performs a engine-aware graph partitioning, where sub-graphs of
operations that are candidate for fusion are grouped together. Those partitions are then compiled and executed as fused
operations.

4.6.1 Common Definitions

This section lists common types and definitions used by all or multiple graph operations.

Logical tensor enums and type

struct logical_tensor
Logical tensor object.

Public Types

enum class data_type
Data Type.

Values:

enumerator undef

enumerator f16
16-bit/half-precision floating point.

enumerator bf16
non-standard 16-bit (bfloat16 w/ 7 bit mantissa) floating point.

enumerator f32
32-bit/single-precision floating point.

enumerator s32
32-bit signed integer.

4.6. Graph extension 249

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator s8
8-bit signed integer.

enumerator u8
8-bit unsigned integer.

enumerator boolean
Boolean data type. Size is C++ implementation defined.

enum class layout_type
Layout type.

Values:

enumerator undef
Undefined layout type.

enumerator any
Any means to let the library to decide the layout for a tensor during partition compilation.

enumerator strided
Strided means that the layout of a tensor is determined by the strides field in the logical tensor.

enumerator opaque
Opaque means that the layout of a tensor is the library specific. Usually, an opaque layout is generated
by a partition which is compiled with layout type any.

enum class property_type
Tensor property.

Values:

enumerator undef
Undefined tensor property.

enumerator variable
Variable means the tensor may be changed during computation or between different iterations.

enumerator constant
Constant means the tensor will keep unchanged during computation and between different iterations.
It’s useful for the library to apply optimizations for constant tensors or cache constant tensors inside
the library. For example, constant weight tensors in inference scenarios.

using dim = dnnl_dim_t
Integer type for representing dimension sizes and indices.

using dims = std::vector<dim>
Vector of dimensions. Implementations are free to force a limit on the vector’s length.

4.6. Graph extension 250

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

logical_tensor() = default
Default constructor Construct an empty object

logical_tensor(const logical_tensor &other) = default
Copy constructor.

logical_tensor &operator=(const logical_tensor &other) = default
Assignment operator.

logical_tensor(size_t tid, data_type dtype, int32_t ndims, layout_type ltype, property_type ptype =
property_type::undef)

Constructs a logical tensor object with ID, data type, ndims, layout type, and property type.

Parameters

• tid – Logical tensor ID.

• dtype – Elements data type.

• ndims – Number of dimensions. DNNL_GRAPH_UNKNOWN_NDIMS for an unknown
number of dimensions, 0 for a scalar tensor.

• ltype – Layout type.

• ptype – Property type.

inline logical_tensor(size_t tid, data_type dtype, layout_type ltype = layout_type::undef)
Delegated constructor.

Parameters

• tid – Logical tensor ID.

• dtype – Elements data type.

• ltype – Layout type.

logical_tensor(size_t tid, data_type dtype, const dims &adims, layout_type ltype, property_type ptype =
property_type::undef)

Constructs a logical tensor object with basic information and detailed dims.

Parameters

• tid – Logical tensor ID.

• dtype – Elements data type.

• adims – Logical tensor dimensions. DNNL_GRAPH_UNKNOWN_DIM for dimensions
of unknown size, 0 for zero-dimension tensor.

• ltype – Layout type. If strided, the strides field in the output logical tensor will be deduced
accordingly.

• ptype – Property type.

logical_tensor(size_t tid, data_type dtype, const dims &adims, const dims &strides, property_type ptype =
property_type::undef)

Constructs a logical tensor object with detailed dims and strides. The layout_type of the output logical
tensor object will always be strided.

Parameters

4.6. Graph extension 251

oneAPI Specification, Release 1.4-provisional-rev-1

• tid – Logical tensor ID.

• dtype – Elements data type.

• adims – Logical tensor dimensions. DNNL_GRAPH_UNKNOWN_DIM for dimensions
of unknown size, 0 for zero-dimension tensor.

• strides – Logical tensor strides. DNNL_GRAPH_UNKNOWN_DIM for unknown stride.
No negative stride is supported.

• ptype – Property type.

logical_tensor(size_t tid, data_type dtype, const dims &adims, size_t lid, property_type ptype =
property_type::undef)

Constructs a logical tensor object with detailed dims and an opaque layout ID. layout_type of the output
logical tensor object will always be opaque.

Parameters

• tid – Logical tensor ID.

• dtype – Elements data type.

• adims – Logical tensor dimensions. DNNL_GRAPH_UNKNOWN_DIM for dimensions
of unknown size, 0 for zero-dimension tensor.

• lid – Opaque layout id.

• ptype – Property type

dims get_dims() const
Returns the dimensions of a logical tensor.

Returns
A vector describing the size of each dimension.

size_t get_id() const
Returns the unique id of a logical tensor.

Returns
An integer value describing the ID.

data_type get_data_type()
Returns the data type of a logical tensor.

Returns
The data type.

property_type get_property_type() const
Returns the property type of a logical tensor.

Returns
The property type.

layout_type get_layout_type() const
Returns the layout type of a logical tensor.

Returns
The layout type.

size_t get_layout_id() const
Returns the layout ID of a logical tensor. The API should be called on a logical tensor with opaque layout
type. Otherwise, an exception will be raised.

4.6. Graph extension 252

oneAPI Specification, Release 1.4-provisional-rev-1

Returns
Layout ID.

dims get_strides() const
Returns the strides of a logical tensor. The API should be called on a logical tensor with strided layout type.
Otherwise, an exception will be raised.

Returns
A vector describing the stride size of each dimension.

size_t get_mem_size() const
Returns memory size in bytes required by this logical tensor.

Returns
The memory size in bytes.

bool is_equal(const logical_tensor <)
Compares if two logical tenors are equal. Users can decide accordingly if layout reordering is needed for
two logical tensors. The method will return true for below two circumstances:

i. the two logical tensors are equal regarding each field in the struct, eg. id, ndims, dims, layout type,
property, etc.

ii. If all other fields are equal but the layout types in two logical tensors are different, the method will return
true when the underlying memory layout is the same. For example, one logical tensor has strided layout
type while the other one has opaque layout type, but underneath, both layouts are NHWC, the method
will still return true for this case.

Parameters
lt – The input logical tensor to be compared.

Returns
true if the two logical tensors are equal. false otherwise

Operation attributes and kinds

struct op
An op object.

Public Types

enum class kind
Kinds of operations.

Values:

enumerator Abs

enumerator AbsBackward

enumerator Add

4.6. Graph extension 253

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator AvgPool

enumerator AvgPoolBackward

enumerator BatchNormForwardTraining

enumerator BatchNormInference

enumerator BatchNormTrainingBackward

enumerator BiasAdd

enumerator BiasAddBackward

enumerator Clamp

enumerator ClampBackward

enumerator Concat

enumerator Convolution

enumerator ConvolutionBackwardData

enumerator ConvolutionBackwardWeights

enumerator ConvTranspose

enumerator ConvTransposeBackwardData

enumerator ConvTransposeBackwardWeights

enumerator Dequantize

enumerator Divide

enumerator DynamicDequantize

enumerator DynamicQuantize

enumerator Elu

4.6. Graph extension 254

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator EluBackward

enumerator End

enumerator Exp

enumerator GELU

enumerator GELUBackward

enumerator HardSigmoid

enumerator HardSigmoidBackward

enumerator HardSwish

enumerator HardSwishBackward

enumerator Interpolate

enumerator InterpolateBackward

enumerator LayerNorm

enumerator LayerNormBackward

enumerator LeakyReLU

enumerator Log

enumerator LogSoftmax

enumerator LogSoftmaxBackward

enumerator MatMul

enumerator Maximum

enumerator MaxPool

enumerator MaxPoolBackward

4.6. Graph extension 255

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator Minimum

enumerator Mish

enumerator MishBackward

enumerator Multiply

enumerator Pow

enumerator PReLU

enumerator PReLUBackward

enumerator Quantize

enumerator Reciprocal

enumerator ReduceL1

enumerator ReduceL2

enumerator ReduceMax

enumerator ReduceMean

enumerator ReduceMin

enumerator ReduceProd

enumerator ReduceSum

enumerator ReLU

enumerator ReLUBackward

enumerator Reorder

enumerator Round

enumerator Select

4.6. Graph extension 256

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator Sigmoid

enumerator SigmoidBackward

enumerator SoftMax

enumerator SoftMaxBackward

enumerator SoftPlus

enumerator SoftPlusBackward

enumerator Sqrt

enumerator SqrtBackward

enumerator Square

enumerator SquaredDifference

enumerator StaticReshape

enumerator StaticTranspose

enumerator Subtract

enumerator Tanh

enumerator TanhBackward

enumerator TypeCast

enumerator Wildcard

enumerator LastSymbol

enum class attr
Attributes of operations. Different operations support different attributes. Check the document of each
operation for what attributes are supported and what are the potential values for them. Missing required
attribute or illegal attribute value may lead to failure when adding the operation to a graph.

Values:

4.6. Graph extension 257

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator undef
Undefined op attribute.

enumerator alpha
Specifies an alpha attribute to an op.

enumerator beta
Specifies an beta attribute to an op.

enumerator epsilon
Specifies an epsilon attribute to an op.

enumerator max
Specifies a max attribute to an op.

enumerator min
Specifies a min attribute to an op.

enumerator momentum
Specifies a momentum attribute to an op.

enumerator scales
Specifies a scales attribute to an op.

enumerator axis
Specifies an axis attribute to an op.

enumerator begin_norm_axis
Specifies a begin_norm_axis attribute to an op.

enumerator groups
Specifies a groups attribute to an op.

enumerator axes
Specifies an axes attribute to an op.

enumerator dilations
Specifies a dilations attribute to an op.

enumerator dst_shape
Specifies an dst_shape attribute to an op.

enumerator kernel
Specifies a kernel attribute to an op.

4.6. Graph extension 258

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator order
Specifies an order attribute to an op.

enumerator output_padding
Specifies an output_padding attribute to an op.

enumerator pads_begin
Specifies a pads_begin attribute to an op.

enumerator pads_end
Specifies a pads_end attribute to an op.

enumerator shape
Specifies a shape attribute to an op.

enumerator sizes
Specifies a sizes attribute to an op.

enumerator src_shape
Specifies an src_shape attribute to an op.

enumerator strides
Specifies a strides attribute to an op.

enumerator weights_shape
Specifies a weight_shape attribute to an op.

enumerator zps
Specifies a zps attribute to an op.

enumerator exclude_pad
Specifies an exclude_pad attribute to an op.

enumerator keep_dims
Specifies a keep_dims attribute to an op.

enumerator keep_stats
Specifies a keep_stats attribute to an op.

enumerator per_channel_broadcast
Specifies a per_channel_broadcast attribute to an op.

enumerator special_zero
Specifies a special_zero attribute to an op.

4.6. Graph extension 259

oneAPI Specification, Release 1.4-provisional-rev-1

enumerator transpose_a
Specifies a transpose_a attribute to an op.

enumerator transpose_b
Specifies a transpose_b attribute to an op.

enumerator use_affine
Specifies an use_affine attribute to an op.

enumerator use_dst
Specifies an use_dst attribute to an op.

enumerator auto_broadcast
Specifies an auto_broadcast attribute to an op. The value can be “none” or “numpy”.

enumerator auto_pad
Specifies an auto_pad attribute to an op. The value can be “none”, “same_upper”, “same_lower”, or
“valid”.

enumerator coordinate_transformation_mode
Specifies an coordinate_transformation_mode attribute to an op. The value can be “half_pixel” or
“align_corners”. The attribute is defined for Interpolate operations.

enumerator data_format
Specifies a data_format of an op. The value can be “NCX” or “NXC”.

enumerator mode
Specifies a mode attribute of an op. The value can be “nearest”, “linear”, “bilinear”, or “trilinear”.
The attribute is defined for Interpolate operations.

enumerator qtype
Specifies a qtype attribute to an op. The value can be “per_channel” or “per_tensor”. The attribute is
defined for quantization operations.

enumerator rounding_type
Specifies a rounding_type attribute to an op. The value can be “ceil” or “floor”.

enumerator weights_format
Specifies a weights_format of an op. The value can be “OIX”, “XIO”, “IOX”, or “XOI”. Different
operations may support different values.

4.6. Graph extension 260

oneAPI Specification, Release 1.4-provisional-rev-1

Public Functions

op(size_t id, kind akind, const std::string &name = "")
Constructs an op object with an unique ID, an operation kind, and a name string.

Parameters

• id – The unique ID of the op.

• akind – The op kind specifies which computation is represented by the op, such as Con-
volution or ReLU.

• name – The string added as the op name.

op(size_t id, kind akind, const std::vector<logical_tensor> &inputs, const std::vector<logical_tensor>
&outputs, const std::string &name = "")

Constructs an op object with an unique ID, an operation kind, and input/output logical tensors.

Parameters

• id – The unique ID of this op.

• akind – The op kind specifies which computation is represented by this op, such as Con-
volution or ReLU.

• inputs – Input logical tensor to be bound to this op.

• outputs – Output logical tensor to be bound to this op.

• name – The string added as the op name.

void add_input(const logical_tensor &t)
Adds an input logical tensor to the op.

Parameters
t – Input logical tensor.

void add_inputs(const std::vector<logical_tensor> &ts)
Adds a vector of input logical tensors to the op.

Parameters
ts – The list of input logical tensors.

void add_output(const logical_tensor &t)
Adds an output logical tensor to the op.

Parameters
t – Output logical tensor.

void add_outputs(const std::vector<logical_tensor> &ts)
Adds a vector of output logical tensors to the op.

Parameters
ts – The list of output logical tensors.

template<typename Type>
op &set_attr(attr name, const Type &value)

Sets the attribute according to the name and type.

Template Parameters
Type – Attribute’s type.

Parameters

4.6. Graph extension 261

oneAPI Specification, Release 1.4-provisional-rev-1

• name – Attribute’s name.

• value – The attribute’s value.

Returns
The Op self. Raises an exception if Type is incompatible with name.

Graph objects member functions

struct graph
A graph object.

Public Functions

graph(dnnl::engine::kind engine_kind)
Constructs a graph with an engine kind.

Parameters
engine_kind – Engine kind.

graph(dnnl::engine::kind engine_kind, dnnl::fpmath_mode mode)
Creates a new empty graph with an engine kind and a floating-point math mode. All partitions returned
from the graph will inherit the engine kind and floating-point math mode.

Parameters

• engine_kind – Engine kind.

• mode – Floating-point math mode.

status add_op(const op &op, bool allow_exception = true)
Adds an op into the graph to construct a computational DAG. The API will return failure if the operator
has already been added to the graph or the operation cannot pass the schema check in the library (eg. input
and output numbers and data types, the attributes of the operation, etc.).

Parameters

• op – An operation to be added.

• allow_exception – A flag indicating whether the method is allowed to throw an exception
if it fails to add the op to the graph.

Returns
status::success or a status describing the error otherwise.

void finalize()
Finalizes a graph. It means users have finished adding operations into the graph and the graph is ready for
partitioning. Adding a new operation into a finalized graph will return failures. Similarly, partitioning on
a un-finalized graph will also return failures.

bool is_finalized() const
Checks if a graph is finalized.

Returns
True if the graph is finalized or false if the graph is not finalized.

4.6. Graph extension 262

oneAPI Specification, Release 1.4-provisional-rev-1

std::vector<partition> get_partitions(partition::policy policy = partition::policy::fusion)
Gets filtered partitions from a graph. Partitions will be claimed internally according to the capability of the
library, the engine kind of the graph, and the policy.

Parameters
policy – Partition policy, defaults to policy dnnl::graph::partition::policy::fusion.

Returns
A vector storing the partitions.

Macros to specify unknown shapes

DNNL_GRAPH_UNKNOWN_NDIMS

A wildcard value for number of dimensions which is unknown at a tensor or operation creation time.

DNNL_GRAPH_UNKNOWN_DIM

A wildcard value for dimensions that are unknown at a tensor or operation creation time.

4.6.2 Programming Model

oneDNN Graph programming model allows users to pass a computation graph and get partitions. Users then compile
partitions, bind tensor data, and execute compiled partitions. Partitions are decided by the oneDNN Graph imple-
mentation, which allows a scalable (no change in user code to benefit from new fusion patterns) and platform aware
partitioning.

The programming model assumes that the main usage is to support deep learning (DL) frameworks or inference engines.
DL frameworks have their own representation for the computation graph. oneDNN Graph API is used to offload or
accelerate graph partitions from a framework graph. In the description below, “graph” refers to the graph built by
oneDNN Graph implementation, and “framework graph” refers to the graph built by the DL framework.

A deep learning computation graph consists of deep neural network (DNN) operations. A DNN operation is a function
that takes input data and returns output data. The input and output data are multidimensional arrays called tensors. A
DNN operation may consume multiple tensors and produce multiple tensors. A tensor must be produced by a single
operation and may be consumed by multiple operations.

oneDNN Graph API uses logical tensor, OP, and graph to represent a computation graph. Logical tensor represents
tensor’s metadata, like element data type, shape, and layout. OP represents an operation on a computation graph. OP
has kind, attribute, and input and output logical tensors. OPs are added to a graph. Both OP and logical tensor contains
a unique ID, so that the graph knows how to connect a producer OP to a consumer OP through a logical tensor. The
graph constructed is immutable. The purpose of creating the graph object is to get partitions. After partitions are
created, the graph object is not useful anymore. Once users get partitions, users should not add OP to the graph.

oneDNN Graph defines operation set. Users should convert their DNN operation definition to oneDNN Graph operation
for graph construction. For operation outside oneDNN Graph operation set, users may use wild-card OP. The wild-
card OP represents any OP. With its input and output logical tensors, it enables the oneDNN Graph implementation to
receive a full graph and conduct a complete analysis. User needs to use a special “End” op to indicate output tensors of
the graph. For any tensors needs to be alive after a graph being executed, it needs to be connected to a “End” op which
consumes the tensor. Users may have multiple “End” ops for one graph. For each OP users add to the graph, users
must describe its input and output logical tensors. Users must describe data type for each logical tensor. If tensor’s
shape and layout are known, users must describe them along with the logical tensor.

A partition is a connected subgraph in a graph. oneDNN Graph implementation analyzes a graph and returns a number
of partitions. The returned partitions completely cover all the OPs of the graph and follow topological order. A partition
typically contains multiple Ops. Sometimes a partition may contain just one OP, like a Wildcard OP or unsupported

4.6. Graph extension 263

oneAPI Specification, Release 1.4-provisional-rev-1

OP. A partition contains a flag to indicate whether the partition is supported and thus can be compiled and executed.
User needs to check the flag before using the partition.

Partition’s input and output is also called as port. The ports record the logical tensor information which was passed
during graph construction. With the logical tensor ID, users can track the producer and consumer relationship between
partitions. The ports also record the data type of corresponding logical tensors.

The returned partitions to users must not form a dependence cycle. For example, a graph contains 3 OPs: A, B, and
C. If C consumes A’s output and produces B’s input, oneDNN Graph implementation must not put A and B into one
partition. However, if C is not added to the graph, the returned partition may include A and B, since C is not visible
to oneDNN Graph implementation. In this case, it is the user’s responsibility to detect the dependence cycle. Once
users pass a complete graph, users don’t need to check the dependence cycle among the partitions returned by oneDNN
Graph.

A partition needs to be compiled before execution. The compilation lowers down the compute logic to hardware ISA
level and generates binary code. The generated code is specialized for the input and output tensor’s metadata. Users
must create new logical tensors to pass complete metadata with the compilation API. The logical tensors should fully
specify id, data type, shape (can be incomplete for outputs), and layout, the compilation should succeed. The logical
tensors passed during compilation time must match IDs with partition’s ports. The logical tensors must have same data
types with the ports with the port of the same ID.

For the output logical tensors, users must either specify a public layout using size and stride for each tensor dimension
or request oneDNN Graph implementation to decide a target-specific layout. For the input logical tensors, users must
either specify a public layout or using a target-specific layout produced by predecessor partition compilation. For the
logical tensor with target-specific layout, it must be produced by a partition and used only by partitions.

A compiled partition represents the generated code specialized for target hardware and tensor metadata passed with
compilation API. Users may cache the compiled partition to amortize the compilation cost among many iterations. If
tensor metadata is identical, a compiled partition generated in previous iterations may be reused. Alternatively, imple-
mentations may reduce the partition compilation cost by caching the compiled partition internally. This optimization
falls outside of the scope of this specification.

To execute a compiled partition, users must pass input and output tensors. Input tensors must bind input data buffers to
logical tensors. Users may query the compiled partition for output data buffer sizes. If the sizes are known, users may
allocate the output data buffers and bind to output tensors. If the sizes are unknown, users must provide an allocator
for oneDNN Graph implementation to allocate the output tensor buffer. The execution API takes a compiled partition,
input tensors, and return output tensors with the data buffer updated.

An engine represents a target device and context in the system. It needs to be passed as a parameter for partition
compilation. A stream abstracts hardware execution resources of a target device. It is required to execute a compiled
partition.

The diagram above summarizes the key programming concepts, and how they interact with each other. The arrow indi-
cates the destination object contains or uses the source object. For example, OP contains logical tensor, and compiled
partition uses partition.

4.6. Graph extension 264

oneAPI Specification, Release 1.4-provisional-rev-1

Logical Tensor

Logical tensor describes the metadata of the input or output tensor, like element data type, number of dimensions, size
for each dimension, layout.

Besides helping oneDNN Graph implementation to build the graph, Logical tensor plays a critical role to exchange
tensor metadata information between users and oneDNN Graph implementation. Users pass input tensor shape infor-
mation and get the inferred shape for output tensors from a partition. Users pass logical tensors to compilation API
for specifying shape and layout information. Users also use a special logical tensor to allow oneDNN Graph imple-
mentation to decide the layout for output tensors. After compilation, users can query the compiled partition for output
tensors’ shape, layout, and sizes.

Each logical tensor has an ID. The tensor metadata may include new shape information in the framework graph as it
progresses toward execution. As a logical tensor is not mutable, users must create a new logical tensor with the same
ID to pass any new additional information to oneDNN Graph implementation. Users should guarantee that the logical
tensor ID is unique within the graph which the logical tensor belongs to.

Operations

An operation (or OP) describes a deep neural network operation. OP contains kind, attribute, and input and output
logical tensor shapes and properties. In particular, activation and weights tensor formats are specified as attributes to
the operation.

Each operation has a unique ID and users should guarantee that uniqueness within the graph which the OP is added to.

Graph

Graph contains a set of OPs. dnnl::graph::graph::add_op() adds an OP and its logical tensors to a graph.
oneDNN Graph implementation accumulates the OPs and logical tensors and constructs and validates the graph as
internal state. During dnnl::graph::graph::add_op(), the target OP will be validated against its schema. Once
the validation fails, an exception will be thrown out from the API. When allow_exception=false is specified,
dnnl::graph::graph::add_op() call returns a status. It is the user’s responsibility to handle the error either by
checking the return value of the API or handling the exception.

A same logical tensor may appear more than twice in dnnl::graph::graph::add_op() call, since it is passed with
the producer OP and consumer OPs. oneDNN Graph validates logical tensors with the same id should be identical at
the graph construction time.

Once the graph is fully described, dnnl::graph::graph::finalize() should be called. This prevents any other
operation from being added, and allows to call dnnl::graph::graph::get_partitions() in order to get the set
of partitions for that graph. The graph does not hold any meaning to the user after partitioning and should freed by the
user.

All the OPs added to the graph will be contained in one of the returned partitions. If an OP is not supported by the
oneDNN Graph API implementation, the corresponding partition will be marked as “not supported”. Users can check
the supporting status of a partition via the dnnl::graph::partition::is_supported. Partitions should not form
cyclic dependence within the graph. If user does not pass a complete graph, it is the user’s responsibility to detect any
dependence cycle between the partitions and operations not passing to oneDNN Graph implementation.

The logical tensor passed at the graph construction stage might contain incomplete information, for example, dimension
and shape information are spatially known. Complete information is not required but helps the oneDNN Graph to form
better partition decisions. Adding op to a graph is not thread-safe. Users must create a graph, add op, and get partition
in the same thread.

4.6. Graph extension 265

oneAPI Specification, Release 1.4-provisional-rev-1

Partition

Partition represents a collection of OPs identified by oneDNN Graph implementation as the basic unit for compilation
and execution. It contains a list of OP, input ports, output ports, and a flag indicating whether the partition is supported.
When a partition is created, it’s assigned with an ID. oneDNN Graph implementation should guarantee the partition
ID is globally unique.

Users can pass the output logical tensors with incomplete shape information (containing
DNNL_GRAPH_UNKNOWN_NDIMS or DNNL_GRAPH_UNKNOWN_DIM) to partition compilation API. oneDNN Graph
implementation needs calculate the output shapes according to the given input shapes and schema of the OP. After
compilation finished, a compiled partition will be generated with full shape information for the input and output
logical tensors. Users can query the compiled partition for the output logical tensors and get the shapes.

Partition can be compiled to generate a compiled_partition: an executable object to run the computation for that
partition. Users must create an input logical tensor list and an output logical tensor list to pass the additional tensor
metadata as parameters to the compilation API. The input and output logical tensors must match the id of partitions’
ports, which captures the logical tensors information during graph partitioning. Typically, the more information is
given before the partition step (e.g. number of dimensions and tensor dimensions), the most performant the code under
the compiled partition will be.

Users must specify strided, any, or opaque as the layout_type for the parameter logical tensors. When users
specify any for a logical tensor, the tensor must be an output tensor, and oneDNN Graph implementation decides the
best performant layout for the compiled partition. If it is strided, it must use the public data layout described by the
logical tensor. For opaque, the parameter logical tensor contains a target-specific layout, which must be determined
by the compilation of preceding partitions producing the tensor. If the layout is row-major contiguous, the compilation
must succeed. If the layout has a stride, it is implementation dependent whether the compilation succeed. If certain
dimension of shape or the rank is unknown, it is implementation dependent whether the compilation succeed. If the
compilation succeeds for unknown dimension or rank, the compiled partition should be able to handle any value for
that dimension or any rank at the execution time.

Tensor

Tensor is an abstraction for multidimensional input and output data needed in the execution of a compiled partition. A
tensor contains a logical tensor, an engine and a data handle.

Users are responsible for managing the tensor’s lifecycle, e.g. free the resource allocated, when it is not used anymore.

Compiled Partition

A compiled partition represents the generated code specialized for target hardware and meta data described by parameter
logical tensors. Compiled partition contains a partition and a handle representing the target specific compiled object.

After the compilation API is invoked, users must query the logical output tensor of the compiled partition to know the
output tensor’s layout id and size. The layout id is an opaque identifier for the target-specific layout. Users may pass
the layout id for the next partition compilation so that it can be optimized to expect a specific input layout. Users may
use the size to allocate the memory buffer of the output tensors for execution.

Framework passes the tensors and compiled partition as parameters to execution API. The parameter logical tensors
must be in the same order when they are passed in the compilation API, and their IDs must match with the compiled
partition’s internal logical tensors. The layout type of each tensor must be strided or opaque.

The compiled partition may support in-place optimization, which reuses the input tensor data buffer for the output
tensor for lower memory footprint and better data locality. For each compiled partition, users can get pairs of input and
output ports. For the pair of input and output ports, user can use a same memory buffer when passing input and output
tensors along with execution API. The in-place optimization is optional, when users use another memory buffer for the
output tensor, oneDNN Graph must update the output tensor.

4.6. Graph extension 266

oneAPI Specification, Release 1.4-provisional-rev-1

If users place a tensor with data buffer pointer in outputs, the backend shall use the data buffer provided by users.

Users may convert the parameter tensor with public layout to the target specific layout expected by the compiled par-
tition. A common optimization in deep learning inference is that users may prepack the weight in the target-specific
layout required by the compiled partition and cache the reordered weight for late use.

Engine

Engine (dnnl::engine) are an abstraction of a computational device. The graph extension additionally allows to
create an engine with specific host/device allocators to conveniently manage memory inside the Graph API calls.

Stream

Stream (dnnl::stream) encapsulate execution context tied to a particular engine.

General API notes

There are certain assumptions on how oneDNN Graph objects behave:

• Logical tensor behave similarly to trivial types.

• All other objects behave like shared pointers. Copying is always shallow.

Error Handling

The C++ API throws exceptions for error handling.

4.6.3 Data Model

oneDNN Graph uses logical tensor to describe data type, shape, and layout. Besides 32-bit IEEE single-precision
floating-point data type, oneDNN Graph can also support other data types. The shape contains multiple dimensions,
and the total dimension and the size of the dimension could be set as unknown.

oneDNN Graph uses the following enumeration to refer to data types it supports. Different operation may support
inputs and outputs with different data types, so it’s suggested to refer to the definition page of each operation.

enum dnnl::graph::logical_tensor::data_type

undef
Undefined data type (used for empty logical tensor).

f16
16-bit/half-precision floating point.

bf16
non-standard 16-bit floating point with 7-bit mantissa.

f32
32-bit/single-precision floating point.

s32
32-bit signed integer.

s8
8-bit signed integer.

4.6. Graph extension 267

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format

oneAPI Specification, Release 1.4-provisional-rev-1

u8
8-bit unsigned integer.

boolean
Boolean data type. Size is C++ implementation defined.

oneDNN Graph supports both public layout and opaque layout. When the layout_type of logical tensor is strided ,
it means that the tensor layout is public which the user can identify each tensor element in the physical memory.

For example, for 𝑑𝑖𝑚𝑠[][][] = 𝑥, 𝑦, 𝑧, 𝑠𝑡𝑟𝑖𝑑𝑒𝑠[][][] = 𝑠0, 𝑠1, 𝑠2, the physical memory location should be in 𝑠0 * 𝑥 +
𝑠1 * 𝑦 + 𝑠2 * 𝑧.

When the layout_type of logical tensor is opaque, users are not supposed to interpret the memory buffer directly.
An opaque tensor can only be output from oneDNN Graph’s compiled partition and can only be fed to another compile
partition as an input tensor.

Low Precision Support

oneDNN Graph extension provides the same low precision support as the oneDNN primitives, including u8, s8, bf16
and f16. For int8, oneDNN Graph API supports quantized model with static quantization. For bf16 or f16, oneDNN
Graph supports deep learning framework’s auto mixed precision mechanism. In both cases, oneDNN Graph API
expects users to convert the computation graph to low precision representation and specify the data’s precision and
quantization parameters. oneDNN Graph API implementation should strictly respect the numeric precision of the
computation.

For int8, oneDNN Graph API provides two operations dequantize and quantize. Dequantize takes integer tensor
with its associated scale and zero point and returns f32 tensor. Quantize takes an f32 tensor, scale, zero point, and
returns an integer tensor. The scale and zero point are single dimension tensors, which could contain one value for
the per-tensor quantization case or multiple values for the per-channel quantization case. The integer tensor could be
represented in both unsigned int8 or signed int8. Zero point could be zero for symmetric quantization scheme, and a
non-zero value for asymmetric quantization scheme.

Users should insert Dequantize and Quantize in the graph as part of quantization process before passing to oneDNN
Graph. oneDNN Graph honors the data type passed from user and faithfully follows the data type semantics. For
example, if the graph has a Quantize followed by Dequantize with exact same scale and zero point, oneDNN Graph
implementation should not eliminate them since that implicitly changes the numerical precision.

oneDNN Graph partitioning API may return a partition containing the Dequantize, Quantize, and Convolution opera-
tions in between. Users don’t need to recognize the subgraph pattern explicitly and convert to fused op. Depending on
oneDNN Graph implementation capability, the partition may include more or fewer operations.

For bf16, oneDNN Graph provides the typecast operation, which can convert an f32 tensor to bf16 or f16, and vice
versa. All oneDNN Graph operations support bf16 and f16. It is the user’s responsibility to insert TypeCast to clearly
indicate the numerical precision. oneDNN Graph implementation fully honors the user-specified numerical precision.
If users first typecast from f32 to bf16 and convert back, oneDNN Graph implementation does the exact data type
conversions underneath.

4.6. Graph extension 268

oneAPI Specification, Release 1.4-provisional-rev-1

4.6.4 Operation Set

oneDNN Graph defines an operation set. oneDNN Graph implementation may support a subset of the operation set.

Abs

Abs operation performs element-wise the absolute value with given tensor, it applies following formula on every ele-
ment of src tensor (the variable names follow the standard Conventions):

𝑑𝑠𝑡 =

{︃
𝑠𝑟𝑐 if 𝑠𝑟𝑐 ≥ 0

−𝑠𝑟𝑐 if 𝑠𝑟𝑐 < 0

Operation Attributes

Abs operation does not support any attribute.

Execution Arguments

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Abs operation supports the following data type combinations.

Src Dst
f32 f32
f16 f16
bf16 bf16

4.6. Graph extension 269

oneAPI Specification, Release 1.4-provisional-rev-1

AbsBackward

AbsBackward operation computes gradient for Abs operation.

dst =

⎧⎪⎨⎪⎩
diff_dst if 𝑠𝑟𝑐 > 0

−diff_dst if 𝑠𝑟𝑐 < 0

0 if 𝑠𝑟𝑐 = 0

Operation Attributes

AbsBackward operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

AbsBackward operation supports the following data type combinations.

Src Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

4.6. Graph extension 270

oneAPI Specification, Release 1.4-provisional-rev-1

Add

Add operation performs element-wise addition operation with two given tensors applying multi-directional broadcast
rules.

dst(𝑥) = src _0(𝑥) + src _1(𝑥).

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_0 Required
1 src_1 Required

@note Both src shapes should match and no auto-broadcasting is allowed if auto_broadcast attributes is none.
src_0 and src_1 shapes can be different and auto-broadcasting is allowed if auto_broadcast attributes is numpy.

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 271

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Add operation supports the following data type combinations.

Src_0 / Src_1 Dst
f32 f32
bf16 bf16
f16 f16

AvgPool

AvgPool operation performs the computation following the below formulas. Variable names follow the standard Con-
ventions.

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) =
1

𝐷𝐸𝑁𝑂𝑀

∑︁
𝑘ℎ,𝑘𝑤

src(𝑛, 𝑐, 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ− 𝑃𝐻𝐿, 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 − 𝑃𝑊𝐿)

where,

• when attribute exclude_pad is set to false, in which case 𝐷𝐸𝑁𝑂𝑀 = 𝐾𝐻 ·𝐾𝑊 ,

• when attribute exclude_pad is set to true, in which case 𝐷𝐸𝑁𝑂𝑀 equals to the size of overlap between an
averaging window and images.

4.6. Graph extension 272

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the window is
moved

s64 A s64 list containing
positive values

Required

pads_begin Controls number
of zeros to be add
to the front/top/left
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

kernel Size of pooling win-
dow

s64 A s64 list containing
positive values

Required

exclude_pad Controls whether
the padded values
are counted

bool True, False required

rounding_type Controls how to do
rounding

string floor (default),
ceil

Optional

auto_pad Controls how the
paddings are calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

4.6. Graph extension 273

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

AvgPool operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

AvgPoolBackward

AvgPoolBackward operation accepts diffdst tensor and srcshape tensor (optional), and calculates diffsrc tensor.

4.6. Graph extension 274

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the window is
moved

s64 A s64 list containing
positive values

Required

pads_begin Controls number
of zeros to be add
to the front/top/left
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
n on-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
n on-negative values

Required

kernel Size of pooling win-
dow

s64 A s64 list containing
positive values

Required

exclude_pad Controls whether
the padded values
are counted

bool True, False Required

auto_pad Controls how the
paddings are calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

src_shape Denotes the shape of
input of forward op

string NCX, NXC (default) Optional

4.6. Graph extension 275

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 diff_dst Required
1 src_shape Optional

@note Either src_shape input or src_shape attribute should be provided. If both provided, src_shape input will
precede over src_shape attribute.

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

AvgPoolBackward operation supports the following data type combinations.

Diff_dst Diff_src Src_shape
f32 f32 s64
bf16 bf16 s64
f16 f16 s64

BatchNormForwardTraining

BatchNormForwardTraining operation performs batch normalization at training mode.

Mean and variance are computed at runtime, the following formulas are used:

• 𝜇(𝑐) = 1
𝑁𝐻𝑊

∑︀
𝑛ℎ𝑤

src(𝑛, 𝑐, ℎ, 𝑤),

• 𝜎2(𝑐) = 1
𝑁𝐻𝑊

∑︀
𝑛ℎ𝑤

(src(𝑛, 𝑐, ℎ, 𝑤)− 𝜇(𝑐))2.

4.6. Graph extension 276

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

epsilon A number to be
added to the vari-
ance to avoid
division by zero

f32 A positive f32 value Required

momentum A number to be used
to calculate running
mean and running
variance

f32 A positive f32 value Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 mean Required
2 variance Required
3 gamma Optional
4 beta (𝜎2) Optional

@note gamma and beta should be either both provided or neither provided.

Outputs

Index Argument Name Required or Optional
0 dst Required
1 running_mean Required
2 running_variance Required
3 batch_mean Required
4 batch_variance Required

4.6. Graph extension 277

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

BatchNormInference operation supports the following data type combinations.

Src /
Dst

Gamma / Beta / Mean / Variance / Batch_mean / Batch_variance / Running_mean / Run-
ning_variance

f32 f32
bf16 f32, bf16
f16 f32

BatchNormInference

The formula is the same as Batch Normalization primitive :ref:`batch_normalization-label like below.

dst(𝑛, 𝑐, ℎ, 𝑤) = 𝛾(𝑐) · src(𝑛, 𝑐, ℎ, 𝑤)− 𝜇(𝑐)√︀
𝜎2(𝑐) + 𝜀

+ 𝛽(𝑐),

where

• 𝛾(𝑐), 𝛽(𝑐) are required scale and shift for a channel,

• 𝜇(𝑐), 𝜎2(𝑐) are mean and variance for a channel, and

• 𝜀 is a constant to improve numerical stability.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

epsilon A number to be
added to the vari-
ance to avoid
division by zero

f32 A positive float
value

Required

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

4.6. Graph extension 278

oneAPI Specification, Release 1.4-provisional-rev-1

Inputs

Index Argument Name Required or Optional
0 src Required
1 gamma Required
2 beta Required
3 mean Required
4 variance (𝜎2) Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

BatchNormInference operation supports the following data type combinations.

Src / Dst Gamma / Beta / Mean / Variance
f32 f32
bf16 f32, bf16
f16 f32

BatchNormTrainingBackward

BatchNormTrainingBackward operation calculated the gradients of input tensors.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

epsilon A number to be
added to the vari-
ance to avoid
division by zero

f32 A positive f32 value Required

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

4.6. Graph extension 279

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required
2 mean Required
3 variance Required
4 gamma (𝜎2) Optional

Outputs

Index Argument Name Required or Optional
0 diff_src Required
1 diff_gamma Optional
2 diff_beta Optional

@note diff_gamma and diff_beta should be either both provided or neither provided. If neither provided, the input
gamma will be ignored.

Supported Data Types

BatchNormTrainingBackward operation supports the following data type combinations.

Src / Diff_dst / Diff_src Mean / Variance / Gamma / Diff_gamma / Diff_beta
f32 f32
bf16 f32, bf16
f16 f32

BiasAdd

Add bias to channel dimension of input. This is a special Add with bias restricted to be 1-D. Broadcasting is supported.

dst(𝑛, 𝑐, ℎ, 𝑤) = src(𝑛, 𝑐, ℎ, 𝑤) + bias(𝑐)

4.6. Graph extension 280

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX , NXC (default) Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 bias Required

@note bias is a 1D tensor to be added to src tensor. The size should be the same as size of channel dimension of src
tensor.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

BiasAdd operation supports the following data type combinations.

Src Bias Dst
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

4.6. Graph extension 281

oneAPI Specification, Release 1.4-provisional-rev-1

BiasAddBackward

BiasAddBackward operation computes the gradients on the bias tensor for BiasAdd operator. This op accumulates all
the values from diff_dst into the channel dimension, the axis depends on the layout of src tensor.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

data_format Controls how to
interpret the shape
of diff_dst and
diff_bias.

string NCX , NXC (default) Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_bias Required

Supported Data Types

BiasAddBackward operation supports the following data type combinations.

diff_dst diff_bias
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 282

oneAPI Specification, Release 1.4-provisional-rev-1

Clamp

Clamp operation represents clipping activation function, it applies following formula on every element of src tensor
(the variable names follow the standard Conventions):

𝑐𝑙𝑎𝑚𝑝(𝑠𝑟𝑐𝑖) = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑠𝑟𝑐𝑖,𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒),𝑚𝑎𝑥_𝑣𝑎𝑙𝑢𝑒)

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

min The lower bound of
values in the output.
Any value in the in-
put that is smaller
than the bound, is re-
placed with the min
value.

f32 Arbitrary valid f32
value

Required

max The upper bound of
values in the output.
Any value in the in-
put that is greater
than the bound, is re-
placed with the max
value.

f32 Arbitrary valid f32
value

Required

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 283

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Clamp operation supports the following data type combinations.

Src Dst
f32 f32
f16 f16
bf16 bf16

ClampBackward

ClampBackward operation computes gradient for Clamp.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

min The lower bound of
values in the output.
Any value in the in-
put that is smaller
than the bound, is re-
placed with the min
value.

f32 Arbitrary valid f32
value

Required

max The upper bound of
values in the output.
Any value in the in-
put that is greater
than the bound, is re-
placed with the max
value.

f32 Arbitrary valid f32
value

Required

use_dst If true, use dst of
Clamp operation to
calculate the gradi-
ent. Otherwise, use
src.

bool true (default),
false

Optional

4.6. Graph extension 284

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src / dst Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

ClampBackward operation supports the following data type combinations.

Src / Dst Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

Concat

Concat operation concatenates 𝑁 tensors over axis (here designated 𝐶) and is defined as (the variable names follow
the standard Conventions):

dst(𝑜𝑢, 𝑐, 𝑖𝑛) = src _𝑖(𝑜𝑢, 𝑐′, 𝑖𝑛),

where 𝑐 = 𝐶1 + ..+ 𝐶𝑖−1 + 𝑐′.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axis Specifies dimension
along which con-
catenation happens

s64 A s64 value in the
range of [-r, r-1]
where r = rank(src)

Required

4.6. Graph extension 285

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_i Required

@note At least one input tensor is required. Data types and ranks of all input tensors should match. The dimensions
of all input tensors should be the same except for the dimension specified by axis attribute.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Concat operation supports the following data type combinations.

Src_i Dst
f32 f32
bf16 bf16
f16 f16

ConvTranspose

ConvTranspose operation performs the same computation as in ConvolutionBackwardData, except the source and des-
tination are swapped.

4.6. Graph extension 286

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the weights tensor is
moved when com-
puting convolution

s64 A s64 list containing
positive values

Required

pads_begin Controls number of
zeros to be add to the
front/top/left of spa-
tial dimensions

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right of
spatial dimensions

s64 A s64 list containing
non-negative values

Required

dilations Controls the amount
of stretching the ker-
nel before convolu-
tion

s64 A s64 list containing
positive values (>1
means dilated con-
volution)

Required

auto_pad Controls how the
padding is calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

output_padding Adds additional
amount of padding
per each spatial axis
in dst

s64 A s64 list containing
non-negative values,
all zeros by default

Optional

groups Controls how input
channels and output
channels are divided
into

s64 A positive s64 value,
1 by default

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

weights_format Controls how to in-
terpret the shape of
weights

string IOX, XOI (default) Optional

4.6. Graph extension 287

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 weights Required
2 bias Optional

@note The shape of weights is (𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒) for IOX format or
(𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠) for XOI format. Both 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 must
be divisible by groups attribute.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

ConvTranspose operation supports the following data type combinations.

Src Weights Bias Dst
f32 f32 f32 f32
bf16 bf16 bf16 bf16
f16 f16 f16 f16

ConvTransposeBackwardData

ConvTransposeBackwardData operation takes diffdst and weights and computes diffsrc.

4.6. Graph extension 288

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the weights tensor is
moved when com-
puting convolution

s64 A s64 list containing
positive values

Required

pads_begin Controls number of
zeros to be add to the
front/top/left of spa-
tial dimensions

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right of
spatial dimensions

s64 A s64 list containing
non-negative values

Required

dilations Controls the amount
of stretching the ker-
nel before convolu-
tion

s64 A s64 list containing
positive values (>1
means dilated con-
volution)

Required

auto_pad Controls how the
padding is calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

output_padding Adds additional
amount of padding
per each spatial axis
in dst

s64 A s64 list containing
non-negative values,
all zeros by default

Optional

groups Controls how input
channels and output
channels are divided
into

s64 A positive s64 value,
1 by default

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

weights_format Controls how to in-
terpret the shape of
weights

string IOX, XOI (default) Optional

4.6. Graph extension 289

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 diff_dst Required
1 weights Required

@note The shape of weights is (𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒) for IOX format or
(𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠) for XOI format. Both 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 must
be divisible by groups attribute.

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

ConvTransposeBackwardData operation supports the following data type combinations.

Diff_dst Weights Diff_src
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

ConvTransposeBackwardWeights

ConvTransposeBackwardWeights operation takes diff_dst, src and optional 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑠ℎ𝑎𝑝𝑒 computes diff_weights.

4.6. Graph extension 290

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the weights tensor is
moved when com-
puting convolution

s64 A s64 list containing
positive values

Required

pads_begin Controls number of
zeros to be add to the
front/top/left of spa-
tial dimensions

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right of
spatial dimensions

s64 A s64 list containing
non-negative values

Required

dilations Controls the amount
of stretching the ker-
nel before convolu-
tion

s64 A s64 list containing
positive values (>1
means dilated con-
volution)

Required

auto_pad Controls how the
padding is calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

output_padding Adds additional
amount of padding
per each spatial axis
in dst

s64 A s64 list containing
non-negative values,
all zeros by default

Optional

groups Controls how input
channels and output
channels are divided
into

s64 A positive s64 value,
1 by default

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

weights_format Controls how to in-
terpret the shape of
weights

string IOX, XOI (default) Optional

weights_shape Denotes the shape of
the weights tensor

s64 A s64 list containing
positive values

Optional

4.6. Graph extension 291

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required
2 weights_shape Optional

@note The shape of weights is (𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒) for IOX format or
(𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠) for XOI format. Both 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 must
be divisible by groups attribute.

@note Either weights_shape input or weights_shape attribute should be provided. If both provided,
weights_shape input will precede over the weights_shape attribute.

Outputs

Index Argument Name Required or Optional
0 diff_weights Required

Supported Data Types

ConvTransposeBackwardWeights operation supports the following data type combinations.

Src Diff_dst Diff_weights Weights_shape
f32 f32 f32 s32
bf16 bf16 bf16 s32
f16 f16 f16 s32

Convolution

Convolution operation performs the convolution between src tensor and weight tensor, which is defined as by the
following formulas. Variable names follow the standard Conventions.

Let src, weights and dst tensors have shape 𝑁 ×𝐼𝐶×𝐼𝐻×𝐼𝑊 , 𝑂𝐶×𝐼𝐶×𝐾𝐻×𝐾𝑊 , and 𝑁 ×𝑂𝐶×𝑂𝐻×𝑂𝑊
respectively.

Furthermore, let the remaining convolution parameters be:

4.6. Graph extension 292

oneAPI Specification, Release 1.4-provisional-rev-1

Parameter Depth Height Width Comment
Paddings: Front, top,
and left

𝑃𝐷𝐿 𝑃𝐻𝐿 𝑃𝑊𝐿 In the attributes we use pads_begin to indicate the correspond-
ing vector of paddings

Padding: Back, bottom,
and right

𝑃𝐷𝑅 𝑃𝐻𝑅 𝑃𝑊𝑅 In the attributes we use pads_end to indicate the corresponding
vector of paddings

Stride 𝑆𝐷 𝑆𝐻 𝑆𝑊 In the attributes we use strides to indicate the corresponding
vector of strides

Dilation 𝐷𝐷 𝐷𝐻 𝐷𝑊 In the attributes we use dilations to indicate the correspond-
ing vector of dilations

To further simplify the formulas, we assume that the attribute data_format and weights_format are set to NCX and
OIX respectively. NCX means the fist axis represents batch dimension, the second axis represents channel dimension
and the rest represents spatial dimensions. OIX means the first axis represents output channel dimension, the second
axis represents input channel dimension and the rest represents weights spatial dimensions.

Regular Convolution

This is the same as the formula in Convolution primitive :ref:`convolution-label.

dst(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = bias(𝑜𝑐)

+

𝐼𝐶−1∑︁
𝑖𝑐=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑖𝑐, 𝑜ℎ′, 𝑜𝑤′) · weights(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤).

Here:

• 𝑂𝐻 =
⌊︀
𝐼𝐻−𝐾𝐻+𝑃𝐻𝐿+𝑃𝐻𝑅

𝑆𝐻

⌋︀
+ 1,

• 𝑂𝑊 =
⌊︀
𝐼𝑊−𝐾𝑊+𝑃𝑊𝐿+𝑃𝑊𝑅

𝑆𝑊

⌋︀
+ 1.

Convolution with Groups

The attribute groups is set to > 1.

dst(𝑛, 𝑔 ·𝑂𝐶𝐺 + 𝑜𝑐𝑔, 𝑜ℎ, 𝑜𝑤) = bias(𝑔 ·𝑂𝐶𝐺 + 𝑜𝑐𝑔)

+

𝐼𝐶𝐺−1∑︁
𝑖𝑐𝑔=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑔 · 𝐼𝐶𝐺 + 𝑖𝑐𝑔, 𝑜ℎ
′, 𝑜𝑤′) · weights(𝑔, 𝑜𝑐𝑔, 𝑖𝑐𝑔, 𝑘ℎ, 𝑘𝑤),

where

• 𝐼𝐶𝐺 = 𝐼𝐶
𝐺 ,

• 𝑂𝐶𝐺 = 𝑂𝐶
𝐺 , and

• 𝑜𝑐𝑔 ∈ [0, 𝑂𝐶𝐺).

4.6. Graph extension 293

oneAPI Specification, Release 1.4-provisional-rev-1

Convolution with Dilation

The attribute dilations contains the element which is > 1.

dst(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = bias(𝑜𝑐)+

+

𝐼𝐶−1∑︁
𝑖𝑐=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑖𝑐, 𝑜ℎ′′, 𝑜𝑤′′) · weights(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤).

Here:

• 𝑂𝐻 =
⌊︀
𝐼𝐻−𝐷𝐾𝐻+𝑃𝐻𝐿+𝑃𝐻𝑅

𝑆𝐻

⌋︀
+ 1, where 𝐷𝐾𝐻 = 1 + (𝐾𝐻 − 1) ·𝐷𝐻 , and

• 𝑂𝑊 =
⌊︀
𝐼𝑊−𝐷𝐾𝑊+𝑃𝑊𝐿+𝑃𝑊𝑅

𝑆𝑊

⌋︀
+ 1, where 𝐷𝐾𝑊 = 1 + (𝐾𝑊 − 1) ·𝐷𝑊 .

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the weights tensor is
moved when com-
puting convolution

s64 A s64 list containing
positive values

Required

pads_begin Controls number of
zeros to be add to the
front/top/left of spa-
tial dimensions

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right of
spatial dimensions

s64 A s64 list containing
non-negative values

Required

dilations Controls the amount
of stretching the ker-
nel before convolu-
tion

s64 A s64 list containing
positive values (>1
means dilated con-
volution)

Required

auto_pad Controls how the
padding is calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

groups Controls how input
channels and output
channels are divided
into

s64 A positive s64 value,
1 by default

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

weights_format Controls how to in-
terpret the shape of
weights

string OIX, XIO (default) Optional

4.6. Graph extension 294

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 weights Required
2 bias Optional

@note The shape of weights is (𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒) for OIX format or
(𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) for XIO format. Both 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 must
be divisible by groups attribute.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Convolution operation supports the following data type combinations.

Src Weights Bias Dst
f32 f32 f32 f32
bf16 bf16 bf16 bf16
f16 f16 f16 f16

ConvolutionBackwardData

ConvolutionBackwardData operation accepts diff_dst, weights and optional dst shape as inputs, and compute the
diff_src.

If auto_pad attribute is specified to one of valid, same_upper and same_lower, pads_begin and pads_end
attributes will be ignored. The paddings will be calculated by following the below formula:

Let the parameters be:

4.6. Graph extension 295

oneAPI Specification, Release 1.4-provisional-rev-1

Parameter Depth Height Width Comment
Paddings: Front, top,
and left

𝑃𝐷𝐿 𝑃𝐻𝐿 𝑃𝑊𝐿 In the attributes we use pads_begin to indicate the correspond-
ing vector of paddings

Padding: Back, bottom,
and right

𝑃𝐷𝑅 𝑃𝐻𝑅 𝑃𝑊𝑅 In the attributes we use pads_end to indicate the corresponding
vector of paddings

Stride 𝑆𝐷 𝑆𝐻 𝑆𝑊 In the attributes we use strides to indicate the corresponding
vector of strides

Dilation 𝐷𝐷 𝐷𝐻 𝐷𝑊 In the attributes we use dilations to indicate the correspond-
ing vector of dilations

Firstly, 𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑑𝑑𝑖𝑛𝑔 is calculated according to 𝑠𝑟𝑐_𝑠ℎ𝑎𝑝𝑒 and 𝑑𝑠𝑡_𝑠ℎ𝑎𝑝𝑒. Let 𝑠𝑟𝑐_ℎ be height dimension of
𝑠𝑟𝑐_𝑠ℎ𝑎𝑝𝑒 and 𝑑𝑠𝑡_ℎ be height dimension of 𝑑𝑠𝑡_𝑠ℎ𝑎𝑝𝑒.

𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑑𝑑𝑖𝑛𝑔ℎ = 𝑆𝐻 × (𝑠𝑟𝑐ℎ − 1) + ((𝐾𝐻 − 1)×𝐷𝐻 + 1)− dstℎ +𝑜𝑢𝑡𝑝𝑢𝑡_𝑝𝑎𝑑𝑑𝑖𝑛𝑔ℎ

If auto_pad attribute is specified as valid:

𝑃𝐷𝐿 = 0

𝑃𝐷𝑅 = 0

If auto_pad attribute is specified as same_lower:

𝑃𝐷𝐿 = 𝑓𝑙𝑜𝑜𝑟(𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑑𝑑𝑖𝑛𝑔/2)
𝑃𝐷𝑅 = 𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑃𝐷𝐿

If auto_pad attribute is specified as same_upper:

𝑃𝐷𝐿 = 𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑃𝐷𝑅

𝑃𝐷𝑅 = 𝑓𝑙𝑜𝑜𝑟(𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑑𝑑𝑖𝑛𝑔/2)

where:

• 𝑑𝑠𝑡_𝑠ℎ𝑎𝑝𝑒 is either an attribute or an input tensor,

• 𝑜𝑢𝑡𝑝𝑢𝑡_𝑝𝑎𝑑𝑑𝑖𝑛𝑔 is an optional attribute.

4.6. Graph extension 296

oneAPI Specification, Release 1.4-provisional-rev-1

4.6. Graph extension 297

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the weights tensor is
moved when com-
puting convolution

s64 A s64 list containing
positive values

Required

pads_begin Controls number
of zeros to be add
to the front/top/left
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

dilations Controls the amount
of stretching the ker-
nel before convolu-
tion

s64 A s64 list containing
positive values (>1
means dilated con-
volution)

Required

auto_pad Controls how the
padding is calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

output_padding Adds additional
amount of padding
per each spatial axis
in dst

s64 A s64 list containing
non-negative
values, all zeros by
default

Optional

groups Controls how input
channels and output
channels are divided
into

s64 A positive s64 value,
1 by default

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

weights_format Controls how to in-
terpret the shape of
weights

string OIX, XIO (default) Optional

dst_shape Denotes the shape of
the dst tensor

s64 A s64 list containing
positive values

Optional4.6. Graph extension 298

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 diff_dst Required
1 weights Required
2 dst_shape Optional

@note The shape of weights is (𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒) for OIX format or
(𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) for XIO format. Both 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 must
be divisible by groups attribute.

@note Either dst_shape input or dst_shape attribute should be provided. If both provided, dst_shape input will
precede over dst_shape attribute.

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

ConvolutionBackwardData operation supports the following data type combinations.

Diff_dst Weights Diff_src Dst_shape
f32 f32 f32 s32
bf16 bf16 bf16 s32
f16 f16 f16 s32

ConvolutionBackwardWeights

ConvolutionBackwardWeights operation accepts src, diff_dst and optional weights shape as inputs, and compute the
diff_weights.

4.6. Graph extension 299

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the weights tensor is
moved when com-
puting convolution

s64 A s64 list containing
positive values

Required

pads_begin Controls number
of zeros to be add
to the front/top/left
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

dilations Controls the amount
of stretching the ker-
nel before convolu-
tion

s64 A s64 list containing
positive values (>1
means dilated con-
volution)

Required

auto_pad Controls how the
padding is calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

groups Controls how input
channels and output
channels are divided
into

s64 A positive s64 value,
1 by default

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

weights_format Controls how to in-
terpret the shape of
weights

string OIX, XIO (default) Optional

weights_shape Denotes the shape of
the weights tensor

s64 A s64 list containing
positive values

Optional

4.6. Graph extension 300

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required
2 weights_shape Optional

@note The shape of weights is (𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒) for OIX format or
(𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠ℎ𝑎𝑝𝑒, 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠/𝑔𝑟𝑜𝑢𝑝𝑠, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) for XIO format. Both 𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 must
be divisible by groups attribute.

@note Either weights_shape input or weights_shape attribute should be provided. If both provided,
weights_shape input will precede over weights_shape attribute.

Outputs

Index Argument Name Required or Optional
0 diff_weights Required

Supported Data Types

ConvolutionBackwardWeights operation supports the following data type combinations.

Src Diff_dst Diff_weights Weights_shape
f32 f32 f32 s32
bf16 bf16 bf16 s32
f16 f16 f16 s32

Dequantize

Dequantize operation converts a quantized (u8 or s8) tensor to a f32 tensor. It supports both per-tensor and per-channel
asymmetric linear de-quantization. Rounding mode is library-implementation defined.

For per-tensor de-quantization:

dst𝑓32 = 𝑟𝑜𝑢𝑛𝑑((src𝑖−𝑧𝑝𝑠)× 𝑠𝑐𝑎𝑙𝑒)

For per-channel de-quantization, taking channel axis = 1 as an example:

dst··· ,𝑖,··· ,··· = (src··· ,𝑖,··· ,···−𝑧𝑝𝑠𝑖)× 𝑠𝑐𝑎𝑙𝑒𝑖, 𝑖 ∈ [0, 𝑖𝑐− 1]

where 𝑖𝑐 is the number of channels.

4.6. Graph extension 301

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

qtype Specifies which de-
quantization type is
used

string per_tensor
(default),
per_channel

Optional

axis Specifies dimen-
sion on which
per-channel de-
quantization is
applied

s64 A s64 value in the
range of [-r, r-1]
where r = rank(src),
1 by default

Optional

scales Scalings applied on
the src data

f32 A f32 list (only
contain one ele-
ment if qtype is
per_tensor)

Required

zps Offset values that
maps to float zero

s64 A s64 list (only
contain one ele-
ment if qtype is
per_tensor)

Required

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 302

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Dequantize operation supports the following data type combinations.

Src Dst
s8, u8 f32

@note This operation is to support int8 quantization model.

Divide

Divide operation performs element-wise division operation with two given tensors applying multi-directional broadcast
rules.

dst(𝑥) = src _0(𝑥) / src _1(𝑥),

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_0 Required
1 src_1 Required

@note Both src shapes should match and no auto-broadcasting is allowed if auto_broadcast attributes is none.
src_0 and src_1 shapes can be different and auto-broadcasting is allowed if auto_broadcast attributes is numpy.
Broadcasting is performed according to auto_broadcast value.

4.6. Graph extension 303

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Divide operation supports the following data type combinations.

Src_0 / Src_1 Dst
f32 f32
bf16 bf16
f16 f16

DynamicDequantize

DynamicDequantize operation converts a quantized (s8 or u8) tensor to a f32 tensor. It supports both per-tensor and per-
channel asymmetric linear de-quantization. Rounding mode is library-implementation defined. Unlike the Dequantize,
DynamicDequantize takes scales and zero-points as operator src tensors.

For per-tensor de-quantization

𝑑𝑠𝑡 = (𝑠𝑟𝑐− 𝑧𝑝𝑠) * 𝑠𝑐𝑎𝑙𝑒𝑠

For per-channel de-quantization, taking channel axis = 1 as an example:

dst··· ,𝑖,··· ,··· = (src··· ,𝑖,··· ,···−𝑧𝑝𝑠𝑖) * 𝑠𝑐𝑎𝑙𝑒𝑠𝑖, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

qtype Specifies which de-
quantization type is
used

string per_tensor
(default),
per_channel

Optional

axis Specifies dimen-
sion on which
per-channel de-
quantization is
applied

s64 A s64 value in the
range of [-r, r-1]
where r = rank(src),
1 by default

Optional

4.6. Graph extension 304

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 scales Required
2 zps Optional

@note scales is a f32 1D tensor to be applied to the de-quantization formula. For qtype = per-tensor, there
should be only one element in the scales tensor. For qtype = per-channel, the element number should be equal to
the element number of src tensor along the dimension axis.

@note zps is a 1D tensor with offset values that map to zero. For qtype = per-tensor, there should be only one
element in the zps tensor. For qtype = per-channel, the element number should be equal to the element number of
input tensor along the dimension axis. If not specified, the library can assume the operator is symmetric de-quantization
and perform kernel optimization accordingly.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

DynamicDequantize operation supports the following data type combinations.

Src Dst Scales Zps
s8 f32 f32 s8, u8, s32
u8 f32 f32 s8, u8, s32

DynamicQuantize

DynamicQuantize operation converts a f32 tensor to a quantized (s8 or u8) tensor. It supports both per-tensor and
per-channel asymmetric linear quantization. The target quantized data type is specified via the data type of dst logical
tensor. Rounding mode is library-implementation defined.

For per-tensor quantization:

dst𝑖 = 𝑟𝑜𝑢𝑛𝑑(src𝑖 /𝑠𝑐𝑎𝑙𝑒+ 𝑧𝑝)

For per-channel quantization, taking channel axis = 1 as an example:

𝑑𝑠𝑡··· ,𝑖,··· ,··· = 𝑟𝑜𝑢𝑛𝑑(src··· ,𝑖,··· ,··· /𝑠𝑐𝑎𝑙𝑒𝑖 + 𝑧𝑝𝑖), 𝑖 ∈ [0, 𝑖𝑐− 1]

where 𝑖𝑐 is the number of channels.

4.6. Graph extension 305

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

qtype Specifies which de-
quantization type is
used

string per_tensor
(default),
per_channel

Optional

axis Specifies dimen-
sion on which
per-channel de-
quantization is
applied

s64 A s64 value in the
range of [-r, r-1]
where r = rank(src),
1 by default

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 scales Required
2 zps Optional

@note scales is a f32 1D tensor to be applied to the quantization formula. For qtype = per-tensor, there should be
only one element in the scales tensor. For qtype = per-channel, the element number should be equal to the element
number of src tensor along the dimension axis.

@note zps is a 1D tensor with offset values that map to zero. For qtype = per-tensor, there should be only one
element in the zps tensor. For qtype = per-channel, the element number should be equal to the element number of
input tensor along the dimension axis. If not specified, the library can assume the operator is symmetric quantization
and perform kernel optimization accordingly.

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 306

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

DynamicQuantize operation supports the following data type combinations.

Src Scales Zps Dst
f32 f32 s8, u8, s32 s8
f32 f32 s8, u8, s32 u8

Elu

Elu operation applies following formula on every element of src tensor (the variable names follow the standard Con-
ventions):

dst =

{︃
𝛼(𝑒src − 1) if src < 0

src if src ≥ 0

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

alpha Scale for the nega-
tive factor.

f32 Arbitrary non-
negative f32 value

Required

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 307

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Elu operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

EluBackward

EluBackward operation computes gradient for Elu operation.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

alpha Scale for the nega-
tive factor.

f32 Arbitrary non-
negative f32 value

Required

use_dst If true, use dst of
Elu operation to cal-
culate the gradient.
Otherwise, use src.

bool true (default),
false

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src / dst Required
1 diff_dst Required

4.6. Graph extension 308

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

EluBackward operation supports the following data type combinations.

Src / Dst Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

End

End operation is used to help construct graph, for example tracking the uses of a tensor.

Operation Attributes

End operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

End operation does not support output tensor.

4.6. Graph extension 309

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

End operation supports the following data type combinations.

Src Destination
f32 f32
bf16 bf16
f16 f16

Exp

Exp operation is an exponential element-wise activation function, it applies following formula on every element of src
tensor (the variable names follow the standard Conventions):

𝑑𝑠𝑡 = 𝑒𝑠𝑟𝑐

Operation Attributes

Exp operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 310

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Exp operation supports the following data type combinations.

Src Dst
f32 f32
f16 f16
bf16 bf16

GELU

GELU operation applies following formula on every element of src tensor (the variable names follow the standard
Conventions):

dst = 0.5 src ·(1.0 + 𝑒𝑟𝑓(src)/
√
2)

Operation Attributes

GELU operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 311

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

GELU operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

GELUBackward

GELUBackward operation computes gradient for GELU.

Operation Attributes

GELUBackward operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

GELUBackward operation supports the following data type combinations.

Src Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

4.6. Graph extension 312

oneAPI Specification, Release 1.4-provisional-rev-1

HardSigmoid

HardSigmoid operation applies the following formula on every element of src tensor (the variable names follow the
standard @ref dev_guide_conventions):

dst = max(0,min(1, 𝛼 src+𝛽))

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

alpha 𝛼 in the formula. f32 Arbitrary f32 value Required
beta 𝛽 in the formula. f32 Arbitrary f32 value Required

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

HardSigmoid operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 313

oneAPI Specification, Release 1.4-provisional-rev-1

HardSigmoidBackward

HardSigmoidBackward operation computes gradient for HardSigmoid. The formula is defined as follows:

diff_src =

{︃
diff_dst ·𝛼 if 0 < 𝛼 src+𝛽 < 1

0 otherwise

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

alpha 𝛼 in the formula. f32 Arbitrary f32 value Required
beta 𝛽 in the formula. f32 Arbitrary f32 value Required

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

HardSigmoidBackward operation supports the following data type combinations.

Src Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

4.6. Graph extension 314

oneAPI Specification, Release 1.4-provisional-rev-1

HardSwish

HardSwish operation applies following formula on every element of src tensor (the variable names follow the standard
Conventions):

dst = src *min(max(src+3, 0), 6)

6

Operation Attributes

HardSwish operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

HardSwish operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 315

oneAPI Specification, Release 1.4-provisional-rev-1

HardSwishBackward

HardSwishBackward operation computes gradient for HardSwish.

Operation Attributes

HardSwishBackward operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

HardSwishBackward operation supports the following data type combinations.

Src Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

Interpolate

Interpolate layer performs interpolation on src tensor at spatial dimensions.

4.6. Graph extension 316

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

mode Specifies type of in
terpolation

string nearest, linear,
bilinear,
trilinear

Required

coordinate_transformation_modeSpecifies how to
transform the coor-
dinate in the resized
tensor to the coordi-
nate in the original
tensor

string half_pixel
(default),
align_corners

Optional

sizes Specifies dst shape
for spatial axes.

s64 A s64 list contain-
ing positive values,
none is default

Optional

scales Specifies scales
for spatial axes.

f32 A f32 list, none is
default

Optional

data_format Controls how to in-
terpret the shape of
src and dst

string NCX, NXC (default) Optional

@note Either sizes or scales should be provided. When sizes is used, scales will be ignored.

@note The attribute coordinate_transformation_mode is the name of transformation mode in string format. Here
scale[x] is dst_shape[x]/src_shape[x] and x_resized is a coordinate in axis x,for any axis x from the src axis.n
For half_pixel: the coordinate in the original tensor axis x is calculated as ((x_resized + 0.5) / scale[x])
- 0.5.n For align_corners: the coordinate in the original tensor axis x is calculated as 0 if dst_shape[x] == 1
else x_resized * (src_shape[x] - 1) / (dst_shape[x] - 1).

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 sizes Optional

@note sizes is a 1D tensor describing output shape for spatial axes. It is a non-differentiable tensor.

4.6. Graph extension 317

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The shape of the dst matches src shape except spatial dimensions. For spatial dimensions, they should match
sizes from sizes or calculated from scales attribute.

Supported Data Types

Interpolate operation supports the following data type combinations.

Src / Dst Sizes
f32 s32
bf16 s32
f16 s32

InterpolateBackward

InterpolateBackward computes the gradients of Interpolate operation.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

mode Specifies type of in
terpolation

string nearest, linear,
bilinear,
trilinear

Required

coordinate_transformation_modeSpecifies how to
transform the coor-
dinate in the resized
tensor to the coordi-
nate in the original
tensor

string half_pixel
(default),
align_corners

Optional

sizes Specifies dst shape
for spatial axes.

s64 A s64 list contain-
ing positive values,
none is default

Optional

scales Specifies scales
for spatial axes.

f32 A f32 list, none is
default

Optional

data_format Controls how to in-
terpret the shape of
src and dst

string NCX, NXC (default) Optional

@note Either sizes or scales should be provided. When sizes is used, scales will be ignored.

4.6. Graph extension 318

oneAPI Specification, Release 1.4-provisional-rev-1

@note The attribute coordinate_transformation_mode is the name of transformation mode in string format.n Here
scale[x] is dst_shape[x]/src_shape[x] and x_resized is a coordinate in axis x,for any axis x from the src axis.n
For half_pixel: the coordinate in the original tensor axis x is calculated as ((x_resized + 0.5) / scale[x])
- 0.5.n For align_corners: the coordinate in the original tensor axis x is calculated as 0 if dst_shape[x] == 1
else x_resized * (src_shape[x] - 1) / (dst_shape[x] - 1).n

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required
2 sizes Optional

@note src is original input tensor of Interpolate op.n diff_dst is the gradient tensor with respect to the dst.n sizes
is a 1D tensor describing output shape for spatial axes.

Outputs

Index Argument Name Required or Optional
0 diff_src Required

@note diff_src is the gradient tensor with respect to the src of Interpolate.

Supported Data Types

InterpolateBackward operation supports the following data type combinations.

Src Diff_dst Diff_src Sizes
f32 f32 f32 s32
bf16 bf16 bf16 s32
f16 f16 f16 s32

4.6. Graph extension 319

oneAPI Specification, Release 1.4-provisional-rev-1

LayerNorm

LayerNorm performs a layer normalization operation on src tensor.

The layerNorm operation performs normalization from begin_norm_axis to last dimension of the data tensor. It is
defined by the following formulas which is the same as Layer normalization.

dst(𝑡, 𝑛, 𝑐) = 𝛾(𝑐) · src(𝑡, 𝑛, 𝑐)− 𝜇(𝑡, 𝑛)√︀
𝜎2(𝑡, 𝑛) + 𝜖

+ 𝛽(𝑐),

where

• 𝛾(𝑐), 𝛽(𝑐) are optional scale and shift for a channel

• 𝜇(𝑡, 𝑛), 𝜎2(𝑡, 𝑛) are mean and variance (see

• 𝜖 is a constant to improve numerical stability.

Mean and variance are computed at runtime or provided by a user. When mean and variance are computed at runtime,
the following formulas are used:

• 𝜇(𝑡, 𝑛) = 1
𝐶

∑︀
𝑐
src(𝑡, 𝑛, 𝑐),

• 𝜎2(𝑡, 𝑛) = 1
𝐶

∑︀
𝑐
(src(𝑡, 𝑛, 𝑐)− 𝜇(𝑡, 𝑛))2.

4.6. Graph extension 320

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

keep_stats Indicate whether to
output mean and
variance which can
be later passed to
backward op

bool false, true (de-
fault)

Optional

begin_norm_axis begin_norm_axis
is used to indicate
which axis to start
layer normaliza-
tion. The normal-
ization is from
begin_norm_axis
to last dimension.
Negative values
means indexing
from right to left.
This op normalizes
over the last di-
mension by default,
e.g. C in TNC for
3D and LDNC for
4D.

s64 [-r,r-1],where
r=rank(src). -1 is
default

Optional

use_affine When set to True,
this module has
learnable per-
element affine
parameters.

bool false, true (de-
fault)

Optional

epsilon The constant to im-
prove numerical sta-
bility

f32 Arbitrary positive
f32 value, 1e-5
(default)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

4.6. Graph extension 321

oneAPI Specification, Release 1.4-provisional-rev-1

Inputs

Index Argument Name Required or Optional
0 src Required
1 gamma Optional
2 beta Optional

@note gamma is scaling for normalized value. beta is the bias added to the scaled normalized value. They are both
1D tensor with the same span as src’s channel axis and required if attribute use_affine is set to True.

Outputs

Index Argument Name Required or Optional
0 dst Required
1 mean Optional
2 variance Optional

@note Both mean and variance are required if attribute keep_stats is set to True.

Supported Data Types

LayerNorm operation supports the following data type combinations.

Src / Dst Gamma / Beta / Mean / Variance
f32 f32
bf16 f32, bf16
f16 f32

LayerNormBackward

LayerNormBackward performs the backward of LayerNorm operation.

The backward propagation computes diff_src(𝑡, 𝑛, 𝑐), diff_𝛾(𝑐)*, and diff_𝛽(𝑐)* based on diff_dst(𝑡, 𝑛, 𝑐),
𝑠𝑟𝑐(𝑡, 𝑛, 𝑐), 𝜇(𝑡, 𝑛), 𝜎2(𝑡, 𝑛), 𝛾(𝑐)*, and 𝛽(𝑐)*.

The tensors marked with an asterisk are used only when the operation is configured to use 𝛾(𝑐), and 𝛽(𝑐)

4.6. Graph extension 322

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

begin_norm_axis begin_norm_axis
is used to indicate
which axis to start
layer normaliza-
tion. The normal-
ization is from
begin_norm_axis
to last dimension.
Negative values
means indexing
from right to left.
This op normalizes
over the last di-
mension by default,
e.g. C in TNC for
3D and LDNC for
4D.

s64 [-r,r-1],where
r=rank(src). -1 is
default

Optional

use_affine When set to True,
this module has
learnable per-
element affine
parameters.

bool false, true (de-
fault)

Optional

epsilon The constant to im-
prove numerical sta-
bility

f32 Arbitrary positive
f32 value, 1e-5
(default)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required
2 mean Required
3 variance Required
4 gamma Optional
5 beta Optional

@note gamma is scaling for normalized value. beta is the bias added to the scaled normalized value. They are both
1D tensor with the same span as src’s channel axis and required if attribute use_affine is set to True.

4.6. Graph extension 323

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 diff_src Required
1 diff_gamma Optional
2 diff_beta Optional

Supported Data Types

LayerNormBackward operation supports the following data type combinations.

Src / Diff_dst / Diff_src Gamma / Beta / Mean / Variance / Diff_gamma / Diff_beta
f32 f32
bf16 f32, bf16
f16 f32

LeakyReLU

LeakyReLU operation is a type of activation function based on ReLU. It has a small slope for negative values with
which LeakyReLU can produce small, non-zero, and constant gradients with respect to the negative values. The slope
is also called the coefficient of leakage.

Unlike PReLU, the coefficient 𝛼 is constant and defined before training.

LeakyReLU operation applies following formula on every element of src tensor (the variable names follow the standard
Conventions):

dst =

{︃
src if src ≥ 0

𝛼 src if src < 0

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

alpha Alpha is the coeffi-
cient of leakage.

f32 Arbitrary f32 value
but usually a small
positive value.

Required

4.6. Graph extension 324

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

LeakyReLU operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

Log

Log operation performs element-wise natural logarithm operation with given tensor, it applies following formula on
every element of src tensor (the variable names follow the standard Conventions):

dst = log(src)

Operation Attributes

Log operation does not support any attribute.

4.6. Graph extension 325

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Log operation supports the following data type combinations.

Src Dst
f32 f32
f16 f16
bf16 bf16

LogSoftmax

LogSoftmax operation applies the log(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑟𝑐))‘ function to an n-dimensional input Tensor. The formulation
can be simplified as:

dst𝑖 = log
(︁ 𝑒(src𝑖)∑︀

𝑗 𝑒
(src𝑗)

)︁

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axis Represents the
axis of which the
LogSoftmax is
calculated.

s64 Arbitrary s64 value
(-1 in default)

Optional

4.6. Graph extension 326

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

LogSoftmax operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

LogSoftmaxBackward

LogSoftmaxBackward operation computes gradient for LogSoftmax.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axis Represents the
axis of which the
LogSoftmax is
calculated.

s64 Arbitrary s64 value
(-1 in default)

Optional

4.6. Graph extension 327

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 diff_dst Required
1 dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

LogSoftmaxBackward operation supports the following data type combinations.

Diff_dst Dst Diff_src
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

MatMul

MatMul operation computes the product of two tensors with optional bias addition The variable names follow the
standard Conventions, typically taking 2D input tensors as an example, the formula is below:

dst(𝑚,𝑛) =

𝐾−1∑︁
𝑘=0

(src(𝑚, 𝑘) · weights(𝑘, 𝑛)) + bias(𝑚,𝑛)

In the shape of a tensor, two right-most axes are interpreted as row and column dimensions of a matrix while all left-
most axes (if present) are interpreted as batch dimensions. The operation supports broadcasting semantics for those
batch dimensions. For example src can be broadcasted to weights if the corresponding dimension in src is 1 (and vice
versa). Additionally, if ranks of src and weights are different, the tensor with a smaller rank will be unsqueezed from
the left side of dimensions (inserting 1) to make sure two ranks matched.

4.6. Graph extension 328

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

transpose_a Controls whether to
transpose the last
two dimensions of
src

bool True, False (default) Optional

transpose_b Controls whether to
transpose the last
two dimensions of
weights

bool True, False (default) Optional

The above transpose attributes will not be in effect when rank of an input tensor is less than 2. For example, in library
implementation 1D tensor is unsqueezed firstly before compilation. The rule is applied independently.

• For src tensor, the rule is defined like: [d] -> [1, d].

• For weights tensor, the rule is defined like: [d] -> [d, 1].

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 weights Required
2 bias Optional

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 329

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

MatMul operation supports the following data type combinations.

Src Weights Bias Dst
f32 f32 f32 f32
bf16 bf16 bf16 bf16
f16 f16 f16 f16

MaxPool

MaxPool operation performs the computation following the below formulas. Variable names follow the standard Con-
ventions.

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) = max
𝑘ℎ,𝑘𝑤

(src(𝑛, 𝑐, 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ · (𝐷𝐻 + 1)− 𝑃𝐻𝐿, 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 · (𝐷𝑊 + 1)− 𝑃𝑊𝐿))

4.6. Graph extension 330

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the window is
moved

s64 A s64 list containing
positive values

Required

pads_begin Controls number
of zeros to be add
to the front/top/left
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

kernel Size of pooling win-
dow

s64 A s64 list containing
positive values

Required

dilations Denotes the distance
in width and height
between elements.

s64 A s64 list contain-
ing positive values, a
list of 1 s (default)
means no dilation

Optional

rounding_type Controls how to do
rounding

string floor (default),
ceil

Optional

auto_pad Controls how the
paddings are calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

4.6. Graph extension 331

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

MaxPool operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

MaxPoolBackward

AvgPoolBackward operation accepts src tensor and diff_dst tensor, and calculates diff_src tensor.

4.6. Graph extension 332

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

strides Controls the strides
the window is
moved

s64 A s64 list containing
positive values

Required

pads_begin Controls number
of zeros to be add
to the front/top/left
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

pads_end Controls number of
zeros to be add to the
back/bottom/right
of spatial dimen-
sions, the attribute
will be ignored
when auto_pad
attribute is specified
to same_upper,
same_lower or
valid

s64 A s64 list containing
non-negative values

Required

kernel Size of pooling win-
dow

s64 A s64 list containing
positive values

Required

dilations Denotes the distance
in width and height
between elements.

s64 A s64 list contain-
ing positive values, a
list of 1 s (default)
means no dilation

Optional

auto_pad Controls how the
paddings are calcu-
lated

string none (default),
same_upper,
same_lower,
valid

Optional

data_format Controls how to in-
terpret the shape of
src and dst.

string NCX, NXC (default) Optional

4.6. Graph extension 333

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

MaxPoolBackward operation supports the following data type combinations.

Src Diff_dst Diff_src
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

Maximum

Maximum operation performs element-wise maximum operation with two given tensors applying multi-directional
broadcast rules.

dst(𝑥) = max(src _0(𝑥), src _1(𝑥))

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

4.6. Graph extension 334

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_0 Required
1 src_1 Required

@note Both src shapes should match and no auto-broadcasting is allowed if auto_broadcast attributes is none.
src_0 and src_1 shapes can be different and auto-broadcasting is allowed if auto_broadcast attributes is numpy.
Broadcasting is performed according to auto_broadcast value.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Maximum operation supports the following data type combinations.

Src_0 / Src_1 Dst
f32 f32
bf16 bf16
f16 f16

Minimum

Minimum operation performs element-wise minimum operation with two given tensors applying multi-directional
broadcast rules.

dst(𝑥) = min(src _0(𝑥), src _1(𝑥))

4.6. Graph extension 335

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_0 Required
1 src_1 Required

@note Both src shapes should match and no auto-broadcasting is allowed if auto_broadcast attributes is none.
src_0 and src_1 shapes can be different and auto-broadcasting is allowed if auto_broadcast attributes is numpy.
Broadcasting is performed according to auto_broadcast value.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Minimum operation supports the following data type combinations.

Src_0 / Src_1 Dst
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 336

oneAPI Specification, Release 1.4-provisional-rev-1

Mish

Mish performs element-wise activation function on a given input tensor, based on the following mathematical formula:

dst = src * tanh(SoftPlus(𝑠𝑟𝑐)) = src * tanh(ln(1 + 𝑒src))

Operation Attributes

Mish operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Mish operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

MishBackward

MishBackward operation computes gradient for Mish.

dst = diff_dst *𝑒
src * 𝜔
𝛿2

where

𝜔 = 𝑒3 src + 4 * 𝑒2 src + 𝑒src * (4 * src+6) + 4 * (src+1)

𝛿 = 𝑒2 src + 2 * 𝑒src + 2

4.6. Graph extension 337

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

MishBackward operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

MishBackward operation supports the following data type combinations.

Src Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

Multiply

Multiply operation performs element-wise multiply operation with two given tensors applying multi-directional broad-
cast rules.

dst(𝑥) = src _0(𝑥)× src _1(𝑥),

4.6. Graph extension 338

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_0 Required
1 src_1 Required

@note Both src shapes should match and no auto-broadcasting is allowed if auto_broadcast attributes is none.
src_0 and src_1 shapes can be different and auto-broadcasting is allowed if auto_broadcast attributes is numpy.
Broadcasting is performed according to auto_broadcast value.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Multiply operation supports the following data type combinations.

Src_0 / Src_1 Dst
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 339

oneAPI Specification, Release 1.4-provisional-rev-1

Pow

General

Pow operation performs an element-wise power operation on a given input tensor with a single value attribute beta as
its exponent. It is based on the following mathematical formula:

dst𝑖 = src𝛽𝑖

Operation attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

beta exponent, 𝛽 in the
formula.

f32 Arbitrary f32 value Required

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Pow operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 340

oneAPI Specification, Release 1.4-provisional-rev-1

PReLU

PReLU operation performs element-wise parametric ReLU operation on a given input tensor, based on the following
mathematical formula:

dst =

{︃
src if src ≥ 0

𝛼 src if src < 0

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

data_format Denotes the data for-
mat of the input and
output data.

string NCX, NXC (default) Optional

per_channel_broadcastDenotes whether to
apply per_channel
broadcast when
slope is 1D tensor.

bool false, true (de-
fault)

Optional

Broadcasting Rules

Only slope tensor supports broadcasting semantics. Slope tensor is uni-directionally broadcasted to src if one of the
following rules is met:

• 1: slope is 1D tensor and per_channel_broadcast is set to true, the length of slope tensor is equal to the
length of src of channel dimension.

• 2: slope is 1D tensor and per_channel_broadcast is set to false, the length of slope tensor is equal to the
length of src of the rightmost dimension.

• 3: slope is nD tensor, starting from the rightmost dimension, 𝑖𝑛𝑝𝑢𝑡.𝑠ℎ𝑎𝑝𝑒𝑖 == 𝑠𝑙𝑜𝑝𝑒.𝑠ℎ𝑎𝑝𝑒𝑖 or
𝑠𝑙𝑜𝑝𝑒.𝑠ℎ𝑎𝑝𝑒𝑖 == 1 or slope dimension i is empty.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 slope Required

4.6. Graph extension 341

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

PReLU operation supports the following data type combinations.

Src Dst Slope
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

PReLUBackward

PReLUBackward operation computes gradient for PReLU.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

data_format Denotes the data for-
mat of the input and
output data.

string NCX, NXC (default) Optional

Broadcasting Rules

Only slope tensor supports broadcasting semantics. Slope tensor is uni-directionally broadcasted to src if one of the
following rules is met:

• 1: PyTorch case: slope is 1D tensor and broadcast per channel, length of slope is equal to the length of src in
channel dimension.

• 2: PyTorch case: slope is 1D tensor and broadcast per tensor, length of slope is equal to 1.

• 3: Tensorflow case: slope is nD tensor and its dimensions must be equal to the src dimensions starting from the
second element: $ slope_shape = input_forward_shape[1:] $

4.6. Graph extension 342

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 slope Required
2 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required
1 diff_slope Required

Supported Data Types

PReLUBackward operation supports the following data type combinations.

Src Slope Diff_dst Diff_src Diff_slope
f32 f32 f32 f32 f32
bf16 bf16 bf16 bf16 bf16
f16 f16 f16 f16 f16

Quantize

Quantize operation converts a f32 tensor to a quantized (u8/s8) tensor. It supports both per-tensor and per-channel
asymmetric linear quantization. Output data type is specified in output tensor data type. Rounding mode is library-
implementation defined.

For per-tensor quantization:

dst𝑖 = 𝑟𝑜𝑢𝑛𝑑(src𝑖 /𝑠𝑐𝑎𝑙𝑒+ 𝑧𝑝)

For per-channel quantization, taking channel axis = 1 as an example:

dst··· ,𝑖,··· ,··· = 𝑟𝑜𝑢𝑛𝑑(src··· ,𝑖,··· ,··· /𝑠𝑐𝑎𝑙𝑒𝑖 + 𝑧𝑝𝑖), 𝑖 ∈ [0, 𝑖𝑐− 1]

where 𝑖𝑐 is the number of channels.

4.6. Graph extension 343

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

qtype Specifies which de-
quantization type is
used

string per_tensor
(default),
per_channel

Optional

axis Specifies dimen-
sion on which
per-channel de-
quantization is
applied

s64 A s64 value in the
range of [-r, r-1]
where r = rank(src),
1 by default

Optional

scales Scalings applied on
the src data

f32 A f32 list (only
contain one ele-
ment if qtype is
per_tensor)

Required

zps Offset values that
maps to float zero

s64 A s64 list (only
contain one ele-
ment if qtype is
per_tensor)

Required

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 344

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Quantize operation supports the following data type combinations.

Src Dst
f32 s8, u8

@note This operation is to support int8 quantization model.

ReLU

ReLU applies following formula on every element of src tensor (the variable names follow the standard Conventions):

dst =

{︃
src if src > 0

0 if src ≤ 0

Operation Attributes

ReLU operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 345

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

ReLU operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

ReLUBackward

ReLUBackward operation computes gradient for ReLU.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

use_dst If true, use dst of
ReLU operation to
calculate the gradi-
ent. Otherwise, use
src.

bool true (default),
false

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src / dst Required
1 diff_dst Required

4.6. Graph extension 346

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

ReLUBackward operation supports the following data type combinations.

Src / Dst Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

Reciprocal

Reciprocal operation is element-wise Power operation where exponent(power) equals to -1. Reciprocal of 0 is infinity.

dst =

{︃
src−1 if src ̸= 0

∞ if src = 0

Operation Attributes

Reciprocal operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

4.6. Graph extension 347

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Reciprocal operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

ReduceL1

ReduceL1 operation performs the reduction with finding the L1 norm (sum of absolute values) on a given src data
along dimensions specified by axes.

Take channel axis = 0 and keep_dims = True as an example:

dst0,··· ,··· =
∑︁
𝑖

| src𝑖,··· ,··· ‖, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

4.6. Graph extension 348

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axes Specify indices of
src tensor, along
which the reduction
is performed. If
axes is a list, reduce
over all of them.
If axes is empty,
corresponds to the
identity operation.
If axes contains
all dimensions of
src tensor, a single
reduction value is
calculated for the
entire src tensor.
Exactly one of
attribute axes and
the second input
tensor axes should
be available.

s64 A s64 list values
which is in the range
of [-r,r-1] where r
= rank(src). Empty
list(default)

Optional

keep_dims If set to true it
holds axes that are
used for reduction.
For each such axes,
dst dimension is
equal to 1.

bool true, false (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 axes Optional

@note axes is an 1-D tensor specifying the axis along which the reduction is performed. 1D tensor of unique elements.
The range of elements is [-r, r-1], where r is the rank of src tensor. Exactly one of attribute axes and the second input
tensor axes should be available.

4.6. Graph extension 349

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The result of ReduceL1 function applied to src tensor. shape[i] = shapeOf(data)[i] for all i that is not in the list
of axes from the second input. For dimensions from axes, shape[i] == 1 if keep_dims == True, or i-th dimension is
removed from the dst otherwise.

Supported Data Types

ReduceL1 operation supports the following data type combinations.

Src Dst Axes
f32 f32 s32
bf16 bf16 s32
f16 f16 s32

ReduceL2

ReduceL2 operation performs the reduction with finding the L2 norm (square root of sum of squares) on a given src
data along dimensions specified by axes.

Take channel axis = 0 and keep_dims = True as an example:

dst0,··· ,··· =

√︃∑︁
𝑖

src2𝑖,··· ,···, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

4.6. Graph extension 350

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axes Specify indices of
src tensor, along
which the reduction
is performed. If
axes is a list, reduce
over all of them.
If axes is empty,
corresponds to the
identity operation.
If axes contains
all dimensions of
src tensor, a single
reduction value is
calculated for the
entire src tensor.
Exactly one of
attribute axes and
the second input
tensor axes should
be available.

s64 A s64 list values
which is in the range
of [-r,r-1] where r
= rank(src). Empty
list(default)

Optional

keep_dims If set to true it
holds axes that are
used for reduction.
For each such axes,
dst dimension is
equal to 1.

bool true, false (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 axes Optional

@note axes is an 1-D tensor specifying the axis along which the reduction is performed. 1D tensor of unique elements.
The range of elements is [-r, r-1], where r is the rank of src tensor. Exactly one of attribute axes and the second input
tensor axes should be available.

4.6. Graph extension 351

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The result of ReduceL2 function applied to src tensor. shape[i] = shapeOf(data)[i] for all i that is not in the list
of axes from the second input. For dimensions from axes, shape[i] == 1 if keep_dims == True, or i-th dimension is
removed from the dst otherwise.

Supported Data Types

ReduceL2 operation supports the following data type combinations.

Src Dst Axes
f32 f32 s32
bf16 bf16 s32
f16 f16 s32

ReduceMax

ReduceMax operation performs the reduction with finding the maximum value on a given src data along dimensions
specified by axes.

Take channel axis = 0 and keep_dims = True as an example:

dst0,··· ,··· = max src𝑖,··· ,···, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

4.6. Graph extension 352

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axes Specify indices of
src tensor, along
which the reduction
is performed. If
axes is a list, reduce
over all of them.
If axes is empty,
corresponds to the
identity operation.
If axes contains
all dimensions of
src tensor, a single
reduction value is
calculated for the
entire src tensor.
Exactly one of
attribute axes and
the second input
tensor axes should
be available.

s64 A s64 list values
which is in the range
of [-r,r-1] where r
= rank(src). Empty
list(default)

Optional

keep_dims If set to true it
holds axes that are
used for reduction.
For each such axes,
dst dimension is
equal to 1.

bool true, false (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 axes Optional

@note axes is an 1-D tensor specifying the axis along which the reduction is performed. 1D tensor of unique elements.
The range of elements is [-r, r-1], where r is the rank of src tensor. Exactly one of attribute axes and the second input
tensor axes should be available.

4.6. Graph extension 353

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The result of ReduceMax function applied to src tensor. shape[i] = shapeOf(data)[i] for all i that is not in the
list of axes from the second input. For dimensions from axes, shape[i] == 1 if keep_dims == True, or i-th dimension is
removed from the dst otherwise.

Supported Data Types

ReduceMax operation supports the following data type combinations.

Src Dst Axes
f32 f32 s32
bf16 bf16 s32
f16 f16 s32

ReduceMean

ReduceMean operation performs the reduction with finding the arithmetic mean on a given src data along dimensions
specified by axes.

Take channel axis = 0 and keep_dims = True as an example:

dst0,··· ,··· =
1

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚
·
∑︁
𝑖

src𝑖,··· ,···, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

4.6. Graph extension 354

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axes Specify indices of
src tensor, along
which the reduction
is performed. If
axes is a list, reduce
over all of them.
If axes is empty,
corresponds to the
identity operation.
If axes contains
all dimensions of
src tensor, a single
reduction value is
calculated for the
entire src tensor.
Exactly one of
attribute axes and
the second input
tensor axes should
be available.

s64 A s64 list values
which is in the range
of [-r,r-1] where r
= rank(src). Empty
list(default)

Optional

keep_dims If set to true it
holds axes that are
used for reduction.
For each such axes,
dst dimension is
equal to 1.

bool true, false (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 axes Optional

@note axes is an 1-D tensor specifying the axis along which the reduction is performed. 1D tensor of unique elements.
The range of elements is [-r, r-1], where r is the rank of src tensor. Exactly one of attribute axes and the second input
tensor axes should be available.

4.6. Graph extension 355

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The result of ReduceMean function applied to src tensor. shape[i] = shapeOf(data)[i] for all i that is not in the
list of axes from the second input. For dimensions from axes, shape[i] == 1 if keep_dims == True, or i-th dimension is
removed from the dst otherwise.

Supported Data Types

ReduceMean operation supports the following data type combinations.

Src Dst Axes
f32 f32 s32
bf16 bf16 s32
f16 f16 s32

ReduceMin

ReduceMin operation performs the reduction with finding the minimum value on a given src data along dimensions
specified by axes.

Take channel axis = 0 and keep_dims = True as an example:

dst0,··· ,··· = min src𝑖,··· ,···, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

4.6. Graph extension 356

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axes Specify indices of
src tensor, along
which the reduction
is performed. If
axes is a list, reduce
over all of them.
If axes is empty,
corresponds to the
identity operation.
If axes contains
all dimensions of
src tensor, a single
reduction value is
calculated for the
entire src tensor.
Exactly one of
attribute axes and
the second input
tensor axes should
be available.

s64 A s64 list values
which is in the range
of [-r,r-1] where r
= rank(src). Empty
list(default)

Optional

keep_dims If set to true it
holds axes that are
used for reduction.
For each such axes,
dst dimension is
equal to 1.

bool true, false (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 axes Optional

@note axes is a 1-D tensor specifying the axis along which the reduction is performed. 1D tensor of unique elements.
The range of elements is [-r, r-1], where r is the rank of src tensor. Exactly one of attribute axes and the second input
tensor axes should be available.

4.6. Graph extension 357

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The result of ReduceMin function applied to src tensor. shape[i] = shapeOf[data](i) for all i that is not in the
list of axes from the second input. For dimensions from axes, shape[i] == 1 if keep_dims == True, or i-th dimension is
removed from the dst otherwise.

Supported Data Types

ReduceMin operation supports the following data type combinations.

Src Dst Axes
f32 f32 s32
bf16 bf16 s32
f16 f16 s32

ReduceProd

ReduceProd operation performs the reduction with multiplication on a given src data along dimensions specified by
axes.

Take channel axis = 0 and keep_dims = True as an example:

dst0,··· ,··· =
∏︁
𝑖

src𝑖,··· ,···, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

4.6. Graph extension 358

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axes Specify indices of
src tensor, along
which the reduction
is performed. If
axes is a list, reduce
over all of them.
If axes is empty,
corresponds to the
identity operation.
If axes contains
all dimensions of
src tensor, a single
reduction value is
calculated for the
entire src tensor.
Exactly one of
attribute axes and
the second input
tensor axes should
be available.

s64 A s64 list values
which is in the range
of [-r,r-1] where r
= rank(src). Empty
list(default)

Optional

keep_dims If set to true it
holds axes that are
used for reduction.
For each such axes,
dst dimension is
equal to 1.

bool true, false (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 axes Optional

@note axes is an 1-D tensor specifying the axis along which the reduction is performed. 1D tensor of unique elements.
The range of elements is [-r, r-1], where r is the rank of src tensor. Exactly one of attribute axes and the second input
tensor axes should be available.

4.6. Graph extension 359

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The result of ReduceProd function applied to src tensor. shape[i] = shapeOf(data)[i] for all i that is not in the
list of axes from the second input. For dimensions from axes, shape[i] == 1 if keep_dims == True, or i-th dimension is
removed from the dst otherwise.

Supported Data Types

ReduceProd operation supports the following data type combinations.

Src Dst Axes
f32 f32 s32
bf16 bf16 s32
f16 f16 s32

ReduceSum

ReduceSum operation performs the reduction with addition on a given src data along dimensions specified by axes.

Take channel axis = 0 and keep_dims = True as an example:

dst0,··· ,··· =
∑︁
𝑖

src𝑖,··· ,···, 𝑖 ∈ [0, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁𝑢𝑚− 1]

4.6. Graph extension 360

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axes Specify indices of
src tensor, along
which the reduction
is performed. If
axes is a list, reduce
over all of them.
If axes is empty,
corresponds to the
identity operation.
If axes contains
all dimensions of
src tensor, a single
reduction value is
calculated for the
entire src tensor.
Exactly one of
attribute axes and
the second input
tensor axes should
be available.

s64 A s64 list values
which is in the range
of [-r,r-1] where r
= rank(src). Empty
list(default)

Optional

keep_dims If set to true it
holds axes that are
used for reduction.
For each such axes,
dst dimension is
equal to 1.

bool true, false (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 axes Optional

@note axes is an 1-D tensor specifying the axis along which the reduction is performed. 1D tensor of unique elements.
The range of elements is [-r, r-1], where r is the rank of src tensor. Exactly one of attribute axes and the second input
tensor axes should be available.

4.6. Graph extension 361

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

@note The result of ReduceSum function applied to src tensor. shape[i] = shapeOf(data)[i] for all i that is not in the
list of axes from the second input. For dimensions from axes, shape[i] == 1 if keep_dims == True, or i-th dimension is
removed from the dst otherwise.

Supported Data Types

ReduceSum operation supports the following data type combinations.

Src Dst Axes
f32 f32 s32
bf16 bf16 s32
f16 f16 s32

Reorder

Reorder operation converts src tensor to dst tensor with different layout. It supports the conversion between:

• two different opaque layouts

• two different strided layouts

• one strided layout and another opaque layout

Reorder operation does not support layout conversion cross different backends or different engines. Unlike reorder
primitive :ref:`reorder-label, Reorder operation cannot be used to cast the data type from src to dst. Please check the
usage of TypeCast :ref:`op_typecast-label and Dequantize :ref:`op_dequantize-label operation.

Operation Attributes

Reorder operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

4.6. Graph extension 362

oneAPI Specification, Release 1.4-provisional-rev-1

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Reorder operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

Round

Round operation rounds the values of a tensor to the nearest integer, element-wise.

Operation Attributes

Round operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

4.6. Graph extension 363

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Round operation supports the following data type combinations.

Src Dst
f32 f32
f16 f16
bf16 bf16

Select

Select operation returns a tensor filled with the elements from the second or the third input, depending on the condition
(the first input) value.

dst[𝑖] = 𝑐𝑜𝑛𝑑[𝑖]? src _0[𝑖] : src _1[𝑖]

Broadcasting is supported.

If the auto_broadcast attribute is not none, the select operation takes a two-step broadcast before performing the selec-
tion:

• Step 1: Input tensors src_0 and src_1 are broadcasted to dst_shape according to the Numpy broadcast rules.

• Step 2: Then, the cond tensor will be one-way broadcasted to the dst_shape of broadcasted src_0 and src_1.
To be more specific, we align the two shapes to the right and compare them from right to left. Each dimension
should be either equal or the dimension of cond should be 1.

• example:

– cond={4, 5}, dst_shape={2, 3, 4, 5} => dst = {2, 3, 4, 5}

– cond={3, 1, 5}, dst_shape={2, 3, 4, 5} => dst = {2, 3, 4, 5}

– cond={3,5}, dst_shape={2, 3, 4, 5} => dst = invalid_shape

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

4.6. Graph extension 364

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 cond Required
1 src_0 Required
2 src_1 Required

@note All input shapes should match and no broadcasting is allowed if the auto_broadcast attribute is set to none, or
can be broadcasted according to the broadcasting rules mentioned above if auto_broadcast attribute set to numpy.

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Select operation supports the following data type combinations.

Cond Src_0 Src_1 Dst
boolean f32 f32 f32
boolean bf16 bf16 bf16
boolean f16 f16 f16

Sigmoid

Sigmoid operation applies following formula on every element of src tensor (the variable names follow the standard
Conventions):

dst =
1

1 + 𝑒− src

4.6. Graph extension 365

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Sigmoid operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Sigmoid operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

SigmoidBackward

SigmoidBackward operation computes gradient for Sigmoid.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

use_dst If true, use dst of
Sigmoid operation
to calculate the gra-
dient. Otherwise,
use src.

bool true (default),
false

Optional

4.6. Graph extension 366

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src / dst Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

SigmoidBackward operation supports the following data type combinations.

Src / Dst Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

SoftPlus

SoftPlus operation applies following formula on every element of src tensor (the variable names follow the standard
Conventions):

dst = 1/beta ln(𝑒beta * src + 1.0)

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

beta Value for the Soft-
Plus formulation.

s64 Arbitrary s64 value
(1 in default)

Optional

4.6. Graph extension 367

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

SoftPlus operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

SoftPlusBackward

SoftPlusBackward operation computes gradient for SoftPlus.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

beta Value for the Soft-
Plus formulation.

s64 Arbitrary s64 value
(1 in default)

Optional

4.6. Graph extension 368

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

SoftPlusBackward operation supports the following data type combinations.

Src Diff_dst Diff_src
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

SoftMax

SoftMax operation applies the following formula on every element of src tensor (the variable names follow the standard
Conventions):

dst𝑖 =
𝑒(src𝑖)∑︀𝐶
𝑗=1 𝑒

src𝑗

where $ C $ is a size of tensor along axis dimension.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axis Represents the axis
from which the Soft-
Max is calculated.

s64 Arbitrary s64 value
(1 in default)

Optional

4.6. Graph extension 369

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

SoftMax operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

SoftMaxBackward

SoftMaxBackward operation computes gradient for SoftMax.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

axis Represents the axis
from which the Soft-
Max is calculated.

s64 Arbitrary s64 value
(1 in default)

Optional

4.6. Graph extension 370

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 diff_dst Required
1 dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

SoftMaxBackward operation supports the following data type combinations.

Dst Diff_dst Diff_src
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

Sqrt

Sqrt operation performs element-wise square root operation with given tensor.

Operation Attributes

Sqrt operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

4.6. Graph extension 371

oneAPI Specification, Release 1.4-provisional-rev-1

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Sqrt operation supports the following data type combinations.

Src Dst
f32 f32
f16 f16
bf16 bf16

SqrtBackward

SqrtBackward operation computes gradient for Sqrt.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

use_dst If true, use dst of
Sqrt operation to
calculate the gradi-
ent. Otherwise, use
src.

bool true (default),
false

Optional

4.6. Graph extension 372

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src / dst Required
1 diff_dst Required

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

SqrtBackward operation supports the following data type combinations.

Src / Dst Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

Square

Square operation performs element-wise square operation with given tensor.

Operation Attributes

Square operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

4.6. Graph extension 373

oneAPI Specification, Release 1.4-provisional-rev-1

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

Square operation supports the following data type combinations.

Src Dst
f32 f32
f16 f16
bf16 bf16

SquaredDifference

SquaredDifference operation performs element-wise subtraction operation with two given tensors applying multi-
directional broadcast rules, after that each result of the subtraction is squared.

Before performing arithmetic operation, 𝑠𝑟𝑐0 and 𝑠𝑟𝑐1 are broadcasted if their shapes are different and
auto_broadcast attributes is not none. Broadcasting is performed according to auto_broadcast value. After
broadcasting SquaredDifference does the following with the input tensors:

dst𝑖 = (src _0𝑖 − src _1𝑖)2

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

4.6. Graph extension 374

oneAPI Specification, Release 1.4-provisional-rev-1

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_0 Required
1 src_1 Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

SquaredDifference operation supports the following data type combinations.

Src_0 Src_1 Dst
f32 f32 f32
bf16 bf16 bf16
f16 f16 f16

StaticReshape

StaticReshape operation changes dimensions of src tensor according to the specified shape. The volume of src is equal
to dst, where volume is the product of dimensions. dst may have a different memory layout from src. StaticReshape
operation is not guaranteed to return a view or a copy of src when dst is in-placed with the src. StaticReshape can be
used where if shape is stored in a constant node or available during graph building stage. Then shape can be passed via
shape attribute.

4.6. Graph extension 375

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

shape Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy (de-
fault)

Required

special_zero Controls how zero
values in shape are
interpreted

bool true, false Required

@note shape: dimension -1 means that this dimension is calculated to keep the same overall elements count as the
src tensor. That case that more than one -1 in the shape is not supported.

@note special_zero: if false, 0 in the shape is interpreted as-is (for example a zero-dimension tensor); if true, then
all 0s in shape implies the copying of corresponding dimensions from src into dst.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

StaticReshape operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 376

oneAPI Specification, Release 1.4-provisional-rev-1

StaticTranspose

StaticTranspose operation rearranges the dimensions of src with respect to the permutation described by order. dst
may have a different memory layout from src. StaticTranspose operation is not guaranteed to return a view or a copy
of src when dst is in-placed with the src.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

order Specifies permuta-
tion to be applied on
src

s64 A s64 list contain-
ing the element in
the range of [-N,
N-1], negative value
means counting
from last axis

Required

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

Supported Data Types

StaticTranspose operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

4.6. Graph extension 377

oneAPI Specification, Release 1.4-provisional-rev-1

Subtract

Subtract operation performs element-wise subtraction operation with two given tensors applying multi-directional
broadcast rules.

dst(𝑥) = src _0(𝑥)− src _1(𝑥)

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

auto_broadcast Specifies rules
used for auto-
broadcasting of src
tensors

string none, numpy, (de-
fault)

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src_0 Required
1 src_1 Required

@note Both src shapes should match and no auto-broadcasting is allowed if auto_broadcast attributes is none.
src_0 and src_1 shapes can be different and auto-broadcasting is allowed if auto_broadcast attributes is numpy.
Broadcasting is performed according to auto_broadcast value.

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 378

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Substract operation supports the following data type combinations.

Src_0 / Src_1 Dst
f32 f32
bf16 bf16
f16 f16

Tanh

Tanh operation applies following formula on every element of src tensor (the variable names follow the standard Con-
ventions):

dst = tanh(src)

Operation Attributes

Tanh operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 379

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Tanh operation supports the following data type combinations.

Src Dst
f32 f32
bf16 bf16
f16 f16

TanhBackward

TanhBackward operation computes gradient for Tanh.

Operation Attributes

Attribute
Name

Description Value Type
Supported

Values
Required or

Optional

use_dst If true, use dst of
Tanh operation to
calculate the gradi-
ent. Otherwise, use
src.

bool true (default),
false

Optional

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src / dst Required
1 diff_dst Required

4.6. Graph extension 380

oneAPI Specification, Release 1.4-provisional-rev-1

Outputs

Index Argument Name Required or Optional
0 diff_src Required

Supported Data Types

TanhBackward operation supports the following data type combinations.

Src / Dst Diff_dst Diff_src
f32 f32 f32
f16 f16 f16
bf16 bf16 bf16

TypeCast

TypeCast operation performs element-wise cast from input data type to the data type given by output tensor. It requires
that src and dst have the same shape and layout. Rounding to nearest even will be used during cast.

Operation Attributes

TypeCast operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Required

Outputs

Index Argument Name Required or Optional
0 dst Required

4.6. Graph extension 381

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

TypeCast operation supports the following data type combinations.

Src Dst
bf16, f16 f32
f32 bf16, f16

@note This operation is to support mixed precision computation.

Wildcard

Wildcard operation is used to represent any compute logic and help construct graph. Typically the operation can
support mapping any framework ops which are not supported by the library implementation. It’s useful to make the
graph completed or connected.

Operation Attributes

Wildcard operation does not support any attribute.

Execution Arguments

The inputs and outputs must be provided according to the below index order when constructing an operation.

Inputs

Index Argument Name Required or Optional
0 src Optional

Outputs

Index Argument Name Required or Optional
0 dst Optional

@note WildCard operation can accept arbitrary number of inputs or outputs.

4.6. Graph extension 382

oneAPI Specification, Release 1.4-provisional-rev-1

Supported Data Types

Wildcard operation supports arbitrary data type combinations.

4.7 Open Source Implementation

Intel has published an open source implementation with the Apache license.

4.8 Implementation Notes

This specification provides high-level descriptions for oneDNN operations and does not cover all the implementation-
specific details of the open source implementation. Specifically, it does not cover highly-optimized memory formats
and integration with profiling tools, etc. This is done intentionally to improve specification portability. Code that uses
API defined in this specification is expected to be portable across open source implementation and any potential other
implementations of this specification to a reasonable extent.

In the future this section will be extended with more details on how different implementations of this specification
should cooperate and co-exist.

4.9 Testing

Intel’s binary distribution of oneDNN contains example code that you can be used to test library functionality.

The open source implementation includes a comprehensive test suite. Consult the README for directions.

4.7. Open Source Implementation 383

https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/blob/master/README.md

CHAPTER

FIVE

ONECCL

5.1 Introduction

The oneAPI Collective Communications Library (oneCCL) provides primitives for the communication patterns that
occur in deep learning applications. oneCCL supports both scale-up for platforms with multiple oneAPI devices and
scale-out for clusters with multiple compute nodes.

oneCCL supports the following communication patterns used in deep learning (DL) algorithms:

• allgatherv

• allreduce

• alltoallv

• broadcast

• reduce

• reduce_scatter

oneCCL exposes controls over additional optimizations and capabilities such as:

• Prioritization for communication operations

• Persistent communication operations (enables decoupling one-time initialization and repetitive execution)

5.2 Namespaces

This section describes the oneCCL namespace conventions.

5.2.1 oneapi::ccl namespace

The oneapi::ccl namespace shall contains public identifiers defined by the library.

384

oneAPI Specification, Release 1.4-provisional-rev-1

5.2.2 ccl namespace

The alternative ccl namespace shall be considered an alias for the oneapi::ccl namespace.

5.3 Current Version of this oneCCL Specification

This is the oneCCL specification version 1.0.

5.4 Definitions

5.4.1 oneCCL Concepts

oneCCL specification defines the following list of concepts:

• Device

• Context

• Key-Value Store

• Communicator

• Stream

• Event

• Operation Attributes

Device

Note: Here and below, a native device/context/stream/event are defined in the scope of SYCL device runtime

using native_device_type = sycl::device;
using native_context_type = sycl::context;
using native_stream_type = sycl::queue;
using native_event_type = sycl::event;

oneCCL specification defines device as an abstraction of a computational device: a CPU, a specific GPU card in the
system, or any other device participating in a communication operation. device corresponds to the communicator’s
rank (addressable entity in a communication operation).

oneCCL specification defines the way to create an instance of the device class with a native object
(native_device_type) and without a native object (corresponds to the host).

Creating a new device object:

device ccl::create_device(native_device_type& native_device);

device ccl::create_device();

native_device
the existing native device object

5.3. Current Version of this oneCCL Specification 385

oneAPI Specification, Release 1.4-provisional-rev-1

return device
a device object

device class shall provide ability to retrieve a native object.

Retrieving a native device object:

native_device_type device::get_native();

return native_device_type

a native device object
shall throw exception if a device object does not wrap the native object

Context

oneCCL specification defines context as an abstraction of a computational devices context that is responsible for
managing resources and for executing of communication operations on one or more devices specified in the context.

oneCCL specification defines the way to create an instance of the context class with a native object
(native_context_type) and without a native object.

Creating a new context object:

context ccl::create_context(native_context_type& native_context);

context ccl::create_context();

native_context
the existing native context object

return context
a context object

context class shall provide ability to retrieve a native object.

Retrieving a native context object:

native_context_type context::get_native();

return native_context_type

a native context object
shall throw exception if a context object does not wrap the native object

Key-Value Store

kvs_interface defines the key-value store (KVS) interface to be used to establish connection between ranks during
the creation of oneCCL communicator. The interface shall include blocking get and set methods.

Getting a record from the key-value store:

virtual vector_class<char> kvs_interface::get(
const string_class& key) = 0;

key
the key of value to be retrieved

5.4. Definitions 386

oneAPI Specification, Release 1.4-provisional-rev-1

return vector_class<char>
the value associated with the given key

Note: get operation with a non-existing key shall return empty result

Saving a record in the key-value store:

void kvs_interface::set(
const string_class& key,
const vector_class<char>& data) = 0;

key
the key at which the value should be stored

data
the value that should be associated with the given key

Note: set operation with empty data shall remove a record from the key-value store

oneCCL specification defines kvs class as a built-in KVS provided by oneCCL.

class kvs : public kvs_interface {

public:

static constexpr size_t address_max_size = 256;
using address_type = array_class<char, address_max_size>;

~kvs() override;

address_type get_address() const;

vector_class<char> get(
const string_class& key) override;

void set(
const string_class& key,
const vector_class<char>& data) override;

}

Retrieving an address of built-in key-value store:

kvs::address_type kvs::get_address() const;

return kvs::address_type

the address of the key-value store
should be retrieved from the main built-in KVS and distributed to other processes for the built-in KVS creation

Creating a main built-in key-value store. Its address should be distributed using an out-of-band communication mech-
anism and be used to create key-value stores on other ranks:

5.4. Definitions 387

oneAPI Specification, Release 1.4-provisional-rev-1

shared_ptr_class<kvs> ccl::create_main_kvs();

return shared_ptr_class<kvs>
the main key-value store object

Creating a new key-value store from main kvs address:

shared_ptr_class<kvs> ccl::create_kvs(const kvs::address_type& addr);

addr
the address of the main kvs

return shared_ptr_class<kvs>
key-value store object

Communicator

oneCCL specification defines communicator class that describes a group of communicating ranks, where a rank is an
addressable entity in a communication operation and corresponds to single oneCCL device.

communicator defines communication operations on memory buffers between homogeneous oneCCL devices, that
is, all oneCCL devices either wrap native device objects of the same type (for example CPUs only or GPUs only) or
do not wrap native objects.

Each process may correspond to multiple ranks.

Note: Support for multiple ranks per process is optional

Creating a new communicator(s) with user-supplied communicator size, rank-to-device mapping/rank, context and kvs:

Note: If device and context objects are omitted, then they are created with ccl::create_device() and
ccl::create_context() functions without native objects

vector_class<communicator> ccl::create_communicators(
int size,
const map_class<int, device>& rank_device_map,
const context& context,
shared_ptr_class<kvs_interface> kvs);

communicator ccl::create_communicator(
int size,
int rank,
shared_ptr_class<kvs_interface> kvs);

size
user-supplied total number of ranks

rank_device_map
user-supplied mapping of local ranks on devices

rank
user-supplied local rank

5.4. Definitions 388

oneAPI Specification, Release 1.4-provisional-rev-1

context
device context

kvs
key-value store for ranks wire-up

return vector_class<communicator> / communicator
a vector of communicator objects / a communicator object

communicator shall provide methods to retrieve the rank, the device, and the context that correspond to the commu-
nicator object as well as the total number of ranks in the communicator.

Retrieving the rank in a communicator:

int communicator::rank() const;

return int
the rank that corresponds to the communicator object

Retrieving the total number of ranks in a communicator:

int communicator::size() const;

return int
the total number of the ranks

Retrieving an underlying device, which was used as communicator construction argument:

device communicator::get_device() const;

return device
the device that corresponds to the communicator object

Retrieving an underlying context, which was used as communicator construction argument:

context communicator::get_context() const;

return context
the context that corresponds to the communicator object

Note: See also: Collective Operations

Stream

oneCCL specification defines stream as an abstraction that encapsulates execution context for communicator com-
munication operations.

Stream shall be passed to communicator communication operation.

oneCCL specification defines the way to create an instance of the stream class with a native object
(native_stream_type) and without a native object.

Creating a new stream object:

stream ccl::create_stream(native_stream_type& native_stream);

stream ccl::create_stream();

5.4. Definitions 389

oneAPI Specification, Release 1.4-provisional-rev-1

native_stream
the existing native stream object

return stream
a stream object

stream class shall provide ability to retrieve a native object.

Retrieving a native stream object:

native_stream_type stream::get_native();

return native_stream_type

a native stream object
shall throw exception if a stream object does not wrap the native object

Event

oneCCL specification defines event as an abstraction that encapsulates synchronization context for communicator
communication operations.

Each communication operation of oneCCL shall return an event object for tracking the operation’s progress. A vector of
events may be passed to the communicator communication operation to designate input dependencies for the operation.

Note: Support for handling of input events is optional

oneCCL specification defines the way to create an instance of the event class with a native object
(native_event_type).

Creating a new event object:

event ccl::create_event(native_event_type& native_event);

native_event
the existing native event object

return event
an event object

event class shall provide ability to retrieve a native object.

Retrieving a native event object:

native_event_type event::get_native();

return native_event_type

a native event object
shall throw exception if an event object does not wrap the native object

Note: See also: Operation Progress Tracking

5.4. Definitions 390

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Attributes

Communication operation behavior may be controlled through operation attributes.

Operation Attributes

5.4.2 Communication Operations

This section covers communication operations defined by oneCCL specification.

Datatypes

oneCCL specification defines the following datatypes that may be used for communication operations:

enum class datatype : int
{

int8 = /* unspecified */,
uint8 = /* unspecified */,
int16 = /* unspecified */,
uint16 = /* unspecified */,
int32 = /* unspecified */,
uint32 = /* unspecified */,
int64 = /* unspecified */,
uint64 = /* unspecified */,

float16 = /* unspecified */,
float32 = /* unspecified */,
float64 = /* unspecified */,
bfloat16 = /* unspecified */,

last_predefined = /* unspecified, equal to the largest of all the values above */
};

datatype::int8
8 bits signed integer

datatype::uint8
8 bits unsigned integer

datatype::int16
16 bits signed integer

datatype::uint16
16 bits unsigned integer

datatype::int32
32 bits signed integer

datatype::uint32
32 bits unsigned integer

datatype::int64
64 bits signed integer

datatype::uint64
64 bits unsigned integer

5.4. Definitions 391

oneAPI Specification, Release 1.4-provisional-rev-1

datatype::float16
16-bit/half-precision floating point

datatype::float32
32-bit/single-precision floating point

datatype::float64
64-bit/double-precision floating point

datatype::bfloat16
non-standard 16-bit floating point with 7-bit mantissa

Note: Support for datatype::float16 is optional

Custom Datatypes

oneCCL specification defines the way to register and deregister a custom datatype using the datatype_attr attribute
object.

The list of identifiers that may be used to fill an attribute object:

enum class datatype_attr_id {
size = /* unspecified */

};

datatype_attr_id::size
the size of the datatype in bytes

Creating a datatype attribute object, which may used to register custom datatype:

datatype_attr ccl::create_datatype_attr();

return datatype_attr
an object containing attributes for the custom datatype

Registering a custom datatype to be used in communication operations:

datatype ccl::register_datatype(const datatype_attr& attr);

attr
the datatype’s attributes

return datatype
the handle for the custom datatype

Deregistering a custom datatype:

void ccl::deregister_datatype(datatype dtype);

dtype
the handle for the custom datatype

Retrieving a datatype size in bytes:

size_t ccl::get_datatype_size(datatype dtype);

5.4. Definitions 392

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

oneAPI Specification, Release 1.4-provisional-rev-1

dtype
the datatype’s handle

return size_t
datatype size in bytes

Reductions

oneCCL specification defines the following reduction operations for Allreduce, Reduce and ReduceScatter collective
operations:

enum class reduction
{

sum = /* unspecified */,
prod = /* unspecified */,
min = /* unspecified */,
max = /* unspecified */,
custom = /* unspecified */

};

reduction::sum
elementwise summation

reduction::prod
elementwise multiplication

reduction::min
elementwise min

reduction::max
elementwise max

reduction::custom

specify user-defined reduction operation
the actual reduction function must be passed through reduction_fn operation attribute

Operation Attributes

Collective Operations

oneCCL specification defines the following collective communication operations:

• Allgatherv

• Allreduce

• Alltoallv

• Barrier

• Broadcast

• Reduce

• ReduceScatter

• PointToPoint

5.4. Definitions 393

oneAPI Specification, Release 1.4-provisional-rev-1

These operations are collective, meaning that all participants (ranks) of oneCCL communicator should make a call.
The order of collective operation calls should be the same across all ranks.

communicator shall provide the ability to perform communication operations either on host or device memory buffers
depending on the device used to create the communicator. Additionally, communication operations shall accept an
execution context (stream) and may accept a vector of events that the communication operation should depend on, that
is, input dependencies. The output event object shall provide the ability to track the progress of the operation.

Note: Support for handling of input events is optional

BufferType is used below to define the C++ type of elements in data buffers (buf, send_buf and recv_buf) of com-
munication operations. At least the following types shall be supported: [u]int{8/16/32/64}_t, float, double.
The explicit datatype parameter shall be used to enable data types which cannot be inferred from the function argu-
ments.

Note: See also: Custom Datatypes

The communication operation accepts a stream object. If a communicator is created from native_device_type,
then the stream shall translate to native_stream_type created from the corresponding device.

The communication operation may accept attribute object. If that parameter is missed, then the default attribute object
is used (default_<operation_name>_attr). The default attribute object shall be provided by the library.

Note: See also: Operation Attributes

If the arguments provided to a communication operation call do not comply to the requirements of the operation, the
behavior is undefined unless it is specified otherwise.

Allgatherv

Allgatherv is a collective communication operation that collects data from all the ranks within a communicator into a
single buffer. Different ranks may contribute segments of different sizes. The resulting data in the output buffer must
be the same for each rank.

Allgatherv is in place when send_buf == recv_buf + rank_offset, where rank_offset = sum
(recv_counts[i]), for all i < rank.

template<class BufferType>
event ccl::allgatherv(const BufferType* send_buf,

size_t send_count,
BufferType* recv_buf,
const vector_class<size_t>& recv_counts,
const communicator& comm,
const stream& stream,
const allgatherv_attr& attr = default_allgatherv_attr,
const vector_class<event>& deps = {});

event ccl::allgatherv(const void* send_buf,
size_t send_count,
void* recv_buf,
const vector_class<size_t>& recv_counts,

(continues on next page)

5.4. Definitions 394

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

datatype dtype,
const communicator& comm,
const stream& stream,
const allgatherv_attr& attr = default_allgatherv_attr,
const vector_class<event>& deps = {});

send_buf
the buffer with send_count elements of BufferType that stores local data to be gathered

send_count
the number of elements of type BufferType in send_buf

recv_buf [out]
the buffer to store the gathered result, must be large enough to hold values from all ranks

recv_counts

an array with the number of elements of type BufferType to be received from each rank
the array’s size must be equal to the number of ranks
the values in the array are expected to be the same for all ranks
the value at the position of the caller’s rank must be equal to send_count

dtype

the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

Allreduce

Allreduce is a collective communication operation that performs the global reduction operation on values from all ranks
of communicator and distributes the result back to all ranks.

Allreduce is in-place when send_buf == recv_buf.

template <class BufferType>
event ccl::allreduce(const BufferType* send_buf,

BufferType* recv_buf,
size_t count,
reduction rtype,
const communicator& comm,

(continues on next page)

5.4. Definitions 395

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const stream& stream,
const allreduce_attr& attr = default_allreduce_attr,
const vector_class<event>& deps = {});

event ccl::allreduce(const void* send_buf,
void* recv_buf,
size_t count,
reduction rtype,
datatype dtype,
const communicator& comm,
const stream& stream,
const allreduce_attr& attr = default_allreduce_attr,
const vector_class<event>& deps = {});

send_buf
the buffer with count elements of BufferType that stores local data to be reduced

recv_buf [out]
the buffer to store the reduced result, must have the same dimension as send_buf

count
the number of elements of type BufferType in send_buf and recv_buf

rtype
the type of the reduction operation to be applied

dtype

the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

5.4. Definitions 396

oneAPI Specification, Release 1.4-provisional-rev-1

Alltoallv

Alltoall is a collective communication operation in which each rank sends separate blocks of data to each rank. Block
sizes may differ. The j-th block of send buffer sent from the i-th rank is received by the j-th rank and is placed in the
i-th block of receive buffer.

template <class BufferType>
event ccl::alltoallv(const BufferType* send_buf,

const vector_class<size_t>& send_counts,
BufferType* recv_buf,
const vector_class<size_t>& recv_counts,
const communicator& comm,
const stream& stream,
const alltoallv_attr& attr = default_alltoallv_attr,
const vector_class<event>& deps = {});

event ccl::alltoallv(const void* send_buf,
const vector_class<size_t>& send_counts,
void* recv_buf,
const vector_class<size_t>& recv_counts,
datatype dtype,
const communicator& comm,
const stream& stream,
const alltoallv_attr& attr = default_alltoallv_attr,
const vector_class<event>& deps = {});

send_buf
the buffer with elements of BufferType that stores local blocks to be sent to each rank

send_counts

an array with number of elements of type BufferType in the blocks sent for each rank
the array’s size must be equal to the number of ranks
the values at the position of the caller’s rank in send_counts and recv_counts must be equal

recv_buf [out]
the buffer to store the received result, must be large enough to hold blocks from all ranks

recv_counts

an array with number of elements of type BufferType in the blocks received from each rank
the array’s size must be equal to the number of ranks
the values at the position of the caller’s rank in send_counts and recv_counts must be equal

dtype

the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

5.4. Definitions 397

oneAPI Specification, Release 1.4-provisional-rev-1

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

Barrier

Barrier synchronization is performed across all ranks of the communicator and it is completed only after all the ranks
in the communicator have called it.

event ccl::barrier(const communicator& comm,
const stream& stream,
const barrier_attr& attr = default_barrier_attr,
const vector_class<event>& deps = {});

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

Broadcast

Broadcast is a collective communication operation that broadcasts data from one rank of communicator (denoted as
root) to all other ranks.

template <class BufferType>
event ccl::broadcast(BufferType* buf,

size_t count,
int root,
const communicator& comm,
const stream& stream,
const broadcast_attr& attr = default_broadcast_attr,
const vector_class<event>& deps = {});

event ccl::broadcast(void* buf,
size_t count,
datatype dtype,
int root,
const communicator& comm,
const stream& stream,
const broadcast_attr& attr = default_broadcast_attr,
const vector_class<event>& deps = {});

buf [in,out]

5.4. Definitions 398

oneAPI Specification, Release 1.4-provisional-rev-1

the buffer with count elements of BufferType
serves as send_buf for root and as recv_buf for other ranks

count
the number of elements of type BufferType in buf

root
the rank that broadcasts buf

dtype

the datatype of elements in buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

Reduce

Reduce is a collective communication operation that performs the global reduction operation on values from all ranks
of the communicator and returns the result to the root rank.

Reduce is in-place when send_buf == recv_buf.

template <class BufferType>
event ccl::reduce(const BufferType* send_buf,

BufferType* recv_buf,
size_t count,
reduction rtype,
int root,
const communicator& comm,
const stream& stream,
const reduce_attr& attr = default_reduce_attr,
const vector_class<event>& deps = {});

event ccl::reduce(const void* send_buf,
void* recv_buf,
size_t count,
datatype dtype,
reduction rtype,
int root,
const communicator& comm,
const stream& stream,

(continues on next page)

5.4. Definitions 399

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const reduce_attr& attr = default_reduce_attr,
const vector_class<event>& deps = {});

send_buf
the buffer with count elements of BufferType that stores local data to be reduced

recv_buf [out]

the buffer to store the reduced result, must have the same dimension as send_buf.
Used by the root rank only, ignored by other ranks.

count
the number of elements of type BufferType in send_buf and recv_buf

rtype
the type of the reduction operation to be applied

root
the rank that gets the result of the reduction

dtype

the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

ReduceScatter

Reduce-scatter is a collective communication operation that performs the global reduction operation on values from all
ranks of the communicator and scatters the result in blocks back to all ranks.

ReduceScatter is in-place when recv_buf == send_buf + rank * recv_count

template <class BufferType>
event ccl::reduce_scatter(const BufferType* send_buf,

BufferType* recv_buf,
size_t recv_count,
reduction rtype,
const communicator& comm,
const stream& stream,
const reduce_scatter_attr& attr = default_reduce_scatter_attr,
const vector_class<event>& deps = {});

(continues on next page)

5.4. Definitions 400

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

event ccl::reduce_scatter(const void* send_buf,
void* recv_buf,
size_t recv_count,
datatype dtype,
reduction rtype,
const communicator& comm,
const stream& stream,
const reduce_scatter_attr& attr = default_reduce_scatter_attr,
const vector_class<event>& deps = {});

send_buf
the buffer with comm_size * count elements of BufferType that stores local data to be reduced

recv_buf [out]
the buffer to store the result block containing recv_count elements of type BufferType

recv_count
the number of elements of type BufferType in the received block

rtype
the type of the reduction operation to be applied

dtype

the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

Point-To-Point Operations

OneCCL specification defines the following point-to-point operations:

• Send

• Recv

In point-to-point communication, two ranks participate in the communication so when a process sends data to a peer
rank, the peer rank needs to post a recv call with the same datatype and count as the sending rank.

The current specification only supports blocking send and recv and does not support for multiple send and receive
operations to proceed concurrently.

5.4. Definitions 401

oneAPI Specification, Release 1.4-provisional-rev-1

In the send operation, the peer specifies the destination process, while in the recv operation peer specifies the source
process.

As with the collective operations, the communicator can perform communication operations on host or device memory
buffers depending on the device used to create the communicator. Additionally, communication operations accept an
execution context (stream) and may accept a vector of events on which the communication operation should depend,
that is, input dependencies. The output event object provides the ability to track the operation’s progress.

Note: Support for the handling of input events is optional.

BufferType is used below to define the C++ type of elements in communication operations’ data buffers (buf,
send_buf, and recv_buf). At least the following types should be supported: [u]int{8/16/32/64}_t, float,
double. The explicit datatype parameter enable data types that cannot be inferred from the function arguments. For
more information, see Custom Datatypes.

The communication operation accepts a stream object. If a communicator is created from native_device_type, then
the stream translates to native_stream_type created from the corresponding device.

The communication operation may accept attribute objects. If that parameter is missed, then the default attribute
object is used (default_<operation_name>_attr). The default attribute object is provided by the library. For
more information, see Operation Attributes.

If the arguments provided to a communication operation call do not comply with the requirements of the operation, the
behavior is undefined, unless otherwise specified.

Send

A blocking point-to-point communication operation that sends the data in a buf to a peer rank.

template <class BufferType,
event CCL_API send(BufferType *buf,

size_t count,
int peer,
const communicator &comm,
const stream &stream,
const pt2pt_attr &attr = default_pt2pt_attr,
const vector_class<event>& deps = {});

event CCL_API send(void *buf,
size_t count,
datatype dtype,
int peer,
const communicator &comm,
const stream &stream,
const pt2pt_attr &attr = default_pt2pt_attr,
const vector_class<event> &deps = {});

buf
the buffer with count elements of dtype that contains the data to be sent

count
the number of elements of type dtype in buf

dtype

5.4. Definitions 402

oneAPI Specification, Release 1.4-provisional-rev-1

the datatype of elements in buf must be skipped if BufferType can be inferred otherwise must be passed ex-
plicitly

peer
the destination rank

comm
the communicator that defines a group of ranks for the operation

stream
the stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
an object to track the progress of the operation

Recv

A blocking point-to-point communication operation that receives the data in a buf from a peer rank.

template <class BufferType,
event CCL_API recv(BufferType *buf,

size_t count,
int peer,
const communicator &comm,
const stream &stream,
const pt2pt_attr &attr = default_pt2pt_attr,
const vector_class<event> &deps = {});

event CCL_API send(void *buf,
size_t count,
datatype dtype,
int peer,
const communicator &comm,
const stream &stream,
const pt2pt_attr &attr = default_pt2pt_attr,
const vector_class<event> &deps = {});

buf [out]
the buffer with count elements of dtype that contains the data to be sent

count
the number of elements of type dtype in buf

dtype
the datatype of elements in buf must be skipped if BufferType can be inferred otherwise must be passed ex-
plicitly

peer
the destination rank

comm
the communicator that defines a group of ranks for the operation

5.4. Definitions 403

oneAPI Specification, Release 1.4-provisional-rev-1

stream
The stream associated with the operation

attr
optional attributes to customize the operation

deps
an optional vector of the events that the operation should depend on

return event
object to track the progress of the operation

Note: See also:

• Communicator

• Stream

• Event

• Operation Progress Tracking

Operation Attributes

oneCCL specification defines communication operation attributes that serve as modifiers of an operation’s behavior.
Optionally, they may be passed to the corresponding communication operations.

oneCCL specification defines the following operation attribute classes:

• allgatherv_attr

• allreduce_attr

• alltoallv_attr

• barrier_attr

• broadcast_attr

• reduce_attr

• reduce_scatter_attr

oneCCL specification defines attribute identifiers that may be used to fill operation attribute objects.

The list of common attribute identifiers that may be used for any communication operation:

enum class operation_attr_id {
priority = /* unspecified */,
to_cache = /* unspecified */,
synchronous = /* unspecified */,
match_id = /* unspecified */

last_value = /* unspecified, equal to the largest of all the values above */
};

operation_attr_id::priority
the priority of the communication operation

operation_attr_id::to_cache

5.4. Definitions 404

oneAPI Specification, Release 1.4-provisional-rev-1

persistent/non-persistent communication operation
should be used in conjunction with match_id

operation_attr_id::synchronous
synchronous/asynchronous communication operation

operation_attr_id::match_id

the unique identifier of the operation
in conjunction with to_cache, it enables the caching of the communication operation

The communication operation specific attribute identifiers may extend the list of common identifiers.

The list of attribute identifiers that may be used for Allreduce, Reduce and ReduceScatter collective operations:

enum class allreduce_attr_id {
reduction_fn = /* unspecified */

};

enum class reduce_attr_id {
reduction_fn = /* unspecified */

};

enum class reduce_scatter_attr_id {
reduction_fn = /* unspecified */

};

allreduce_attr_id::reduction_fn / reduce_attr_id::reduction_fn / reduce_scatter_attr_id::reduction_fn
a function pointer for the custom reduction operation that follows the signature:

typedef void (*reduction_fn)
(

const void*, /* in_buf */
size_t, /* in_count */
void*, /* inout_buf */
size_t*, /* out_count */
datatype, /* datatype */
const fn_context* /* context */

);

typedef struct {
const char* match_id;
const size_t offset;

} fn_context;

Creating an operation attribute object, which may be used in a corresponding communication operation:

template <class OpAttrType>
OpAttrType ccl::create_operation_attr();

return OpAttrType
an object to hold attributes for a specific communication operation

The operation attribute classes shall provide get and setmethods for getting and setting of values with specific attribute
identifiers.

5.4. Definitions 405

oneAPI Specification, Release 1.4-provisional-rev-1

Operation Progress Tracking

oneCCL communication operation shall return an event object to be used for tracking the operation’s progress.

The event class shall provide the ability to wait for completion of an operation in a blocking manner, the ability to
check the completion status in a non-blocking manner, and the ability to retrieve the underlying native object that is
signaled when the operation completes.

Event

Waiting for the completion of an operation in a blocking manner:

void event::wait();

Checking for the completion of an operation in a non-blocking manner:

bool event::test();

return bool
true if the operation has been completed false if the operation has not been completed

Retrieving a native object that is signaled when the operation completes:

native_event_type event::get_native();

return native_event_type

a native object that is signaled when the operation completes
shall throw an exception if an event object does not wrap the native object

5.4.3 Error handling

oneCCL error handling relies on the mechanism of C++ exceptions. If an error occurs, it shall be propagated at the
point of a function call where it is caught using standard C++ error handling mechanism.

Exception classification

Exception classification in oneCCL is aligned with C++ Standard Library classification. oneCCL introduces class that
defines the base class in the hierarchy of oneCCL exception classes. All oneCCL routines throw exceptions inherited
from this base class.

In the hierarchy of oneCCL exceptions, ccl::exception is the base class inherited from std::exception class.
All other oneCCL exception classes are derived from this base class.

This specification does not require implementations to perform error-checking. However, if an implementation does
provide error-checking, it shall use the following exception classes. Additional implementation-specific exception
classes can be used for exceptional conditions not fitting any of these classes.

5.4. Definitions 406

oneAPI Specification, Release 1.4-provisional-rev-1

Common exceptions

Exception class Description

ccl::exception
Reports general unspecified error

ccl::invalid_argument
Reports an error when arguments to the operation were rejected

ccl::host_bad_alloc
Reports an error that occurred during memory allocation on the host

ccl::unimplemented
Reports an error when the requested operation is not implemented

ccl::unsupported
Reports an error when the requested operation is not supported

5.5 Programming Model

5.5.1 Generic Workflow

Below is a generic workflow with oneCCL API

1. Create a main built-in key-value store. Its address should be distributed using an out-of-band communication
mechanism and be used to create key-value stores on other processes:

using namespace std;

/* for example use MPI as an out-of-band communication mechanism */

int mpi_rank, mpi_size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);

ccl::shared_ptr_class<ccl::kvs> kvs;
ccl::kvs::address_type kvs_addr;

if (mpi_rank == 0) {
kvs = ccl::create_main_kvs();
kvs_addr = kvs->get_address();
MPI_Bcast((void*)kvs_addr.data(), ccl::kvs::address_max_size, MPI_BYTE, 0, MPI_COMM_

→˓WORLD);
}
else {

MPI_Bcast((void*)kvs_addr.data(), ccl::kvs::address_max_size, MPI_BYTE, 0, MPI_COMM_
→˓WORLD);

kvs = ccl::create_kvs(kvs_addr);
}

2. Create communicator(s):

/* host communications */
auto comm = ccl::create_communicator(mpi_size, mpi_rank, kvs);

5.5. Programming Model 407

oneAPI Specification, Release 1.4-provisional-rev-1

/* SYCL devices communications, for example with multiple devices per process */

/* sycl_context -> sycl::context */
/* sycl_devices -> vector<sycl::device> */
/* sycl_queues -> vector<sycl::queue> */

/* create ccl::context object from sycl::context object */
auto ccl_context = ccl::create_context(sycl_context);

/* create ccl::device objects from sycl::device objects */
vector<ccl::device> ccl_devices;
for (size_t idx = 0; idx < sycl_devices.size(); idx++) {

ccl_devices.push_back(ccl::create_device(sycl_devices[idx]));
}

map<int, ccl::device> r2d_map;
for (auto& dev : ccl_devices) {

int rank = /* generate a globally unique rank for a specific device */
r2d_map[rank] = dev;

}

/* create ccl::stream objects from sycl::queue objects */
vector<ccl::stream> ccl_streams;
for (size_t idx = 0; idx < sycl_queues.size(); idx++) {

ccl_streams.push_back(ccl::create_stream(sycl_queues[idx]));
}

auto comms = ccl::create_communicators(mpi_size * r2d_map.size(),
r2d_map,
ccl_context,
kvs);

3. Execute a communication operation of choice on the communicator(s):

/* host communications */
allreduce(..., comm).wait();

/* SYCL devices communications */
vector<ccl::event> events;
for (auto& comm : comms) {

events.push_back(allreduce(..., comm, ccl_streams[comm.rank()]));
}

for (auto& e : events) {
e.wait();

}

5.5. Programming Model 408

CHAPTER

SIX

ONEDAL

This document specifies requirements for implementations of oneAPI Data Analytics Library (oneDAL).

oneDAL is a library that helps speed up big data analysis by providing highly optimized algorithmic building blocks
for all stages of data analytics (preprocessing, transformation, analysis, modeling, validation, and decision making) in
batch, online, and distributed processing modes of computation. The current version of oneDAL provides Data Parallel
C++ (DPC++) API extensions to the traditional C++ interface.

For general information, visit oneDAL GitHub* page.

6.1 Introduction

oneAPI Data Analytics Library (oneDAL) is a library that provides building blocks covering all stages of data analytics:
data acquisition from a data source, preprocessing, transformation, data mining, modeling, validation, and decision
making.

oneDAL supports the concept of the end-to-end analytics when some of data analytics stages are performed on the
edge devices (close to where the data is generated and where it is finally consumed). Specifically, oneDAL Application
Programming Interfaces (APIs) are agnostic about a particular cross-device communication technology and, therefore,
can be used within different end-to-end analytics frameworks.

409

https://github.com/intel/daal

oneAPI Specification, Release 1.4-provisional-rev-1

oneDAL consists of the following major components:

• The Data Management component includes classes and utilities for data acquisition, initial preprocessing and
normalization, for data conversion into numeric formats (performed by one of supported Data Sources), and for
model representation.

• The Algorithms component consists of classes that implement algorithms for data analysis (data mining) and
data modeling (training and prediction). These algorithms include clustering, classification, regression, and
recommendation algorithms. Algorithms support the following computation modes:

– Batch processing: algorithms work with the entire data set to produce the final result

– Online processing: algorithms process a data set in blocks streamed into the device’s memory

– Distributed processing: algorithms operate on a data set distributed across several devices (compute nodes)

Distributed algorithms in oneDAL are abstracted from underlying cross-device communication technology,
which enables use of the library in a variety of multi-device computing and data transfer scenarios.

Depending on the usage, algorithms operate both on actual data (data set) and data models:

– Analysis algorithms typically operate on data sets.

– Training algorithms typically operate on a data set to train an appropriate data model.

– Prediction algorithms typically work with the trained data model and with a working data set.

• The Utilities component includes auxiliary functionality intended to be used for design of classes and imple-
mentation of methods such as memory allocators or type traits.

• The Miscellaneous component includes functionality intended to be used by oneDAL algorithms and applica-
tions for algorithm customization and optimization on various stages of the analytical pipeline. Examples of such
algorithms include solvers and random number generators.

Classes in Data Management, Algorithms, Utilities, and Miscellaneous components cover the most important usage
scenarios and allow seamless implementation of complex data analytics workflows through direct API calls. At the
same time, the library is an object-oriented framework that helps customize the API by redefining particular classes
and methods of the library.

6.1. Introduction 410

oneAPI Specification, Release 1.4-provisional-rev-1

6.2 Glossary

6.2.1 Machine learning terms

Categorical feature
A feature with a discrete domain. Can be nominal or ordinal.

Synonyms: discrete feature, qualitative feature

Classification
A supervised machine learning problem of assigning labels to feature vectors.

Examples: predict what type of object is on the picture (a dog or a cat?), predict whether or not an email is spam

Clustering
An unsupervised machine learning problem of grouping feature vectors into bunches, which are usually encoded
as nominal values.

Example: find big star clusters in the space images

Continuous feature
A feature with values in a domain of real numbers. Can be interval or ratio

Synonyms: quantitative feature, numerical feature

Examples: a person’s height, the price of the house

CSV file
A comma-separated values file (csv) is a type of a text file. Each line in a CSV file is a record containing fields
that are separated by the delimiter. Fields can be of a numerical or a text format. Text usually refers to categorical
values. By default, the delimiter is a comma, but, generally, it can be any character. For more details, see.

Dataset
A collection of observations.

Dimensionality reduction
A problem of transforming a set of feature vectors from a high-dimensional space into a low-dimensional space
while retaining meaningful properties of the original feature vectors.

Feature
A particular property or quality of a real object or an event. Has a defined type and domain. In machine learning
problems, features are considered as input variable that are independent from each other.

Synonyms: attribute, variable, input variable

Feature vector
A vector that encodes information about real object, an event or a group of objects or events. Contains at least
one feature.

Example: A rectangle can be described by two features: its width and height

Inference
A process of applying a trained model to the dataset in order to predict response values based on input feature
vectors.

Synonym: prediction

Inference set
A dataset used at the inference stage. Usually without responses.

Interval feature
A continuous feature with values that can be compared, added or subtracted, but cannot be multiplied or divided.

6.2. Glossary 411

https://en.wikipedia.org/wiki/Comma-separated_values

oneAPI Specification, Release 1.4-provisional-rev-1

Examples: a time frame scale, a temperature in Celsius or Fahrenheit

Label
A response with categorical or ordinal values. This is an output in classification and clustering problems.

Example: the spam-detection problem has a binary label indicating whether the email is spam or not

Model
An entity that stores information necessary to run inference on a new dataset. Typically a result of a training
process.

Example: in linear regression algorithm, the model contains weight values for each input feature and a single
bias value

Nominal feature
A categorical feature without ordering between values. Only equality operation is defined for nominal features.

Examples: a person’s gender, color of a car

Observation
A feature vector and zero or more responses.

Synonyms: instance, sample

Ordinal feature
A categorical feature with defined operations of equality and ordering between values.

Example: student’s grade

Outlier
Observation which is significantly different from the other observations.

Ratio feature
A continuous feature with defined operations of equality, comparison, addition, subtraction, multiplication, and
division. Zero value element means the absence of any value.

Example: the height of a tower

Regression
A supervised machine learning problem of assigning continuous responses for feature vectors.

Example: predict temperature based on weather conditions

Response
A property of some real object or event which dependency from feature vector need to be defined in supervised
learning problem. While a feature is an input in the machine learning problem, the response is one of the outputs
can be made by the model on the inference stage.

Synonym: dependent variable

Supervised learning
Training process that uses a dataset with information about dependencies between features and responses. The
goal is to get a model of dependencies between input feature vector and responses.

Training
A process of creating a model based on information extracted from a training set. Resulting model is selected in
accordance with some quality criteria.

Training set
A dataset used at the training stage to create a model.

Unsupervised learning
Training process that uses a training set with no responses. The goal is to find hidden patters inside feature
vectors and dependencies between them.

6.2. Glossary 412

oneAPI Specification, Release 1.4-provisional-rev-1

6.2.2 oneDAL terms

Accessor
A oneDAL concept for an object that provides access to the data of another object in the special data format.
It abstracts data access from interface of an object and provides uniform access to the data stored in objects of
different types.

Batch mode
The computation mode for an algorithm in oneDAL, where all the data needed for computation is available at
the start and fits the memory of the device on which the computations are performed.

Builder
A oneDAL concept for an object that encapsulates the creation process of another object and enables its iterative
creation.

Contiguous data
Data that are stored as one contiguous memory block. One of the characteristics of a data format.

Data format
Representation of the internal structure of the data.

Examples: data can be stored in array-of-structures or compressed-sparse-row format

Data layout
A characteristic of data format which describes the order of elements in a contiguous data block.

Example: row-major format, where elements are stored row by row

Data type
An attribute of data used by a compiler to store and access them. Includes size in bytes, encoding principles, and
available operations (in terms of a programming language).

Examples: int32_t, float, double

Flat data
A block of contiguous homogeneous data.

Getter
A method that returns the value of the private member variable.

Example:

std::int64_t get_row_count() const;

Heterogeneous data
Data which contain values either of different data types or different sets of operations defined on them. One of
the characteristics of a data format.

Example: A dataset with 100 observations of three interval features. The first two features are of float32 data
type, while the third one is of float64 data type.

Homogeneous data
Data with values of single data type and the same set of available operations defined on them. One of the
characteristics of a data format.

Example: A dataset with 100 observations of three interval features, each of type float32

Immutability
The object is immutable if it is not possible to change its state after creation.

Metadata
Information about logical and physical structure of an object. All possible combinations of metadata values

6.2. Glossary 413

oneAPI Specification, Release 1.4-provisional-rev-1

present the full set of possible objects of a given type. Metadata do not expose information that is not a part of a
type definition, e.g. implementation details.

Example: table object can contain three nominal features with 100 observations (logical part of metadata). This
object can store data as sparse csr array and provides direct access to them (physical part)

Online mode
The computation mode for an algorithm in oneDAL, where the data needed for computation becomes available
in parts over time.

Reference-counted object
A copy-constructible and copy-assignable oneDAL object which stores the number of references to the unique
implementation. Both copy operations defined for this object are lightweight, which means that each time a new
object is created, only the number of references is increased. An implementation is automatically freed when the
number of references becomes equal to zero.

Setter
A method that accepts the only parameter and assigns its value to the private member variable.

Example:

void set_row_count(std::int64_t row_count);

Table
A oneDAL concept for a dataset that contains only numerical data, categorical or continuous. Serves as a transfer
of data between user’s application and computations inside oneDAL. Hides details of data format and generalizes
access to the data.

Workload
A problem of applying a oneDAL algorithm to a dataset.

6.2.3 Common oneAPI terms

API
Application Programming Interface

DPC++
Data Parallel C++ (DPC++) is a high-level language designed for data parallel programming productivity.
DPC++ is based on SYCL* from the Khronos* Group to support data parallelism and heterogeneous program-
ming.

Host/Device
OpenCL [OpenCLSpec] refers to CPU that controls the connected GPU executing kernels.

JIT
Just in Time Compilation — compilation during execution of a program.

Kernel
Code written in OpenCL [OpenCLSpec] or SYCL and executed on a GPU device.

SPIR-V
Standard Portable Intermediate Representation - V is a language for intermediate representation of compute
kernels.

SYCL
SYCL(TM) [SYCLSpec] — high-level programming model for OpenCL(TM) that enables code for heteroge-
neous processors to be written in a “single-source” style using completely standard C++.

6.2. Glossary 414

oneAPI Specification, Release 1.4-provisional-rev-1

6.3 Mathematical Notations

Notation Definition
𝑛 or 𝑚 The number of observations in a dataset. Typically 𝑛 is used, but sometimes 𝑚 is required to

distinguish two datasets, e.g., the training set and the inference set.
𝑝 or 𝑟 The number of features in a dataset. Typically 𝑝 is used, but sometimes 𝑟 is required to distinguish

two datasets.
𝑎× 𝑏 The dimensionality of a matrix (dataset) has 𝑎 rows (observations) and 𝑏 columns (features).
|𝐴| Depending on the context may be interpreted as follows:

• If 𝐴 is a set, this denotes its cardinality, i.e., the number of elements in the set 𝐴.
• If 𝐴 is a real number, this denotes an absolute value of 𝐴.

‖𝑥‖ The 𝐿2-norm of a vector 𝑥 ∈ R𝑑,

‖𝑥‖ =
√︁
𝑥2
1 + 𝑥2

2 + · · ·+ 𝑥2
𝑑.

sgn(𝑥) Sign function for 𝑥 ∈ R,

sgn(𝑥) =

⎧⎪⎨⎪⎩
−1, 𝑥 < 0,

0, 𝑥 = 0,

1, 𝑥 > 0.

𝑥𝑖 In the description of an algorithm, this typically denotes the 𝑖-th feature vector in the training set.
𝑥′𝑖 In the description of an algorithm, this typically denotes the 𝑖-th feature vector in the inference set.
𝑦𝑖 In the description of an algorithm, this typically denotes the 𝑖-th response in the training set.
𝑦′𝑖 In the description of an algorithm, this typically denotes the 𝑖-th response that needs to be predicted

by the inference algorithm given the feature vector 𝑥′𝑖 from the inference set.

6.4 Programming model

oneDAL primarily targets algorithms that are extensively used in data analytics. These algorithms typically have many
parameters, i.e. knobs to control its internal behavior and produced result. In machine learning, those parameters are
often referred as meta-parameters to distinguish them from the model parameters learned during the training. Some
algorithms define a dozen meta-parameters, while others depend on another algorithm as, for example, the logistic
regression training procedure depends on an optimization algorithm.

Besides meta-parameters, machine learning algorithms may have different stages, such as training and inference. More-
over, the stages of an algorithm may be implemented in a variety of computational methods. For instance, a linear
regression model could be trained by solving a system of linear equations [Friedman17] or by applying an iterative
optimization solver directly to the empirical risk function [Zhang04].

The same machine learning techniques are often applied for solving problems of different types. In the example with
linear regression, the same mathematical model used for solving regression problem is generalized for solving a clas-
sification problem, for example, logistic regression. Such techniques differ only in few problem-specific aspects, but
share the same subset of meta-parameters and have a common computational flow. oneDAL does not distinguish these
techniques into different algorithms. Instead, from oneDAL perspective, the same algorithm may perform different
computational tasks.

From computational perspective, algorithm implementation may rely on different floating-point types, such as float,

6.3. Mathematical Notations 415

https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html

oneAPI Specification, Release 1.4-provisional-rev-1

double or bfloat16. Having a capability to specify what type is needed is important for the end user as their precision
requirements vary depending on a workload.

To best tackle the mentioned challenges, each algorithm is decomposed into descriptors and operations.

6.4.1 End-to-end example

Below you can find a typical workflow of using oneDAL algorithm on GPU. The example is provided for Principal
Component Analysis algorithm (PCA).

The following steps depict how to:

• Read the data from CSV file

• Run the training and inference operations for PCA

• Access intermediate results obtained at the training stage

1. Include the following header that makes all oneDAL declarations available.

#include "oneapi/dal.hpp"

/* Standard library headers required by this example */
#include <cassert>
#include <iostream>

2. Create a SYCL* queue with the desired device selector. In this case, GPU selector is used:

const auto queue = sycl::queue{ sycl::gpu_selector{} };

3. Since all oneDAL declarations are in the oneapi::dal namespace, import all declarations from the oneapi
namespace to use dal instead of oneapi::dal for brevity:

using namespace oneapi;

4. Use CSV data source to read the data from the CSV file into a table:

const auto data = dal::read<dal::table>(queue, dal::csv::data_source{"data.csv"});

5. Create a PCA descriptor, configure its parameters, and run the training algorithm on the data loaded from CSV.

const auto pca_desc = dal::pca::descriptor<float>
.set_component_count(3)
.set_deterministic(true);

const dal::pca::train_result train_res = dal::train(queue, pca_desc, data);

6. Print the learned eigenvectors:

const dal::table eigenvectors = train_res.get_eigenvectors();

const auto acc = dal::row_accessor<const float>{eigenvectors};
for (std::int64_t i = 0; i < eigenvectors.row_count(); i++) {

/* Get i-th row from the table, the eigenvector stores pointer to USM */
const dal::array<float> eigenvector = acc.pull(queue, {i, i + 1});

(continues on next page)

6.4. Programming model 416

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

assert(eigenvector.get_count() == eigenvectors.get_column_count());

std::cout << i << "-th eigenvector: ";
for (std::int64_t j = 0; j < eigenvector.get_count(); j++) {

std::cout << eigenvector[j] << " ";
}
std::cout << std::endl;

}

7. Use the trained model for inference to reduce dimensionality of the data:

const dal::pca::model model = train_res.get_model();

const dal::table data_transformed =
dal::infer(queue, pca_desc, data).get_transformed_data();

assert(data_transformed.column_count() == 3);

6.4.2 Descriptors

A descriptor is an object that represents an algorithm including all its meta-parameters, dependencies on other algo-
rithms, floating-point types, computational methods and tasks. A descriptor serves as:

• A dispatching mechanism for operations. Based on a descriptor type, an operation executes a particular algorithm
implementation.

• An aggregator of meta-parameters. It provides an interface for setting up meta-parameters at either compile-time
or run-time.

• An object that stores the state of the algorithm. In the general case, a descriptor is a stateful object whose state
changes after an operation is applied.

Each oneDAL algorithm has its own dedicated namespace, where the corresponding descriptor is defined (for more
details, see Namespaces). Descriptor, in its turn, defines the following:

• Template parameters. A descriptor is allowed to have any number of template parameters, but shall support at
least three:

– Float is a floating-point type that the algorithm uses for computations. This parameter is defined first and
has the oneapi::dal::default_float_t default value.

– Method is a tag-type that specifies the computational method. This parameter is defined second and has
the method::by_default default value.

– Task is a tag-type that specifies the computational task. This parameter is defined third and has the
task::by_default default value.

• Properties. A property is a run-time parameter that can be accessed by means of the corresponding getter and
setter methods.

The following code sample shows the common structure of a descriptor’s definition for an abstract algorithm. To define
a particular algorithm, the following strings shall be substituted:

• %ALGORITHM% is the name of an algorithm and its namespace. All classes and structures related to that algorithm
are defined within the namespace.

• %PROPERTY_NAME% and %PROPERTY_TYPE% are the name and the type of one of the algorithm’s properties.

6.4. Programming model 417

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::dal::%ALGORITHM% {

template <typename Float = default_float_t,
typename Method = method::by_default,
typename Task = task::by_default,
/* more template parameters */>

class descriptor {
public:
/* Constructor */
descriptor(const %PROPERTY_TYPE%& %PROPERTY_NAME%,

/* more properties */)

/* Getter & Setter for the property called `%PROPERTY_NAME%` */
descriptor& set_%PROPERTY_NAME%(%PROPERTY_TYPE% value);
%PROPERTY_TYPE% get_%PROPERTY_NAME%() const;

/* more properties */
};

} // namespace oneapi::dal::%ALGORITHM%

Each meta-parameter of an algorithm is mapped to a property that shall satisfy the following requirements:

• Properties are defined with getter and setter methods. The underlying class member variable that stores the
property’s value is never exposed in the descriptor interface.

• The getter returns the value of the underlying class member variable.

• The setter accepts only one parameter of the property’s type and assigns it to the underlying class member
variable.

• Most of the properties are preset with default values, others are initialized by passing the required parameters to
the constructor.

• The setter returns a reference to the descriptor object to allow chaining calls as shown in the example below.

auto desc = descriptor{}
.set_property_name_1(value_1)
.set_property_name_2(value_2)
.set_property_name_3(value_3);

Floating-point Types

It is required for each algorithm to support at least one implementation-defined floating-point type. Other floating-point
types are optional, for example float, double, float16, and bfloat16. It is up to a specific oneDAL implementation
whether or not to support these types.

The floating-point type used as a default in descriptors is implementation-defined and shall be declared within the
top-level namespace.

namespace oneapi::dal {
using default_float_t = /* implementation defined */;

} // namespace oneapi::dal

6.4. Programming model 418

oneAPI Specification, Release 1.4-provisional-rev-1

Computational Methods

The supported computational methods are declared within the %ALGORITHM%::method namespace using tag-types.
Algorithm shall support at least one method and declare the by_default type alias that refers to one of the methods
as shown in the example below.

namespace oneapi::dal::%ALGORITHM% {
namespace method {
struct x {};
struct y {};
using by_default = x;

} // namespace method
} // namespace oneapi::dal::%ALGORITHM%

Computational Tasks

The supported computational tasks are declared within the %ALGORITHM%::task namespace using tag-types. Algo-
rithm shall support at least one task and declare the by_default type alias that refers to one of the tasks as shown in
the example below.

If an algorithm assumes both classification and regression tasks, the default task shall be classification.
In some cases where an algorithm does not have the well-defined training and inference stages an algorithm may define
only one task.

namespace oneapi::dal::%ALGORITHM% {
namespace task {
struct classification {};
struct regression {};
using by_default = classification;

} // namespace task
} // namespace oneapi::dal::%ALGORITHM%

6.4.3 Operations

An operation is a function that transforms a descriptor and other arguments represented via an input object to a result
object. An operation is responsible for:

• Executing all of an algorithm’s computational routines represented by the descriptor.

• Passing SYCL* queue to computational routines.

• Verifying preconditions and postconditions before and after the execution of computational routines.

General operation definition

The following code sample shows the declaration of an abstract operation. To declare a particular operation, the
%OPERATION% shall be substituted with the name of the operation.

namespace oneapi::dal {

template <typename Descriptor>
using %OPERATION%_input_t = /* implementation defined */;

(continues on next page)

6.4. Programming model 419

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename Descriptor>
using %OPERATION%_result_t = /* implementation defined */;

template <typename Descriptor>
%OPERATION%_result_t<Descriptor> %OPERATION%(

sycl::queue& queue,
const Descriptor& desc,
const %OPERATION%_input_t<Descriptor>& input);

} // namespace oneapi::dal

Each operation shall satisfy the following requirements:

• An operation shall accept three parameters in the following order:

– The SYCL* queue object

– The descriptor of the algorithm

– The input object

• An operation shall return the result object.

• The %OPERATION%_input_t and %OPERATION%_result_t alias templates shall be used for inference of the
input and return types.

• If a precondition is violated, an operation shall throw an exception derived from oneapi::dal::logic_error.

• If a postcondition is violated, an operation shall throw an exception derived from
oneapi::dal::runtime_error.

• If the descriptor is incompatible with some operation, an error shall be reported at compile-time.

• The exact list of compatible operations and pre-/post- conditions shall be defined by a particular algorithm
specification.

Operation shortcuts

In order to make the code on user side less verbose, oneDAL defines the following overloaded functions called shortcuts
for each operation in addition to the general one described in section General operation definition.

• A shortcut for execution on host that performs the same operation as the general function on host, but does not
require the queue to be passed explicitly.

template <typename Descriptor>
%OPERATION%_result_t<Descriptor> %OPERATION%(
const Descriptor& desc,
const %OPERATION%_input_t<Descriptor>& input);

• A shortcut that allows omitting explicit input creation.

template <typename Descriptor, typename... Args>
%OPERATION%_result_t<Descriptor> %OPERATION%(

sycl::queue& queue,
const Descriptor& desc,
Args&&... args);

6.4. Programming model 420

oneAPI Specification, Release 1.4-provisional-rev-1

• A shortcut that allows omitting explicit queue and input creation. This is a combination of two previous shortcuts.

template <typename Descriptor, typename... Args>
%OPERATION%_result_t<Descriptor> %OPERATION%(
const Descriptor& desc,
Args&&... args);

Input

An input object aggregates all the data that the algorithm requires for performing a specific operation. The data is
represented via tables, so, typically, an input is a collection of tables, but not limited to them and can aggregate objects
of an arbitrary type.

In general, input class definition is similar to descriptor. An input defines properties that can be accessed by means of
the corresponding getter and setter methods. Requirements to the input’s properties are the same as requirements for
descriptor’s properties.

The following code sample shows the common structure of a inputs’s definition. To define an input for particular
algorithm and operation, the following strings shall be substituted:

• %ALGORITHM% is the name of an algorithm and its namespace.

• %OPERATION% is the name of operation.

• %PROPERTY_NAME% and %PROPERTY_TYPE% are the name and the type of one of the input’s properties.

namespace oneapi::dal::%ALGORITHM% {

template <typename Task = task::by_default>
class OPERATION_input {
public:
/* Constructor */
%OPERATION%_input(const %PROPERTY_TYPE%& %PROPERTY_NAME%,

/* more properties */)

/* Getter & Setter for the property called `%PROPERTY_NAME%` */
descriptor& set_%PROPERTY_NAME%(%PROPERTY_TYPE% value);
%PROPERTY_TYPE% get_%PROPERTY_NAME%() const;

/* more properties */
};

} // namespace oneapi::dal::%ALGORITHM%

Note: An input is specific to algorithm and operation, so each %ALGORITHM%-%OPERATION% pair shall define its own
set of the properties.

6.4. Programming model 421

oneAPI Specification, Release 1.4-provisional-rev-1

Result

A result object aggregates all output values computed by the algorithm. All assumptions about an input are applied to
a result as well.

namespace oneapi::dal::%ALGORITHM% {

template <typename Task = task::by_default>
class OPERATION_result {
public:
/* Constructor */
%OPERATION%_result(const %PROPERTY_TYPE%& %PROPERTY_NAME%,

/* more properties */)

/* Getter & Setter for the property called `%PROPERTY_NAME%` */
descriptor& set_%PROPERTY_NAME%(%PROPERTY_TYPE% value);
%PROPERTY_TYPE% get_%PROPERTY_NAME%() const;

/* more properties */
};

} // namespace oneapi::dal::%ALGORITHM%

Supported operation

Refer to the Supported operations section for more information about particular operations.

Supported operations

This section describes all operations supported by oneDAL. For more information about general operation definition,
refer to Operations section.

The table bellow specifies whether an algorithm’s descriptor can be used together with each operation.

Algorithm Operations
Train Infer Compute

K-Means Yes Yes No
K-Means Initialization No No Yes
k-NN Yes Yes No
PCA Yes Yes No

6.4. Programming model 422

oneAPI Specification, Release 1.4-provisional-rev-1

Train

The train operation performs training procedure of a machine learning algorithm. The result obtained after the
training contains a model that can be passed to the infer operation.

namespace oneapi::dal {

template <typename Descriptor>
using train_input_t = /* implementation defined */;

template <typename Descriptor>
using train_result_t = /* implementation defined */;

template <typename Descriptor>
train_result_t<Descriptor> train(

sycl::queue& queue,
const Descriptor& desc,
const train_input_t<Descriptor>& input);

} // namespace oneapi::dal

Infer

The infer operation performs inference procedure of a machine learning algorithm based on the model obtained as a
result of training.

namespace oneapi::dal {

template <typename Descriptor>
using infer_input_t = /* implementation defined */;

template <typename Descriptor>
using infer_result_t = /* implementation defined */;

template <typename Descriptor>
infer_result_t<Descriptor> infer(

sycl::queue& queue,
const Descriptor& desc,
const infer_input_t<Descriptor>& input);

} // namespace oneapi::dal

6.4. Programming model 423

oneAPI Specification, Release 1.4-provisional-rev-1

Compute

The compute operation is used if an algorithm does not have the well-defined training and inference stages.

namespace oneapi::dal {

template <typename Descriptor>
using compute_input_t = /* implementation defined */;

template <typename Descriptor>
using compute_result_t = /* implementation defined */;

template <typename Descriptor>
compute_result_t<Descriptor> compute(

sycl::queue& queue,
const Descriptor& desc,
const compute_input_t<Descriptor>& input);

} // namespace oneapi::dal

6.4.4 Computational modes

Batch

In the batch processing mode, the algorithm works with the entire data set to produce the final result. A more complex
scenario occurs when the entire data set is not available at the moment or the data set does not fit into the device
memory.

Online

In the online processing mode, the algorithm processes a data set in blocks streamed into the device’s memory. Partial
results are updated incrementally and finalized when the last data block is processed.

Distributed

In the distributed processing mode, the algorithm operates on a data set distributed across several devices (compute
nodes). On each node, the algorithm produces partial results that are later merged into the final result on the main node.

6.5 Common Interface

6.5.1 Current Version of this oneDAL Specification

This is the oneDAL specification which is part of the oneAPI specification version 1.0.

6.5. Common Interface 424

oneAPI Specification, Release 1.4-provisional-rev-1

6.5.2 Header files

oneDAL public identifiers are represented in the following header files:

Header file Description
oneapi/dal.
hpp

The main header file of oneDAL library.

oneapi/dal/
%FILE%.hpp

The common type definitions used in other oneDAL layers. For example, data_type or range.

oneapi/dal/
algo/%ALGO%.
hpp

A header file for a particular algorithm. The folder for the algorithm itself is oneapi/dal/
algo/%ALGO%/.
The string %ALGO% should be substituted with the name of the algorithm, for example, kmeans
or knn.

oneapi/dal/
algo/misc/
%FUNC%.hpp

A header file for miscellaneous data types and functionality that is intended to be used by
oneDAL algorithms and applications of the analytical pipeline.
The string %FUNC% should be substituted with the name of the functionality, for example,
mt19937 or cross_enthropy_loss.

oneapi/
dal/table/
%FILE%.hpp

A header file for the types related to the table concept.
The string %FILE% should be substituted with the name of the functionality, for example,
common for key concepts related to table types (e.g., table, table_metadata, data_layout
classes). For entities that have the _table suffix in their names, the related header file shall not
contain this suffix in its name, for example, homogen for homogen_table class.

oneapi/dal/
io/%FILE%.
hpp

A header file for the types and entities of input-output functionality.
The string %FILE% should be substituted with the name of the functionality, for example, csv
for reading and writing csv files.

oneapi/dal/
util/%UTIL%.
hpp`

A header file for auxiliary functionality, such as memory allocators or type traits, that is intended
to be used for the design of classes and implementation of various methods.
The string %UTIL% should be substituted with the name of the auxiliary functionality, for ex-
ample, usm_allocator or type_traits.

6.5.3 Namespaces

oneDAL functionality is represented with a system of C++ namespaces described below:

6.5. Common Interface 425

oneAPI Specification, Release 1.4-provisional-rev-1

Namespace oneDAL content
oneapi::dal The namespace of the library that contains externally visible data types, data management enti-

ties, processing and service functionality of oneDAL.
oneapi::dal::%ALGORITHM%The namespace of the algorithm. All classes and structures related to that algorithm shall be

defined within this particular namespace.
To define a namespace for a specific algorithm, the string %ALGORITHM% should be substi-
tuted with its name, for example, oneapi::dal::kmeans or oneapi::dal::knn.

oneapi::dal::%DATA_SOURCE%The namespace of the data source. All classes and structures related to that data source shall be
defined within a particular namespace.
To define a specific data source, the string %DATA_SOURCE% should be substituted with its
name, for example, oneapi::dal::csv.

oneapi::dal::miscThe namespace that contains miscellaneous data types and functionality intended to be used by
oneDAL algorithms and applications for algorithm customization and optimization on various
stages of the analytical pipeline.

%PARENT%::detailThe namespace that contains implementation details of the data types and functionality for the
parent namespace. The namespace can be on any level in the namespace hierarchy.
To define a specific namespace, the string %PARENT% should be substituted with the
namespace for which the details are provided, for example, oneapi::dal::detail or
oneapi::dal::kmeans::detail.
The application shall not use any data types nor call any functionality located in the detail
namespaces.

6.5.4 Error handling

oneDAL error handling relies on the mechanism of C++ exceptions. If an error occurs, it shall be propagated at the
point of a function call where it is caught using standard C++ error handling mechanism.

Exception classification

Exception classification in oneDAL is aligned with C++ Standard Library classification. oneDAL shall introduce
abstract classes that define the base class in the hierarchy of exception classes. Non-abstract exception classes are
derived from the respective C++ Standard Library exception classes. oneDAL shall throw exceptions represented with
non-abstract classes.

In the hierarchy of oneDAL exceptions, oneapi::dal::exception is the base abstract class that all other exception
classes are derived from.

class oneapi::dal::exception;

Exception Description Ab-
stract

oneapi::dal::exception The base class of oneDAL exception hierarchy. Yes

All oneDAL exceptions shall be divided into three groups:

• logic errors

• runtime errors

• errors with allocation

6.5. Common Interface 426

oneAPI Specification, Release 1.4-provisional-rev-1

class oneapi::dal::logic_error : public oneapi::dal::exception;
class oneapi::dal::runtime_error : public oneapi::dal::exception;
class oneapi::dal::bad_alloc : public oneapi::dal::exception, public std::bad_alloc;

Exception Description Ab-
stract

oneapi::dal::logic_error Reports violations of preconditions and invariants. Yes
oneapi::dal::runtime_error Reports violations of postconditions and other errors happened during the

execution of oneDAL functionality.
Yes

oneapi::dal::bad_alloc Reports failure to allocate storage. Yes

All precondition and invariant errors represented by oneapi::dal::logic_error shall be divided into the following
groups:

• invalid argument errors

• domain errors

• out of range errors

• errors with an unimplemented method or algorithm

• unsupported device

class oneapi::dal::invalid_argument : public oneapi::dal::logic_error, public␣
→˓std::invalid_argument;
class oneapi::dal::domain_error : public oneapi::dal::logic_error, public std::domain_
→˓error;
class oneapi::dal::out_of_range : public oneapi::dal::logic_error, public std::out_of_
→˓range;
class oneapi::dal::unimplemented : public oneapi::dal::logic_error, public std::logic_
→˓error;
class oneapi::dal::unsupported_device : public oneapi::dal::logic_error, public␣
→˓std::logic_error;

Exception Description Ab-
stract

oneapi::dal::invalid_argumentReports situations when the argument was not accepted. No
oneapi::dal::domain_error Reports situations when the argument is outside of the do-

main on which the operation is defined. Higher priority than
oneapi::dal::invalid_argument.

No

oneapi::dal::out_of_range Reports situations when the index is out of range. Higher priority than
oneapi::dal::invalid_argument.

No

oneapi::dal::unimplemented Reports errors that arise because an algorithm or a method is not imple-
mented.

No

oneapi::dal::unsupported_deviceReports situations when a device is not supported. No

Errors that occur during the execution of oneDAL functionality are represented with oneapi::dal::runtime_error.
Two main groups of errors shall be distinguished:

• errors in the destination type range

• errors in the OS facilities interaction

6.5. Common Interface 427

oneAPI Specification, Release 1.4-provisional-rev-1

All other errors are reported via oneapi::dal::internal_error.

class oneapi::dal::range_error : public oneapi::dal::runtime_error, public std::range_
→˓error;
class oneapi::dal::system_error : public oneapi::dal::runtime_error, public std::system_
→˓error;
class oneapi::dal::internal_error : public oneapi::dal::runtime_error, public␣
→˓std::runtime_error;

Exception Description Ab-
stract

oneapi::dal::range_error Reports situations where a result of a computation cannot be represented
by the destination type.

No

oneapi::dal::system_error Reports errors occurred during interaction with OS facilities. No
oneapi::dal::internal_errorReports all runtime errors that could not be assigned to other inheritors. No

All memory allocation errors are represented by oneapi::dal::bad_alloc. They shall be divided into two groups
based on where they occur:

• Host memory allocation error

• Device memory allocation error

class oneapi::dal::host_bad_alloc : public oneapi::dal::bad_alloc;
class oneapi::dal::device_bad_alloc : public oneapi::dal::bad_alloc;

Exception Description Ab-
stract

oneapi::dal::host_bad_allocReports failure to allocate storage on the host. No
oneapi::dal::device_bad_allocReports failure to allocate storage on the device. No

6.5.5 Common type definitions

This section describes common types used in oneDAL.

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/common.hpp header file.

6.5. Common Interface 428

oneAPI Specification, Release 1.4-provisional-rev-1

Scalar types

oneDAL relies on the use of integral types defined in <cstdint>. This file shall be included in oneapi/dal/common.
hpp and all oneDAL types shall use these data types.

The interfaces of the library shall use std::int64_t data type to represent dimensionality (for example, the number
of rows and columns in the table).

It is recommended to use standard C++ types for applications as well.

Enum classes

Which base type to use when defining enum or enum class representing a oneDAL concept is up to the implementer
unless specification requires a specific base type.

Data type

The implementation of data type concept. It shall enumerate all the data types supported by oneDAL to perform
computations. The data_type class shall contain all the base scalar types and can also extend them. Base scalar types
include the types whose names follow the pattern std::int_XX_t or std::uint_XX_t, where XX is 8, 16, 32, or
64.

enum class data_type {
int8,
int16,
int32,
int64,
uint8,
uint16,
uint32,
uint64,
float32,
float64,
bfloat16

};

enum class data_type

data_type::int8
8-bit signed integer value type.

data_type::int16
16-bit signed integer value type.

data_type::int32
32-bit signed integer value type.

data_type::int64
64-bit signed integer value type.

data_type::uint8
8-bit unsigned integer value type.

data_type::uint16
16-bit unsigned integer value type.

6.5. Common Interface 429

oneAPI Specification, Release 1.4-provisional-rev-1

data_type::uint32
32-bit unsigned integer value type.

data_type::uint64
64-bit unsigned integer value type.

data_type::float32
32-bit floating-point value type.

data_type::float64
64-bit floating-point value type.

data_type::bfloat16
bi-float value type.

Range

A range [start_index, end_index) in an array or any other container that supports value indexing.

struct range {
public:

range(std::int64_t start, std::int64_t end);

std::int64_t get_element_count(std::int64_t max_end_index) const noexcept;

std::int64_t start_idx;

std::int64_t end_idx;
};

struct range
Constructors

range(std::int64_t start, std::int64_t end)
Constructs a range of elements from the given start and end indices.

Parameters

• start – The first index in the range. The value shall be greater than or equal to 0.

• end – The relative end index in the range. Indicates the next index after the last one in the
range. If positive, shall be greater than 𝑠𝑡𝑎𝑟𝑡. If negative, indicates the offset of the last
element from the end of the range. For example, start = 1 and end = -2 specify the
range of elements [1, 2, 3] in the set [0, 1, 2, 3, 4].

Public Methods

std::int64_t get_element_count(std::int64_t max_end_index) const noexcept
The number of elements in the range. The max_end_index value specifies the last maximal index in the
sequence.

6.5. Common Interface 430

oneAPI Specification, Release 1.4-provisional-rev-1

6.6 Data management

This section includes concepts and objects that operate on data. For oneDAL, such set of operations, or data manage-
ment, is distributed between different stages of the data analytics pipeline. From a perspective of data management,
this pipeline contains three main steps of data acquisition, preparation, and computation (see the picture below):

1. Raw data acquisition

• Transfer out-of-memory data from various sources (databases, files, remote storage) into an in-memory repre-
sentation.

2. Data preparation

• Support different in-memory data formats.

• Compress and decompress the data.

• Convert the data into numeric representation.

• Recover missing values.

• Filter the data and perform data normalization.

• Compute various statistical metrics for numerical data, such as mean, variance, and covariance.

3. Algorithm computation

• Stream in-memory numerical data to the algorithm.

In complex usage scenarios, data flow goes through these three stages back and forth. For example, when the data are
not fully available at the start of the computation, it can be done step-by-step using blocks of data. After the computation
on the current block is completed, the next block should be obtained and prepared.

6.6.1 Key concepts

oneDAL provides a set of concepts to operate on out-of-memory and in-memory data during different stages of the
data analytics pipeline.

6.6. Data management 431

oneAPI Specification, Release 1.4-provisional-rev-1

Dataset

The main data-related concept that oneDAL works with is a dataset. It is a tabular view of data, where table rows
represent the observations and columns represent the features.

The dataset is used across all stages of the data analytics pipeline. For example:

1. At the acquisition stage, it is downloaded into the local memory.

2. At the preparation stage, it is converted into a numerical representation.

3. At the computation stage, it is used as one of the inputs or results of an algorithm or a descriptor properties.

6.6. Data management 432

oneAPI Specification, Release 1.4-provisional-rev-1

Data source

Data source is a concept of an out-of-memory storage for a dataset. It is used at the data acquisition and data preparation
stages to:

• Extract datasets from external sources such as databases, files, remote storage.

• Load datasets into the device’s local memory. Data do not always fit the local memory, especially when pro-
cessing with accelerators. A data source provides the ability to load data by batches and extracts it directly into
the device’s local memory. Therefore, a data source enables complex data analytics scenarios, such as online
computations.

• Transform datasets into their numerical representation. Data source shall automatically transform non-numeric
categorical and continuous data values into one of the numeric data formats.

For details, see data sources section.

Table

Table is a concept of in-memory numerical data that are organized in a tabular view with several rows and columns. It
is used at the data preparation and data processing stages to:

• Be an in-memory representation of a dataset or another tabular data (for example, matrices, vectors, and scalars).

• Store heterogeneous data in various data formats, such as dense, sparse, chunked, contiguous.

• Avoid unnecessary data copies during conversion from external data representations.

• Transfer memory ownership of the data from user application to the table, or share it between them.

• Connect with the data source to convert data from an out-of-memory into an in-memory representation.

• Support streaming of the data to the algorithm.

• Access the underlying data on a device in a required data format, e.g. by blocks with the defined data layout.

Note: For thread-safety reasons and better integration with external entities, a table provides a read-only access to the
data within it, thus, table object shall be immutable.

This concept has different logical organization and physical format of the data:

• Logically, a table contains 𝑛 rows and 𝑝 columns. Every column may have its own type of data values and a set
of allowed operations.

• Physically, a table can be organized in different ways: as a homogeneous, contiguous array of bytes, as a hetero-
geneous list of arrays of different data types, in a compressed-sparse-row format. The number of bytes needed
to store the data differs from the number of elements 𝑛× 𝑝 within a table.

For details, see tables section.

6.6. Data management 433

oneAPI Specification, Release 1.4-provisional-rev-1

Table metadata

Table metadata concept provides an additional information about data in the table:

1. The data types of the columns.

2. The logical types of data in the columns: nominal, ordinal, interval, or ratio.

Only the properties of data that do not affect table concept definition shall be the part of metadata concept.

Warning: While extending the table concept, specification implementer shall distinguish whether a new property
they are adding is a property of a particular table sub-type or a property of table metadata.

For example, data layout and data format are properties of table objects since they affect the structure of a table,
its contract, and behavior. The list of names of features or columns inside the table is the example of metadata
property.

Accessor

Accessor is a concept that defines a single way to extract the data from a table. It allows to:

• Have unified access to the data from table objects of different types, without exposing their implementation
details.

• Provide a flat view on the data blocks of a table for better data locality. For example, the accessor returns a
column of the table stored in row-major format as a contiguous array.

• Acquire data in a desired data format for which a specific set of operations is defined.

• Have read-only access to the data.

For details, see accessors section.

Example of interaction between table and accessor objects

This section provides a basic usage scenario of the table and accessor concepts and demonstrates the relations between
them. The following diagram shows objects of these concepts, which are highlighted by colors:

• table object is dark blue

• accessor is orange

• table metadata is light blue

6.6. Data management 434

oneAPI Specification, Release 1.4-provisional-rev-1

To perform computations on a dataset, one shall create a table object first. It can be done either using a data source or
directly from user-defined memory. The diagram shows the creation of a table object t from the data provided by user
(not shown on the diagram). During a table creation, an object tm of table metadata is constructed and initialized using
the data.

Once a table object is created, it can be used as an input in computations or as a parameter of some algorithm. The data
in the table can be accessed via its own interface or via read-only accessor as shown on the diagram.

6.6.2 Details

This section includes the detailed descriptions of all data management objects in oneDAL.

Array

The array is a simple concept over the data in oneDAL. It represents a storage that:

1. Holds the data allocated inside it or references to the external data. The data are organized as one homogeneous
and contiguous memory block.

2. Contains information about the memory block’s size.

3. Represents either immutable or mutable data.

4. Provides an ability to change the data state from immutable to mutable one.

5. Holds ownership information on the data (see the data ownership requirements section).

6. Ownership information on the data can be shared between several arrays. It is possible to create a new array from
another one without any data copies.

6.6. Data management 435

oneAPI Specification, Release 1.4-provisional-rev-1

Usage example

The following listing provides a brief introduction to the array API and an example of basic usage scenario:

#include <CL/sycl.hpp>
#include <iostream>
#include <string>
#include "oneapi/dal/array.hpp"

using namespace oneapi;

void print_property(const std::string& description, const auto& property) {
std::cout << description << ": " << property << std::endl;

}

int main() {
sycl::queue queue { sycl::default_selector() };

constexpr std::int64_t data_count = 4;
const float data[] = { 1.0f, 2.0f, 3.0f, 4.0f };

// Creating an array from immutable user-defined memory
auto arr_data = dal::array<float>::wrap(data, data_count);

// Creating an array from internally allocated memory filled by ones
auto arr_ones = dal::array<float>::full(queue, data_count, 1.0f);

print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
print_property("Is arr_ones mutable", arr_ones.has_mutable_data()); // true

// Creating new array from arr_data without data copy - they share ownership␣
→˓information.

dal::array<float> arr_mdata = arr_data;

print_property("arr_mdata elements count", arr_mdata.get_count()); // equal to data_
→˓count

print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // false

/// Copying data inside arr_mdata to new mutable memory block.
/// arr_data still refers to the original data pointer.
arr_mdata.need_mutable_data(queue);

print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // true

queue.submit([&](sycl::handler& cgh){
auto mdata = arr_mdata.get_mutable_data();
auto cones = arr_ones.get_data();
cgh.parallel_for<class array_addition>(sycl::range<1>(data_count), [=](sycl::id<1>␣

→˓idx) {
mdata[idx[0]] += cones[idx[0]];

});
}).wait();

(continues on next page)

6.6. Data management 436

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::cout << "arr_mdata values: ";
for(std::int64_t i = 0; i < arr_mdata.get_count(); i++) {

std::cout << arr_mdata[i] << ", ";
}
std::cout << std::endl;

return 0;
}

Data ownership requirements

The array shall satisfy the following requirements on managing the memory blocks:

1. An array shall retain:

• A pointer to the immutable data block of size count;

• A pointer to the mutable data block of size count.

2. If an array represents mutable data, both pointers shall point to the mutable data block.

3. If an array represents immutable data, pointer to the mutable data block shall be nullptr.

4. An array shall use shared ownership semantics to manage the lifetime of the stored data block:

• Several array objects may own the same data block;

• An array releases the ownership when one of the following happens:

– The array owning the data block is destroyed;

– The array owning the data block is assigned another memory block via operator= or reset();

• If the array that releases the ownership is the last remaining object owning the data block, the release of
ownership is followed by the data block deallocation.

• The data block is deallocated using the deleter object that is provided to array during construction. If no
deleter object provided, an array calls the default deallocating function that corresponds to the internal
memory allocation mechanism.

5. If a managed pointer to the data block is replaced by another pointer via reset(), the array that managed the
pointer releases the ownership of it and starts managing the lifetime of the data block represented by the other
pointer.

6. If an array changes its state from immutable to mutable via need_mutable_data(), it releases the ownership
of immutable data block and start managing lifetime of the mutable data block.

7. An array object may own no data. An array like this is called zero-sized:

• Pointers to the immutable and mutable data of the zero-sized array shall be nullptr;

• The data block size count shall be 0.

6.6. Data management 437

oneAPI Specification, Release 1.4-provisional-rev-1

Implementation notes

A typical array implementation may be organized in the following way:

1. An array class has the following member variables:

• A pointer to the immutable data block;

• A pointer to the mutable data block;

• A pointer to the ownership structure that implements the shared ownership semantics;

• The data block size count;

2. An ownership structure is an object that stores:

• A pointer to either immutable or mutable data block;

• The deleter object;

• The reference count (the number of array objects that own the associated data block);

3. If an array starts managing the lifetime of the data block represented by the pointer p and deleter d, it creates
the ownership structure object and initialize it with p and d. The reference count of the ownership structure is
assigned one.

4. If an array object releases the ownership, the reference count of the ownership structure is decremented.

• If that count reaches zero, the ownership structure deallocates the memory block and the array destroys the
ownership structure.

• If that count is greater than zero, the ownership structure is not destroyed.

5. If a copy of the array object is created, the reference count of the ownership structure is incremented and a pointer
to the same ownership structure is assigned to the created copy. The other member variables of an array class
are copied as is.

Note: You may choose an arbitrary implementation strategy that satisfies array requirements.

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/array.hpp header file.

All the array class methods can be divided into several groups:

1. Constructors that are used to create an array from external, mutable or immutable memory.

2. Constructors and assignment operators that are used to create an array that shares its data with another one.

3. The group of reset() methods that are used to re-assign an array to another external memory block.

4. The group of reset() methods that are used to re-assign an array to an internally allocated memory block.

5. The methods that are used to access the data.

6. Static methods that provide simplified ways to create an array either from external memory or by allocating it
within a new object.

6.6. Data management 438

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename Data>
class array {
public:

using data_t = Data;

static array<Data> empty(const sycl::queue& queue,
std::int64_t count,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

template <typename Element>
static array<Data> full(sycl::queue& queue,

std::int64_t count,
Element&& element,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

static array<Data> zeros(sycl::queue& queue,
std::int64_t count,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

template <typename ExtData>
static array<Data> wrap(ExtData* data,

std::int64_t count,
const std::vector<sycl::event>& dependencies = {});

array();

array(const array<Data>& other);

array(array<Data>&& other);

template <typename ExtData, typename Deleter>
explicit array(const sycl::queue& queue,

ExtData* data,
std::int64_t count,
Deleter&& deleter,
const std::vector<sycl::event>& dependencies = {});

template <typename RefData, typename ExtData>
explicit array(const array<RefData>& ref, ExtData* data, std::int64_t count);

array<Data> operator=(const array<Data>& other);

array<Data> operator=(array<Data>&& other);

const Data* get_data() const noexcept;

bool has_mutable_data() const noexcept;

Data* get_mutable_data() const;

array& need_mutable_data(sycl::queue& queue,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

(continues on next page)

6.6. Data management 439

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t get_count() const noexcept;

std::int64_t get_size() const noexcept;

const Data& operator[](std::int64_t index) const noexcept;

void reset();

void reset(const sycl::queue& queue,
std::int64_t count,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

template <typename ExtData, typename Deleter>
void reset(ExtData* data,

std::int64_t count,
Deleter&& deleter,
const std::vector<sycl::event>& dependencies = {});

template <typename RefData, typename ExtData>
void reset(const array<RefData>& ref, ExtData* data, std::int64_t count);

};

template<typename Data>
class array

Template Parameters
Data – The type of the memory block elements within the array. Data can represent any data
type.

Public Static Methods

static array<Data> empty(const sycl::queue &queue, std::int64_t count, const sycl::usm::alloc &alloc =
sycl::usm::alloc::shared)

Creates a new array instance by allocating a mutable memory block. The created array manages the lifetime
of the allocated memory block. The function is not required to initialize the values of the allocated memory
block.

Parameters

• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

• alloc – The kind of USM to be allocated.

Preconditions

count > 0

Postconditions

get_count() == count

has_mutable_data() == true

template<typename Element>

6.6. Data management 440

oneAPI Specification, Release 1.4-provisional-rev-1

static array<Data> full(sycl::queue &queue, std::int64_t count, Element &&element, const sycl::usm::alloc
&alloc = sycl::usm::alloc::shared)

Creates a new array instance by allocating a mutable memory block and filling its content with a scalar
value. The created array manages the lifetime of the allocated memory block.

Template Parameters
Element – The type from which array elements of type Data can be constructed.

Parameters

• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

• element – The value that is used to fill a memory block.

• alloc – The kind of USM to be allocated.

Preconditions

count > 0

Postconditions

get_count() == count

has_mutable_data() == true

get_data()[i] == element, 0 <= i < count

static array<Data> zeros(sycl::queue &queue, std::int64_t count, const sycl::usm::alloc &alloc =
sycl::usm::alloc::shared)

Creates a new array instance by allocating a mutable memory block and filling its content with zeros. The
created array manages the lifetime of the allocated memory block.

Parameters

• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

• alloc – The kind of USM to be allocated.

Preconditions

count > 0

Postconditions

get_count() == count

has_mutable_data() == true

get_data()[i] == 0, 0 <= i < count

template<typename ExtData>
static array<Data> wrap(ExtData *data, std::int64_t count, const std::vector<sycl::event> &dependencies =

{})
Creates a new array instance from a pointer to externally-allocated memory block. The created array does
not manage the lifetime of the user-provided memory block. It is the responsibility of the programmer to
make sure that data pointer remains valid as long as this array object exists.

Template Parameters
ExtData – Either Data or const Data type.

6.6. Data management 441

oneAPI Specification, Release 1.4-provisional-rev-1

Parameters

• data – The pointer to the mutable or immutable externally-allocated memory block.

• count – The number of elements of type Data in the memory block.

• dependencies – Events indicating the availability of the data for reading or writing.

Preconditions

data != nullptr

count > 0

Postconditions

get_count() == count

get_data() == data

has_mutable_data() == false

Constructors

array()

Creates a zero-sized array without memory allocation.

Postconditions

get_count() == 0

get_data() == nullptr

has_mutable_data() == false

array(const array<Data> &other)
Creates a new array instance that shares an ownership with the other array.

array(array<Data> &&other)
Creates a new array instance that transfers the ownership from the other array. After the construction of a
new instance, the behaviour of the other is defined by the implementation.

Postconditions

other.get_count() == 0

other.get_data() == nullptr

has_mutable_data() == false

template<typename ExtData, typename Deleter>
array(const sycl::queue &queue, ExtData *data, std::int64_t count, Deleter &&deleter, const

std::vector<sycl::event> &dependencies = {})
Creates a new array instance from a pointer to externally-allocated memory block. The created array man-
ages the lifetime of the user-provided memory block. The memory block is deallocated using a custom
deleter object provided by the user.

Template Parameters

• ExtData – Either Data or const Data type.

• Deleter – The type of a deleter used to deallocate the data. The expression
deleter(data) must be well-formed (can be compiled) and not throw any exceptions.

Parameters

• queue – The SYCL* queue object.

• data – The pointer to the mutable or immutable externally-allocated mutable data.

6.6. Data management 442

oneAPI Specification, Release 1.4-provisional-rev-1

• count – The number of elements of type Data in the memory block.

• deleter – The object used to deallocate data.

• dependencies – Events that indicate when data becomes ready to be read or written.

Preconditions

data != nullptr

count > 0

Postconditions

get_count() == count

get_data() == data

has_mutable_data() == true

get_mutable_data() == data

template<typename RefData, typename ExtData>
array(const array<RefData> &ref, ExtData *data, std::int64_t count)

Creates a new array instance that shares the ownership with the reference array while storing the pointer
to another memory block provided by the user. The lifetime of the user-provided memory block is not
managed by the created array. One of the use cases of this constructor is the creation of an array with
an offset, for example, array{ other, other.get_data() + offset }. The array created this way
shares the ownership with the other, but points to its data with an offset. It is the responsibility of the
programmer to make sure that data pointer remains valid as long as this array object exists.

Template Parameters

• RefData – The type of elements in the reference array.

• ExtData – Either Data or const Data type.

Parameters

• ref – The reference array which shares the ownership with the created one.

• data – The unmanaged pointer to the mutable or immutable externally-allocated memory
block.

• count – The number of elements of type Data in the data.

Preconditions

data != nullptr

count > 0

Postconditions

get_count() == count

get_data() == data

Public Methods

array<Data> operator=(const array<Data> &other)
Replaces the immutable and mutable data pointers and the number of elements by the values stored in the
other array.

Postconditions

get_data() == other.get_data()

6.6. Data management 443

oneAPI Specification, Release 1.4-provisional-rev-1

get_count() == other.get_count()

get_mutable_data() == other.get_mutable_data()

array<Data> operator=(array<Data> &&other)
Replaces the immutable and mutable data pointers and the number of elements by the values stored in the
other array.

Postconditions

get_data() == other.get_data()

get_count() == other.get_count()

get_mutable_data() == other.get_mutable_data()

const Data *get_data() const noexcept
The pointer to the immutable memory block.

bool has_mutable_data() const noexcept
Returns whether an array contains mutable data or not.

Data *get_mutable_data() const
The pointer to the mutable memory block.

Preconditions

has_mutable_data() == true, othewise throws domain_error

array &need_mutable_data(sycl::queue &queue, const sycl::usm::alloc &alloc = sycl::usm::alloc::shared)
Does nothing if an array contains mutable data. Otherwise, allocates a mutable memory block and copies
the content of the immutable memory block into it. The array manages the lifetime of the allocated mutable
memory block. Returns the reference to the same array instance.

Parameters

• queue – The SYCL* queue object.

• alloc – The kind of USM to be allocated.

Postconditions

has_mutable_data() == true

std::int64_t get_count() const noexcept
The number of elements of type Data in a memory block.

std::int64_t get_size() const noexcept
The size of memory block in bytes.

const Data &operator[](std::int64_t index) const noexcept
Provides a read-only access to the elements of an array. No bounds checking is performed.

void reset()
Releases the ownership of the managed memory block.

Preconditions

count > 0

Postconditions

get_count() == count

has_mutable_data() == true

6.6. Data management 444

oneAPI Specification, Release 1.4-provisional-rev-1

void reset(const sycl::queue &queue, std::int64_t count, const sycl::usm::alloc &alloc =
sycl::usm::alloc::shared)

Releases the ownership of the managed memory block and replaces it by a newly allocated mutable memory
block. The lifetime of the allocated memory block is managed by the array.

Parameters

• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

• alloc – The kind of USM to be allocated.

Preconditions

count > 0

Postconditions

get_count() == count

template<typename ExtData, typename Deleter>
void reset(ExtData *data, std::int64_t count, Deleter &&deleter, const std::vector<sycl::event>

&dependencies = {})
Releases the ownership of the managed memory block and replace it by a pointer to externally-allocated
memory block. The lifetime of the memory block is managed by the array. The memory block is deallocated
using a custom deleter object provided by the user.

Template Parameters

• ExtData – Either Data or const Data type.

• Deleter – The type of a deleter used to deallocate the data. The expression
deleter(data) must be well-formed (can be compiled) and not throw any exceptions.

Parameters

• data – The pointer to the to the mutable or immutable externally-allocated memory block.

• count – The number of elements of type Data in the data.

• deleter – The object used to deallocate data.

• dependencies – Events indicating the availability of the data for reading or writing.

Preconditions

data != nullptr

count > 0

Postconditions

get_count() == count

get_data() == data

has_mutable_data() == true

get_mutable_data() == data

template<typename RefData, typename ExtData>

6.6. Data management 445

oneAPI Specification, Release 1.4-provisional-rev-1

void reset(const array<RefData> &ref, ExtData *data, std::int64_t count)
Releases the ownership of the managed memory block and starts managing the lifetime of the reference
array while storing the pointer to another memory block provided by the user. The lifetime of the user-
provided memory block is not managed. It is the responsibility of the programmer to make sure that data
pointer remains valid as long as this array object exists.

Template Parameters

• RefData – The type of elements in the reference array.

• ExtData – Either Data or const Data type.

Parameters

• ref – The reference array which shares the ownership with the created one.

• data – The unmanaged pointer to the mutable or immutable externally-allocated memory
block.

• count – The number of elements of type Data in the data.

Preconditions

data != nullptr

count > 0

Postconditions

get_count() == count

get_data() == data

Accessors

This section defines requirements to an accessor implementation and introduces several accessor types.

Requirements

Each accessor implementation shall:

1. Define a single format of the data for the access. Every accessor type shall return and use only one data format.

2. Provide read-only access to the data in the table types.

3. Provide the pull() method for obtaining the values from the table.

4. Be lightweight. Its constructors shall not have computationally intensive operations such data copy, reading, or
conversion. These operations shall be performed by method pull(). Support of copy- and move- constructors
by the accessor is not required since it shall be designed for use in a local scope - directly in a place when it is
created.

5. The pull() method shall avoid data copy and conversion when it is possible to return the pointer to the memory
block in the table. This is applicable for cases such as when the data format and data types of the data within
the table are the same as the data format and data type for the access.

6.6. Data management 446

oneAPI Specification, Release 1.4-provisional-rev-1

Accessor Types

oneDAL defines a set of accessor classes. Each class supports one specific way of obtaining data from the table.

All accessor classes in oneDAL are listed below:

Accessor type Description List of supported types
row accessor Provides access to the range of rows as one contiguous

homogeneous block of memory.
homogen table

column accessor Provides access to the range of values within a single col-
umn as one contiguous homogeneous block of memory.

homogen table

Details

Column accessor

The column_accessor class provides a read-only access to the column values of the table as contiguous homogeneous
array.

Usage example

#include <CL/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/column_accessor.hpp"

using namespace oneapi;

int main() {
sycl::queue queue { sycl::default_selector() };

constexpr float host_data[] = {
1.0f, 1.5f, 2.0f,
2.1f, 3.2f, 3.7f,
4.0f, 4.9f, 5.0f,
5.2f, 6.1f, 6.2f

};

constexpr std::int64_t row_count = 4;
constexpr std::int64_t column_count = 3;

auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_

→˓count);
auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

// Accessing whole elements in a first column
dal::column_accessor<const float> acc { t };

(continues on next page)

6.6. Data management 447

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

auto block = acc.pull(queue, 0);
for(std::int64_t i = 0; i < block.get_count(); i++) {

std::cout << block[i] << ", ";
}
std::cout << std::endl;

sycl::free(shared_data, queue);
return 0;

}

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/column_accessor.hpp header file.

template <typename Data>
class column_accessor {
public:

using data_t = std::remove_const_t<Data>;

public:
column_accessor(const table& obj);

array<data_t> pull(sycl::queue& queue,
std::int64_t column_index,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

Data* pull(sycl::queue& queue,
array<data_t>& block,
std::int64_t column_index,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

};

template<typename Data>
class column_accessor

Template Parameters
Data – The type of data values in blocks returned by the accessor. Shall be const-qualified for
read-only access. An accessor shall support at least float, double, and std::int32_t types
of 𝐷𝑎𝑡𝑎.

Constructors

column_accessor(const table &obj)
Creates a new read-only accessor object from the table. The check that the accessor supports the table kind
of 𝑜𝑏𝑗 shall be performed. The reference to the 𝑜𝑏𝑗 table shall be stored within the accessor to obtain data
from the table.

Public Methods

6.6. Data management 448

oneAPI Specification, Release 1.4-provisional-rev-1

array<data_t> pull(sycl::queue &queue, std::int64_t column_index, const range &rows = {0, -1}, const
sycl::usm::alloc &alloc = sycl::usm::alloc::shared) const

Provides access to the column values of the table. The method shall return an array that directly points to
the memory within the table if it is possible. In that case, the array shall refer to the memory as to immutable
data. Otherwise, the new memory block shall be allocated, the data from the table rows shall be converted
and copied into this block. The array shall refer to the block as to mutable data.

Parameters

• queue – The SYCL* queue object.

• column_index – The index of the column from which the data shall be returned by the
accessor.

• rows – The range of rows that should be read in the 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥 block.

• alloc – The requested kind of USM in the returned block.

Preconditions

rows are within the range of [0, obj.row_count).
column_index is within the range of [0, obj.column_count).

Data *pull(sycl::queue &queue, array<data_t> &block, std::int64_t column_index, const range &rows = {0,
-1}, const sycl::usm::alloc &alloc = sycl::usm::alloc::shared) const

Provides access to the column values of the table. The method shall return the block.data pointer.

Parameters

• queue – The SYCL* queue object.

• block – The block which memory is reused (if it is possible) to obtain the data from the
table. The block memory shall be reset either when its size is not big enough, or when it
contains immutable data, or when direct memory from the table can be used. If the block
is reset to use a direct memory pointer from the object, it shall refer to this pointer as to
immutable memory block.

• column_index – The index of the column from which the data shall be returned by the
accessor.

• rows – The range of rows that should be read in the 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥 block.

• alloc – The requested kind of USM in the returned block.

Preconditions

rows are within the range of [0, obj.row_count).
column_index is within the range of [0, obj.column_count).

6.6. Data management 449

oneAPI Specification, Release 1.4-provisional-rev-1

Row accessor

The row_accessor class provides a read-only access to the rows of the table as contiguous homogeneous array.

Usage example

#include <CL/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/row_accessor.hpp"

using namespace oneapi;

int main() {
sycl::queue queue { sycl::default_selector() };

constexpr float host_data[] = {
1.0f, 1.5f, 2.0f,
2.1f, 3.2f, 3.7f,
4.0f, 4.9f, 5.0f,
5.2f, 6.1f, 6.2f

};

constexpr std::int64_t row_count = 4;
constexpr std::int64_t column_count = 3;

auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_

→˓count);
auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

// Accessing second and third rows of the table
dal::row_accessor<const float> acc { t };

auto block = acc.pull(queue, {1, 3});
for(std::int64_t i = 0; i < block.get_count(); i++) {

std::cout << block[i] << ", ";
}
std::cout << std::endl;

sycl::free(shared_data, queue);
return 0;

}

6.6. Data management 450

oneAPI Specification, Release 1.4-provisional-rev-1

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/row_accessor.hpp header file.

template <typename Data>
class row_accessor {
public:

using data_t = std::remove_const_t<Data>;

public:
row_accessor(const table& obj);

array<data_t> pull(sycl::queue& queue,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

Data* pull(sycl::queue& queue,
array<data_t>& block,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

};

template<typename Data>
class row_accessor

Template Parameters
Data – The type of data values in blocks returned by the accessor. Shall be const-qualified for
read-only access. An accessor shall support at least float, double, and std::int32_t types
of 𝐷𝑎𝑡𝑎.

Constructors

row_accessor(const table &obj)
Creates a new read-only accessor object from the table. The check that the accessor supports the table kind
of 𝑜𝑏𝑗 shall be performed. The reference to the 𝑜𝑏𝑗 table shall be stored within the accessor to obtain data
from the table.

Public Methods

array<data_t> pull(sycl::queue &queue, const range &rows = {0, -1}, const sycl::usm::alloc &alloc =
sycl::usm::alloc::shared) const

Provides access to the rows of the table. The method shall return an array that directly points to the memory
within the table if it is possible. In that case, the array shall refer to the memory as to immutable data.
Otherwise, the new memory block shall be allocated, the data from the table rows shall be converted and
copied into this block. The array shall refer to the block as to mutable data.

Parameters

• queue – The SYCL* queue object.

• rows – The range of rows that data shall be returned from the accessor.

• alloc – The requested kind of USM in the returned block.

Preconditions

rows are within the range of [0, obj.row_count).

6.6. Data management 451

oneAPI Specification, Release 1.4-provisional-rev-1

Data *pull(sycl::queue &queue, array<data_t> &block, const range &rows = {0, -1}, const sycl::usm::alloc
&alloc = sycl::usm::alloc::shared) const

Provides access to the rows of the table. The method shall return the block.data pointer.

Parameters

• queue – The SYCL* queue object.

• block – The block which memory is reused (if it is possible) to obtain the data from the
table. The block memory shall be reset either when its size is not big enough, or when it
contains immutable data, or when direct memory from the table can be used. If the block
is reset to use a direct memory pointer from the object, it shall refer to this pointer as to
immutable memory block.

• rows – The range of rows that data shall be returned from the accessor.

• alloc – The requested kind of USM in the returned block.

Preconditions

rows are within the range of [0, obj.row_count).

Data Sources

This section describes the types related to the data source concept.

Read

Read operation is a function that transforms a data source and other arguments represented via an args object to a
result object. The operation is responsible for:

• Executing all of the data retrieval and transformation routines of the data source.

• Passing a SYCL* queue to the data retrieval and transformation routines.

Read operation definition

The following code sample shows the declaration for a read operation.

namespace oneapi::dal {

template <typename Object, typename DataSource>
using read_args_t = /* implementation defined */;

template <typename Object, typename DataSource>
using read_result_t = Object;

template <typename Object, typename DataSource>
read_result_t<Object, DataSource> read(

sycl::queue& queue,
const DataSource& data_source,
const read_args_t<Object, DataSource>& args);

} // namespace oneapi::dal

6.6. Data management 452

oneAPI Specification, Release 1.4-provisional-rev-1

Each operation shall satisfy the following requirements:

• An operation shall accept three parameters in the following order:

– The SYCL* queue object.

– The data source.

– The args object.

• An operation shall return the result object.

• The read_args_t and read_result_t alias templates shall be used for inference of the args and return types.

Read operation shortcuts

In order to make the code on user side less verbose, oneDAL defines the following overloaded functions called shortcuts
for a read operation in addition to the general one described in section Read operation definition.

• A shortcut for execution on host. Performs the same operation as the general function on host, but does not
require passing the queue explicitly.

template <typename Object, typename DataSource>
read_result_t<Object, DataSource> read(
const DataSource& data_source,
const read_args_t<Object, DataSource>& args);

• A shortcut that allows omitting explicit args creation.

template <typename Object, typename DataSource, typename... Args>
read_result_t<Object, DataSource> read(

sycl::queue& queue,
const DataSource& data_source,
Args&&... args);

• A shortcut that allows omitting explicit queue and args creation. This is a combination of two previous shortcuts.

template <typename Object, typename DataSource, typename... Args>
read_result_t<Object, DataSource> read(
const DataSource& data_source,
Args&&... args);

Args

• The string %DATA_SOURCE% should be substituted with the name of the data source, for example, csv.

• %PROPERTY_NAME% and %PROPERTY_TYPE% should be substituted with the name and the type of one of the data
source args properties.

namespace oneapi::dal::%DATA_SOURCE% {

template <typename Object, typename DataSource>
class read_args {
public:

read_args(
(continues on next page)

6.6. Data management 453

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const %PROPERTY_TYPE_1%& property_name_1,
const %PROPERTY_TYPE_2%& property_name_2,
/* more properties */

)
/* Getter & Setter for the property called `%PROPERTY_NAME_1%` */
descriptor& set_%PROPERTY_NAME_1%(%PROPERTY_TYPE_1% value);
%PROPERTY_TYPE_1% get_%PROPERTY_NAME_1%() const;
/* Getter & Setter for the property called `%PROPERTY_NAME_2%` */
descriptor& set_%PROPERTY_NAME_2%(%PROPERTY_TYPE_2% value);
%PROPERTY_TYPE_2% get_%PROPERTY_NAME_2%() const;
/* more properties */

};
} // namespace oneapi::dal::%DATA_SOURCE%

Result

The result of a read operation is an instance of an in-memory object with Object type.

Data Source Types

oneDAL defines a set of classes.

Data
source
type

Description

CSV data
source

Data source that allows reading data from a text file into a table.

Details

CSV data source

Class csv::data_source is an API for accessing the data source represented as a csv file. CSV data source shall be
used with read operation to extract data in text format from the given input file, process it using provided parameters
(such as delimiter and read options), transform it into numerical representation, and store it as an in-memory dataset
of a chosen type.

Supported type of in-memory object for read operation with CSV data source is oneapi::dal::table.

CSV data source requires input file name to be set in the constructor, while the other parameters of the constructor such
as delimiter and read options rely on default values.

6.6. Data management 454

oneAPI Specification, Release 1.4-provisional-rev-1

Usage example

using namespace oneapi;

const auto data_source = dal::csv::data_source("data.csv", ',');

const auto table = dal::read<dal::table>(data_source);

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::csv namespace and be available via
inclusion of the oneapi/dal/io/csv.hpp header file.

enum class read_options : std::uint64_t {
none = 0,
parse_header = 1 << 0

};

constexpr char default_delimiter = ',';
constexpr read_options default_read_options = read_options::none;

class data_source {
public:

data_source(const char *file_name,
char delimiter = default_delimiter,
read_options opts = default_read_options);

data_source(const std::string &file_name,
char delimiter = default_delimiter,
read_options opts = default_read_options);

std::string get_file_name() const;
char get_delimiter() const;
read_options get_read_options() const;

};

class data_source

data_source(const char *file_name, char delimiter = default_delimiter, read_options opts =
default_read_options)

Creates a new instance of a CSV data source with the given file_name, delimiter and read options
opts flag.

data_source(const std::string &file_name, char delimiter = default_delimiter, read_options opts =
default_read_options)

Creates a new instance of a CSV data source with the given file_name, delimiter and read options
opts flag.

std::string file_name = ""
A string that contains the name of the file with the dataset to read.

Getter

std::string get_filename() const

6.6. Data management 455

oneAPI Specification, Release 1.4-provisional-rev-1

char delimiter = default_delimiter
A character that represents the delimiter between separate features in the input file.

Getter

char get_delimter() const

read_options options = default_read_options
Value that stores read options to be applied during reading of the input file. Enabled parse_header option
indicates that the first line in the input file shall be processed as a header record with features names.

Getter

read_options get_read_options() const

Reading oneapi::dal::read<Object>(...)

Args

template <typename Object>
class read_args {
public:

read_args();
};

template<typename Object>
class read_args

read_args()

Creates args for the read operation with the default attribute values.

Operation

oneapi::dal::table is the only supported value of the Object template parameter for read operation with CSV
data source.

template<typename Object, typename DataSource>
Object read(const DataSource &ds)

Template Parameters

• Object – oneDAL object type that shall be produced as a result of reading from the data
source.

• DataSource – CSV data source csv::data_source.

6.6. Data management 456

oneAPI Specification, Release 1.4-provisional-rev-1

Tables

This section describes the types related to the table concept.

Type Description
table A common implementation of the table concept. Base class for other table types.
ta-
ble_metadata

An implementation of table metadata concept.

data_layout An enumeration of data layouts used to store contiguous data blocks inside the table.
fea-
ture_type

An enumeration of feature types used in oneDAL to define set of available operations onto the data.

Requirements on table types

Each implementation of table concept shall:

1. Follow the definition of the table concept and its restrictions (e.g., immutability).

2. Be derived from the oneapi::dal::table class. The behavior of this class can be extended, but cannot be
weaken.

3. Be reference-counted.

4. Every new oneapi::dal::table sub-type shall define a unique id number - the “kind” that represents objects
of that type in runtime.

The following listing provides an example of table API to illustrate table kinds and copy-assignment operation:

using namespace onedal;

// Creating homogen_table sub-type.
dal::homogen_table table1 = homogen_table::wrap(queue, data_ptr, row_count, column_
→˓count);

// table1 and table2 share the same data (no data copy is performed)
dal::table table2 = table1;

// Creating an empty table
dal::table table3;

std::cout << table1.get_kind() == table2.get_kind() << std::endl; // true
std::cout << homogen_table::kind() == table2.get_kind() << std::endl; // true
std::cout << table2.get_kind() == table3.get_kind() << std::endl; // false

// Referring table3 to the table2.
table3 = table2;
std::cout << table2.get_kind() == table3.get_kind() << std::endl; // true

6.6. Data management 457

oneAPI Specification, Release 1.4-provisional-rev-1

Table types

oneDAL defines a set of classes that implement the table concept for a specific data format:

Table type Description
homogen table A dense table that contains contiguous homogeneous data.

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/common.hpp header file.

Table

A base implementation of the table concept. The table type and all of its subtypes shall be reference-counted:

1. The instance shall store a pointer to table implementation that holds all property values and data

2. The reference count indicating how many table objects refer to the same implementation.

3. The table shall increment the reference count for it to be equal to the number of table objects sharing the same
implementation.

4. The table shall decrement the reference count when the table goes out of the scope. If the reference count is zero,
the table shall free its implementation.

class table {
public:

table();

table(const table& other);

table(table&& other);

table& operator=(const table& other);

table& operator=(table&& other);

bool has_data() const noexcept;

std::int64_t get_column_count() const;

std::int64_t get_row_count() const;

const table_metadata& get_metadata() const;

std::int64_t get_kind() const;

data_layout get_data_layout() const;
};

6.6. Data management 458

oneAPI Specification, Release 1.4-provisional-rev-1

class table
Constructors

table()

An empty table constructor: creates the table instance with zero number of rows and columns. Imple-
mentation shall be set to the special “empty” object that returns all the property values set to default (see
Properties section).

table(const table &other)
Creates a new table instance which shares implementation with 𝑜𝑡ℎ𝑒𝑟.

table(table &&other)
Creates a new table instance and moves implementation from 𝑜𝑡ℎ𝑒𝑟 into it.

Public Methods

table &operator=(const table &other)
Replaces the implementation by another one from 𝑜𝑡ℎ𝑒𝑟.

table &operator=(table &&other)
Swaps the implementation of this object and 𝑜𝑡ℎ𝑒𝑟.

bool has_data() const noexcept
Indicates whether a table contains non-zero number of rows and columns.

std::int64_t get_column_count() const
The number of columns in the table.

std::int64_t get_row_count() const
The number of rows in the table.

const table_metadata &get_metadata() const
The metadata object that holds additional information about the data within the table.

std::int64_t get_kind() const
The runtime id of the table type. Each table sub-type shall have its unique kind. An empty table (see the
default constructor) shall have a unique kind value as well.

data_layout get_data_layout() const
The layout of the data within the table.

Table metadata

An implementation of the table metadata concept. Holds additional information about data within the table. The
objects of table_metadata shall be reference-counted.

class table_metadata {
public:

table_metadata();

table_metadata(const array<data_type>& dtypes, const array<feature_type>& ftypes);

std::int64_t get_feature_count() const;

const feature_type& get_feature_type(std::int64_t feature_index) const;

(continues on next page)

6.6. Data management 459

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const data_type& get_data_type(std::int64_t feature_index) const;
};

class table_metadata
Constructors

table_metadata()

Creates the metadata instance without information about the features. The feature_count shall be set to
zero. The data_type and feature_type properties shall not be initialized.

table_metadata(const array<data_type> &dtypes, const array<feature_type> &ftypes)
Creates the metadata instance from external information about the data types and the feature types.

Parameters

• dtypes – The data types of the features. Shall be assigned into the data_type property.

• ftypes – The feature types. Shall be assigned into the feature_type property.

Preconditions

dtypes.get_count() == ftypes.get_count()

Public Methods

std::int64_t get_feature_count() const
The number of features that metadata contains information about.

Preconditions

feature_count >= 0

const feature_type &get_feature_type(std::int64_t feature_index) const
Feature types in the metadata object. Shall be within the range [0, feature_count).

const data_type &get_data_type(std::int64_t feature_index) const
Data types of the features in the metadata object. Shall be within the range [0, feature_count).

Data layout

An implementation of the data layout concept.

enum class data_layout { unknown, row_major, column_major };

enum class data_layout

data_layout::unknown
Represents the data layout that is undefined or unknown at this moment.

data_layout::row_major
The data block elements are stored in raw-major layout.

data_layout::column_major
The data block elements are stored in column_major layout.

6.6. Data management 460

oneAPI Specification, Release 1.4-provisional-rev-1

Feature type

An implementation of the logical data types.

enum class feature_type { nominal, ordinal, interval, ratio };

enum class feature_type

feature_type::nominal
Represents the type of Nominal feature.

feature_type::ordinal
Represents the type of Ordinal feature.

feature_type::interval
Represents the type of Interval feature.

feature_type::ratio
Represents the type of Ratio feature.

Homogeneous table

Class homogen_table is an implementation of a table type for which the following is true:

• The data within the table are dense and stored as one contiguous memory block.

• All the columns have the same data type.

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/homogen.hpp header file.

class homogen_table : public table {
public:

static std::int64_t kind();

template <typename Data>
static homogen_table wrap(const sycl::queue& queue,

const Data* data_pointer,
std::int64_t row_count,
std::int64_t column_count,
const sycl::vector_class<sycl::event>& dependencies = {},
data_layout layout = data_layout::row_major);

public:
homogen_table();

template <typename Data, typename ConstDeleter>
homogen_table(const sycl::queue& queue,

const Data* data_pointer,
std::int64_t row_count,
std::int64_t column_count,
ConstDeleter&& data_deleter,

(continues on next page)

6.6. Data management 461

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const sycl::vector_class<sycl::event>& dependencies = {},
data_layout layout = data_layout::row_

→˓major);

template <typename Data>
const Data* get_data() const {

return reinterpret_cast<const Data*>(this->get_data());
}

const void* get_data() const;

std::int64_t get_kind() const {
return kind();

}
};

class homogen_table
Public Static Methods

static std::int64_t kind()
Returns the unique id of homogen_table class.

template<typename Data>
static homogen_table wrap(const sycl::queue &queue, const Data *data_pointer, std::int64_t row_count,

std::int64_t column_count, const sycl::vector_class<sycl::event> &dependencies =
{}, data_layout layout = data_layout::row_major)

Creates a new homogen_table instance from externally-defined data block. Table object refers to the data
but does not own it. The responsibility to free the data remains on the user side. The data shall point to
the data_pointer memory block.

Template Parameters
Data – The type of elements in the data block that will be stored into the table. The table shall
initialize data types of metadata with this data type. The feature types shall be set to default
values for 𝐷𝑎𝑡𝑎 type: contiguous for floating-point, ordinal for integer types. The 𝐷𝑎𝑡𝑎 type
shall be at least float, double or std::int32_t.

Parameters

• queue – The SYCL* queue object.

• data_pointer – The pointer to a homogeneous data block.

• row_count – The number of rows in the table.

• column_count – The number of columns in the table.

• dependencies – Events indicating availability of the 𝑑𝑎𝑡𝑎 for reading or writing.

• layout – The layout of the data. Shall be data_layout::row_major or
data_layout::column_major.

Constructors

homogen_table()

Creates a new homogen_table instance with zero number of rows and columns. The kind shall be set
to`homogen_table::kind()`. All the properties shall be set to default value (see the Properties section).

template<typename Data, typename ConstDeleter>

6.6. Data management 462

oneAPI Specification, Release 1.4-provisional-rev-1

homogen_table(const sycl::queue &queue, const Data *data_pointer, std::int64_t row_count, std::int64_t
column_count, ConstDeleter &&data_deleter, const sycl::vector_class<sycl::event>
&dependencies = {}, data_layout layout = data_layout::row_major)

Creates a new homogen_table instance from externally-defined data block. Table object owns the data
pointer. The data shall point to the data_pointer memory block.

Template Parameters

• Data – The type of elements in the data block that will be stored into the table. The 𝐷𝑎𝑡𝑎
type shall be at least float, double or std::int32_t.

• ConstDeleter – The type of a deleter called on data_pointer when the last table that refers
it is out of the scope.

Parameters

• queue – The SYCL* queue object.

• data_pointer – The pointer to a homogeneous data block.

• row_count – The number of rows in the table.

• column_count – The number of columns in the table.

• data_deleter – The deleter that is called on the data_pointer when the last table that
refers it is out of the scope.

• dependencies – Events indicating availability of the 𝑑𝑎𝑡𝑎 for reading or writing.

• layout – The layout of the data. Shall be data_layout::row_major or
data_layout::column_major.

Public Methods

template<typename Data>
const Data *get_data() const

Returns the data pointer cast to the 𝐷𝑎𝑡𝑎 type. No checks are performed that this type is the actual type
of the data within the table.

const void *get_data() const
The pointer to the data block within the table. Shall be equal to nullptr when row_count == 0 and
column_count == 0.

std::int64_t get_kind() const
The unique id of the homogen table type.

6.7 Algorithms

The Algorithms component consists of classes that implement algorithms for data analysis (data mining) and data
modeling (training and prediction). These algorithms include matrix decompositions, clustering, classification, and
regression algorithms, as well as association rules discovery.

6.7. Algorithms 463

oneAPI Specification, Release 1.4-provisional-rev-1

6.7.1 Clustering

K-Means

The K-Means algorithm solves clustering problem by partitioning 𝑛 feature vectors into 𝑘 clusters minimizing some
criterion. Each cluster is characterized by a representative point, called a centroid.

Operation Computational methods Programming Interface
Training Lloyd’s train(. . .) train_input train_result
Inference Lloyd’s infer(. . .) infer_input infer_result

Mathematical formulation

Training

Given the training set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of 𝑝-dimensional feature vectors and a positive integer 𝑘, the problem is to
find a set 𝐶 = {𝑐1, . . . , 𝑐𝑘} of 𝑝-dimensional centroids that minimize the objective function

Φ𝑋(𝐶) =

𝑛∑︁
𝑖=1

𝑑2(𝑥𝑖, 𝐶),

where 𝑑2(𝑥𝑖, 𝐶) is the squared Euclidean distance from 𝑥𝑖 to the closest centroid in 𝐶,

𝑑2(𝑥𝑖, 𝐶) = min
1≤𝑗≤𝑘

‖𝑥𝑖 − 𝑐𝑗‖2, 1 ≤ 𝑖 ≤ 𝑛.

Expression ‖ · ‖ denotes 𝐿2 norm.

Note: In the general case, 𝑑 may be an arbitrary distance function. Current version of the oneDAL spec defines only
Euclidean distance case.

Training method: Lloyd’s

The Lloyd’s method [Lloyd82] consists in iterative updates of centroids by applying the alternating Assignment and
Update steps, where 𝑡 denotes a index of the current iteration, e.g., 𝐶(𝑡) = {𝑐(𝑡)1 , . . . , 𝑐

(𝑡)
𝑘 } is the set of centroids at the

𝑡-th iteration. The method requires the initial centroids 𝐶(1) to be specified at the beginning of the algorithm (𝑡 = 1).

(1) Assignment step: Assign each feature vector 𝑥𝑖 to the nearest centroid. 𝑦
(𝑡)
𝑖 denotes the assigned label (cluster

index) to the feature vector 𝑥𝑖.

𝑦
(𝑡)
𝑖 = arg min

1≤𝑗≤𝑘
‖𝑥𝑖 − 𝑐

(𝑡)
𝑗 ‖

2, 1 ≤ 𝑖 ≤ 𝑛.

Each feature vector from the training set 𝑋 is assigned to exactly one centroid so that 𝑋 is partitioned to 𝑘 disjoint sets
(clusters)

𝑆
(𝑡)
𝑗 =

{︀
𝑥𝑖 ∈ 𝑋 : 𝑦

(𝑡)
𝑖 = 𝑗

}︀
, 1 ≤ 𝑗 ≤ 𝑘.

(2) Update step: Recalculate centroids by averaging feature vectors assigned to each cluster.

𝑐
(𝑡+1)
𝑗 =

1

|𝑆(𝑡)
𝑗 |

∑︁
𝑥∈𝑆(𝑡)

𝑗

𝑥, 1 ≤ 𝑗 ≤ 𝑘.

6.7. Algorithms 464

https://mathworld.wolfram.com/L2-Norm.html

oneAPI Specification, Release 1.4-provisional-rev-1

The steps (1) and (2) are performed until the following stop condition,

𝑘∑︁
𝑗=1

⃦⃦
𝑐
(𝑡)
𝑗 − 𝑐

(𝑡+1)
𝑗

⃦⃦2
< 𝜀,

is satisfied or number of iterations exceeds the maximal value 𝑇 defined by the user.

Inference

Given the inference set 𝑋 ′ = {𝑥′1, . . . , 𝑥′𝑚} of 𝑝-dimensional feature vectors and the set 𝐶 = {𝑐1, . . . , 𝑐𝑘} of centroids
produced at the training stage, the problem is to predict the index 𝑦′𝑗 ∈ {0, . . . , 𝑘 − 1}, 1 ≤ 𝑗 ≤ 𝑚, of the centroid in
accordance with a method-defined rule.

Inference method: Lloyd’s

Lloyd’s inference method computes the 𝑦′𝑗 as an index of the centroid closest to the feature vector 𝑥′𝑗 ,

𝑦′𝑗 = arg min
1≤𝑙≤𝑘

‖𝑥′𝑗 − 𝑐𝑙‖2, 1 ≤ 𝑗 ≤ 𝑚.

Usage example

Training

kmeans::model<> run_training(const table& data,
const table& initial_centroids) {

const auto kmeans_desc = kmeans::descriptor<float>{}
.set_cluster_count(10)
.set_max_iteration_count(50)
.set_accuracy_threshold(1e-4);

const auto result = train(kmeans_desc, data, initial_centroids);

print_table("labels", result.get_labels());
print_table("centroids", result.get_model().get_centroids());
print_value("objective", result.get_objective_function_value());

return result.get_model();
}

Inference

table run_inference(const kmeans::model<>& model,
const table& new_data) {

const auto kmeans_desc = kmeans::descriptor<float>{}
.set_cluster_count(model.get_cluster_count());

const auto result = infer(kmeans_desc, model, new_data);
(continues on next page)

6.7. Algorithms 465

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

print_table("labels", result.get_labels());
}

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::kmeans namespace and be available
via inclusion of the oneapi/dal/algo/kmeans.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:
explicit descriptor(std::int64_t cluster_count = 2);

int64_t get_cluster_count() const;
descriptor& set_cluster_count(int64_t);

int64_t get_max_iteration_count() const;
descriptor& set_max_iteration_count(int64_t);

double get_accuracy_threshold() const;
descriptor& set_accuracy_threshold(double);

};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::lloyd .

• Task – Tag-type that specifies the type of the problem to solve. Can be task::clustering.

Constructors

descriptor(std::int64_t cluster_count = 2)
Creates a new instance of the class with the given cluster_count.

Properties

int64_t max_iteration_count
The maximum number of iterations 𝑇 . Default value: 100.

Getter & Setter

int64_t get_max_iteration_count() const

descriptor & set_max_iteration_count(int64_t)

6.7. Algorithms 466

oneAPI Specification, Release 1.4-provisional-rev-1

Invariants

max_iteration_count >= 0

int64_t cluster_count
The number of clusters 𝑘. Default value: 2.

Getter & Setter

int64_t get_cluster_count() const

descriptor & set_cluster_count(int64_t)

Invariants

cluster_count > 0

double accuracy_threshold
The threshold 𝜀 for the stop condition. Default value: 0.0.

Getter & Setter

double get_accuracy_threshold() const

descriptor & set_accuracy_threshold(double)

Invariants

accuracy_threshold >= 0.0

Method tags

namespace method {
struct lloyd {};
using by_default = lloyd;

} // namespace method

struct lloyd
Tag-type that denotes Lloyd’s computational method.

using by_default = lloyd
Alias tag-type for Lloyd’s computational method.

Task tags

namespace task {
struct clustering {};
using by_default = clustering;

} // namespace task

struct clustering
Tag-type that parameterizes entities used for solving clustering problem.

using by_default = clustering
Alias tag-type for the clustering task.

6.7. Algorithms 467

oneAPI Specification, Release 1.4-provisional-rev-1

Model

template <typename Task = task::by_default>
class model {
public:

model();

const table& get_centroids() const;

int64_t get_cluster_count() const;
};

template<typename Task = task::by_default>
class model

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Constructors

model()

Creates a new instance of the class with the default property values.

Public Methods

const table &get_centroids() const
A 𝑘 × 𝑝 table with the cluster centroids. Each row of the table stores one centroid.

int64_t get_cluster_count() const
Number of clusters 𝑘 in the trained model.

Training train(...)

Input

template <typename Task = task::by_default>
class train_input {
public:

train_input(const table& data = table{},
const table& initial_centroids = table{});

const table& get_data() const;
train_input& set_data(const table&);

const table& get_initial_centroids() const;
train_input& set_initial_centroids(const table&);

};

template<typename Task = task::by_default>
class train_input

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Constructors

6.7. Algorithms 468

oneAPI Specification, Release 1.4-provisional-rev-1

train_input(const table &data = table{}, const table &initial_centroids = table{})
Creates a new instance of the class with the given data and initial_centroids.

Properties

const table &data
An 𝑛× 𝑝 table with the data to be clustered, where each row stores one feature vector.

Getter & Setter

const table & get_data() const

train_input & set_data(const table &)

const table &initial_centroids
A 𝑘 × 𝑝 table with the initial centroids, where each row stores one centroid.

Getter & Setter

const table & get_initial_centroids() const

train_input & set_initial_centroids(const table &)

Result

template <typename Task = task::by_default>
class train_result {
public:

train_result();

const model<Task>& get_model() const;

const table& get_labels() const;

int64_t get_iteration_count() const;

double get_objective_function_value() const;
};

template<typename Task = task::by_default>
class train_result

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Constructors

train_result()

Creates a new instance of the class with the default property values.

Public Methods

const model<Task> &get_model() const
The trained K-means model.

const table &get_labels() const
An 𝑛× 1 table with the labels 𝑦𝑖 assigned to the samples 𝑥𝑖 in the input data, 1 ≤ 1 ≤ 𝑛.

6.7. Algorithms 469

oneAPI Specification, Release 1.4-provisional-rev-1

int64_t get_iteration_count() const
The number of iterations performed by the algorithm.

double get_objective_function_value() const
The value of the objective function Φ𝑋(𝐶), where 𝐶 is model.centroids (see
kmeans::model::centroids).

Operation

template <typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task>& desc,

const train_input<Task>& input);

template<typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task> &desc, const train_input<Task> &input)

Runs the training operation for K-Means clustering. For more details see oneapi::dal::train.

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::lloyd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Parameters

• desc – Descriptor of the algorithm.

• input – Input data for the training operation.

Preconditions

input.data.has_data == true

input.initial_centroids.row_count == desc.cluster_count

input.initial_centroids.column_count == input.data.column_count

Postconditions

result.labels.row_count == input.data.row_count

result.labels.column_count == 1

result.labels[i] >= 0

result.labels[i] < desc.cluster_count

result.iteration_count <= desc.max_iteration_count

result.model.centroids.row_count == desc.cluster_count

result.model.centroids.column_count == input.data.column_count

6.7. Algorithms 470

oneAPI Specification, Release 1.4-provisional-rev-1

Inference infer(...)

Input

template <typename Task = task::by_default>
class infer_input {
public:

infer_input(const model<Task>& m = model<Task>{},
const table& data = table{});

const model<Task>& get_model() const;
infer_input& set_model(const model<Task>&);

const table& get_data() const;
infer_input& set_data(const table&);

};

template<typename Task = task::by_default>
class infer_input

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Constructors

infer_input(const model<Task> &m = model<Task>{}, const table &data = table{})
Creates a new instance of the class with the given model and data.

Properties

const table &data
The trained K-Means model. Default value: table{}.

Getter & Setter

const table & get_data() const

infer_input & set_data(const table &)

const model<Task> &model
An 𝑛×𝑝 table with the data to be assigned to the clusters, where each row stores one feature vector. Default
value: model<Task>{}.

Getter & Setter

const model< Task > & get_model() const

infer_input & set_model(const model< Task > &)

6.7. Algorithms 471

oneAPI Specification, Release 1.4-provisional-rev-1

Result

template <typename Task = task::by_default>
class infer_result {
public:

infer_result();

const table& get_labels() const;

double get_objective_function_value() const;
};

template<typename Task = task::by_default>
class infer_result

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Public Methods

const table &get_labels() const
An 𝑛× 1 table with assignments labels to feature vectors in the input data.

double get_objective_function_value() const
The value of the objective function Φ𝑋(𝐶), where 𝐶 is defined by the corresponding
infer_input::model::centroids.

Operation

template <typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task>& desc,

const infer_input<Task>& input);

template<typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task> &desc, const infer_input<Task> &input)

Runs the inference operation for K-Means clustering. For more details see oneapi::dal::infer.

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::lloyd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Parameters

• desc – Descriptor of the algorithm.

• input – Input data for the inference operation.

6.7. Algorithms 472

oneAPI Specification, Release 1.4-provisional-rev-1

Preconditions

input.data.has_data == true

input.model.centroids.has_data == true

input.model.centroids.row_count == desc.cluster_count

input.model.centroids.column_count == input.data.column_count

Postconditions

result.labels.row_count == input.data.row_count

result.labels.column_count == 1

result.labels[i] >= 0

result.labels[i] < desc.cluster_count

K-Means initialization

The K-Means initialization algorithm receives 𝑛 feature vectors as input and chooses 𝑘 initial centroids. After initial-
ization, K-Means algorithm uses the initialization result to partition input data into 𝑘 clusters.

Operation Computational methods Programming Interface
Computing Dense compute(. . .) compute_input compute_result

Mathematical formulation

Computing

Given the training set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of 𝑝-dimensional feature vectors and a positive integer 𝑘, the problem is to
find a set 𝐶 = {𝑐1, . . . , 𝑐𝑘} of 𝑝-dimensional initial centroids.

Computing method: dense

The method chooses first 𝑘 feature vectors from the training set 𝑋 .

Usage example

Computing

table run_compute(const table& data) {
const auto kmeans_desc = kmeans_init::descriptor<float,

kmeans_init::method::dense>{}
.set_cluster_count(10)

const auto result = compute(kmeans_desc, data);

print_table("centroids", result.get_centroids());

return result.get_centroids();
}

6.7. Algorithms 473

oneAPI Specification, Release 1.4-provisional-rev-1

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::kmeans_init namespace and be avail-
able via inclusion of the oneapi/dal/algo/kmeans_init.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:

explicit descriptor(std::int64_t cluster_count = 2);

std::int64_t get_cluster_count() const;
descriptor& set_cluster_count(std::int64_t);

};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of K-Means Initialization algorithm.

• Task – Tag-type that specifies the type of the problem to solve. Can be task::init.

Constructors

descriptor(std::int64_t cluster_count = 2)
Creates a new instance of the class with the given cluster_count.

Properties

std::int64_t cluster_count
The number of clusters 𝑘. Default value: 2.

Getter & Setter

std::int64_t get_cluster_count() const

descriptor & set_cluster_count(std::int64_t)

Invariants

cluster_count > 0

6.7. Algorithms 474

oneAPI Specification, Release 1.4-provisional-rev-1

Method tags

namespace method {
struct dense {};
using by_default = dense;

} // namespace method

struct dense
Tag-type that denotes dense computational method.

using by_default = dense

Task tags

namespace task {
struct init {};
using by_default = init;

} // namespace task

struct init
Tag-type that parameterizes entities used for obtaining the initial K-Means centroids.

using by_default = init
Alias tag-type for the initialization task.

Computing compute(...)

Input

template <typename Task = task::by_default>
class compute_input {
public:

compute_input(const table& data = table{});

const table& get_data() const;
compute_input& set_data(const table&);

};

template<typename Task = task::by_default>
class compute_input

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::init.

Constructors

compute_input(const table &data = table{})
Creates a new instance of the class with the given data.

Properties

6.7. Algorithms 475

oneAPI Specification, Release 1.4-provisional-rev-1

const table &data
An 𝑛 × 𝑝 table with the data to be clustered, where each row stores one feature vector. Default value:
table{}.

Getter & Setter

const table & get_data() const

compute_input & set_data(const table &)

Result

template <typename Task = task::by_default>
class compute_result {
public:

compute_result();

const table& get_centroids() const;
};

template<typename Task = task::by_default>
class compute_result

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Public Methods

const table &get_centroids() const
A 𝑘 × 𝑝 table with the initial centroids. Each row of the table stores one centroid.

Operation

template <typename Float, typename Method, typename Task>
compute_result<Task> compute(const descriptor<Float, Method, Task>& desc,

const compute_input<Task>& input);

template<typename Float, typename Method, typename Task>
compute_result<Task> compute(const descriptor<Float, Method, Task> &desc, const compute_input<Task>

&input)
Runs the computing operation for K-Means initialization. For more details, see oneapi::dal::compute.

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of K-Means Initialization algorithm.

• Task – Tag-type that specifies type of the problem to solve. Can be task::init.

6.7. Algorithms 476

oneAPI Specification, Release 1.4-provisional-rev-1

Parameters

• desc – The descriptor of the algorithm.

• input – Input data for the computing operation.

Preconditions

input.data.has_data == true

input.data.row_count == desc.cluster_count

Postconditions

result.centroids.has_data == true

result.centroids.row_count == desc.cluster_count

result.centroids.column_count == input.data.column_count

6.7.2 Nearest Neighbors (kNN)

k-Nearest Neighbors Classification (k-NN)

𝑘-NN classification algorithm infers the class for the new feature vector by computing majority vote of the 𝑘 nearest
observations from the training set.

Operation Computational methods Programming Interface
Training Brute-force k-d tree train(. . .) train_input train_result
Inference Brute-force k-d tree infer(. . .) infer_input infer_result

Mathematical formulation

Training

Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be the training set of 𝑝-dimensional feature vectors, let 𝑌 = {𝑦1, . . . , 𝑦𝑛} be the set of class
labels, where 𝑦𝑖 ∈ {0, . . . , 𝑐 − 1}, 1 ≤ 𝑖 ≤ 𝑛. Given 𝑋 , 𝑌 and the number of nearest neighbors 𝑘, the problem
is to build a model that allows distance computation between the feature vectors in training and inference sets at the
inference stage.

Training method: brute-force

The training operation produces the model that stores all the feature vectors from the initial training set 𝑋 .

Training method: k-d tree

The training operation builds a 𝑘-𝑑 tree that partitions the training set 𝑋 (for more details, see k-d Tree).

6.7. Algorithms 477

oneAPI Specification, Release 1.4-provisional-rev-1

Inference

Let 𝑋 ′ = {𝑥′1, . . . , 𝑥′𝑚} be the inference set of 𝑝-dimensional feature vectors. Given 𝑋 ′, the model produced at the
training stage and the number of nearest neighbors 𝑘, the problem is to predict the label 𝑦′𝑗 for each 𝑥′𝑗 , 1 ≤ 𝑗 ≤ 𝑚, by
performing the following steps:

1. Identify the set 𝑁(𝑥′𝑗) ⊆ 𝑋 of the 𝑘 feature vectors in the training set that are nearest to 𝑥′𝑗 with respect to the
Euclidean distance.

2. Estimate the conditional probability for the 𝑙-th class as the fraction of vectors in 𝑁(𝑥′𝑗) whose labels 𝑦𝑗 are
equal to 𝑙:

𝑃𝑗𝑙 =
1

|𝑁(𝑥′𝑗)|

⃒⃒⃒{︀
𝑥𝑟 ∈ 𝑁(𝑥′𝑗) : 𝑦𝑟 = 𝑙

}︀⃒⃒⃒
, 1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑙 < 𝑐. (6.1)

3. Predict the class that has the highest probability for the feature vector 𝑥′𝑗 :

𝑦′𝑗 = arg max
0≤𝑙<𝑐

𝑃𝑗𝑙, 1 ≤ 𝑗 ≤ 𝑚. (6.2)

Inference method: brute-force

Brute-force inference method determines the set 𝑁(𝑥′𝑗) of the nearest feature vectors by iterating over all the pairs
(𝑥′𝑗 , 𝑥𝑖) in the implementation defined order, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. The final prediction is computed according to
the equations (6.1) and (6.2).

Inference method: k-d tree

K-d tree inference method traverses the 𝑘-𝑑 tree to find feature vectors associated with a leaf node that are closest to
𝑥′𝑗 , 1 ≤ 𝑗 ≤ 𝑚. The set �̃�(𝑥′𝑗) of the currently-known nearest 𝑘-th neighbors is progressively updated during tree
traversal. The search algorithm limits exploration of the nodes for which the distance between the 𝑥′𝑗 and respective
part of the feature space is not less than the distance between 𝑥′𝑗 and the most distant feature vector from �̃�(𝑥′𝑗). Once
tree traversal is finished, �̃�(𝑥′𝑗) ≡ 𝑁(𝑥′𝑗). The final prediction is computed according to the equations (6.1) and (6.2).

Usage example

Training

knn::model<> run_training(const table& data,
const table& labels) {

const std::int64_t class_count = 10;
const std::int64_t neighbor_count = 5;
const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

const auto result = train(knn_desc, data, labels);

return result.get_model();
}

6.7. Algorithms 478

oneAPI Specification, Release 1.4-provisional-rev-1

Inference

table run_inference(const knn::model<>& model,
const table& new_data) {

const std::int64_t class_count = 10;
const std::int64_t neighbor_count = 5;
const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

const auto result = infer(knn_desc, model, new_data);

print_table("labels", result.get_labels());
}

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::knn namespace and be available via
inclusion of the oneapi/dal/algo/knn.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:
explicit descriptor(std::int64_t class_count,

std::int64_t neighbor_count);

std::int64_t get_class_count() const;
descriptor& set_class_count(std::int64_t);

std::int64_t get_neighbor_count() const;
descriptor& set_neighbor_count(std::int64_t);

};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::bruteforce or method::kd_tree.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Constructors

descriptor(std::int64_t class_count, std::int64_t neighbor_count)
Creates a new instance of the class with the given class_count and neighbor_count property values.

6.7. Algorithms 479

oneAPI Specification, Release 1.4-provisional-rev-1

Properties

std::int64_t class_count
The number of classes 𝑐.

Getter & Setter

std::int64_t get_class_count() const

descriptor & set_class_count(std::int64_t)

Invariants

class_count > 1

std::int64_t neighbor_count
The number of neighbors 𝑘.

Getter & Setter

std::int64_t get_neighbor_count() const

descriptor & set_neighbor_count(std::int64_t)

Invariants

neighbor_count > 0

Method tags

namespace method {
struct bruteforce {};
struct kd_tree {};
using by_default = bruteforce;

} // namespace method

struct bruteforce
Tag-type that denotes brute-force computational method.

struct kd_tree
Tag-type that denotes k-d tree computational method.

using by_default = bruteforce
Alias tag-type for brute-force computational method.

Task tags

namespace task {
struct classification {};
using by_default = classification;

} // namespace task

struct classification
Tag-type that parameterizes entities used for solving classification problem.

using by_default = classification
Alias tag-type for classification task.

6.7. Algorithms 480

oneAPI Specification, Release 1.4-provisional-rev-1

Model

template <typename Task = task::by_default>
class model {
public:

model();
};

template<typename Task = task::by_default>
class model

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::classification.

Constructors

model()

Creates a new instance of the class with the default property values.

Training train(...)

Input

template <typename Task = task::by_default>
class train_input {
public:

train_input(const table& data = table{},
const table& labels = table{});

const table& get_data() const;
train_input& set_data(const table&);

const table& get_labels() const;
train_input& set_labels(const table&);

};

template<typename Task = task::by_default>
class train_input

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::classification.

Constructors

train_input(const table &data = table{}, const table &labels = table{})
Creates a new instance of the class with the given data and labels property values.

Properties

const table &data
The training set 𝑋 . Default value: table{}.

Getter & Setter

const table & get_data() const

6.7. Algorithms 481

oneAPI Specification, Release 1.4-provisional-rev-1

train_input & set_data(const table &)

const table &labels
Vector of labels 𝑦 for the training set 𝑋 . Default value: table{}.

Getter & Setter

const table & get_labels() const

train_input & set_labels(const table &)

Result

template <typename Task = task::by_default>
class train_result {
public:

train_result();

const model<Task>& get_model() const;
};

template<typename Task = task::by_default>
class train_result

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::classification.

Constructors

train_result()

Creates a new instance of the class with the default property values.

Public Methods

const model<Task> &get_model() const
The trained 𝑘-NN model.

Operation

template <typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task>& desc,

const train_input<Task>& input);

template<typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task> &desc, const train_input<Task> &input)

Runs the training operation for 𝑘-NN classifier. For more details see oneapi::dal::train.

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::bruteforce or method::kd_tree.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

6.7. Algorithms 482

oneAPI Specification, Release 1.4-provisional-rev-1

Parameters

• desc – Descriptor of the algorithm.

• input – Input data for the training operation.

Preconditions

input.data.has_data == true

input.labels.has_data == true

input.data.row_count == input.labels.row_count

input.labels.column_count == 1

input.labels[i] >= 0

input.labels[i] < desc.class_count

Inference infer(...)

Input

template <typename Task = task::by_default>
class infer_input {
public:

infer_input(const model<Task>& m = model<Task>{},
const table& data = table{});

const model<Task>& get_model() const;
infer_input& set_model(const model&);

const table& get_data() const;
infer_input& set_data(const table&);

};

template<typename Task = task::by_default>
class infer_input

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::classification.

Constructors

infer_input(const model<Task> &m = model<Task>{}, const table &data = table{})
Creates a new instance of the class with the given model and data property values.

Properties

const table &data
The dataset for inference 𝑋 ′. Default value: table{}.

Getter & Setter

const table & get_data() const

infer_input & set_data(const table &)

const model<Task> &model
The trained 𝑘-NN model. Default value: model<Task>{}.

Getter & Setter

6.7. Algorithms 483

oneAPI Specification, Release 1.4-provisional-rev-1

const model< Task > & get_model() const

infer_input & set_model(const model &)

Result

template <typename Task = task::by_default>
class infer_result {
public:

infer_result();

const table& get_labels() const;
};

template<typename Task = task::by_default>
class infer_result

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::classification.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Public Methods

const table &get_labels() const
The predicted labels.

Operation

template <typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task>& desc,

const infer_input<Task>& input);

template<typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task> &desc, const infer_input<Task> &input)

Runs the inference operation for 𝑘-NN classifier. For more details see oneapi::dal::infer.

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::bruteforce or method::kd_tree.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Parameters

• desc – Descriptor of the algorithm.

• input – Input data for the inference operation.

6.7. Algorithms 484

oneAPI Specification, Release 1.4-provisional-rev-1

Preconditions

input.data.has_data == true

Postconditions

result.labels.row_count == input.data.row_count

result.labels.column_count == 1

result.labels[i] >= 0

result.labels[i] < desc.class_count

6.7.3 Decomposition

Principal Components Analysis (PCA)

Principal Component Analysis (PCA) is an algorithm for exploratory data analysis and dimensionality reduction. PCA
transforms a set of feature vectors of possibly correlated features to a new set of uncorrelated features, called principal
components. Principal components are the directions of the largest variance, that is, the directions where the data is
mostly spread out.

Operation Computational methods Programming Interface
Training Covariance SVD train(. . .) train_input train_result
Inference Covariance SVD infer(. . .) infer_input infer_result

Mathematical formulation

Training

Given the training set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of 𝑝-dimensional feature vectors and the number of principal components
𝑟, the problem is to compute 𝑟 principal directions (𝑝-dimensional eigenvectors [Lang87]) for the training set. The
eigenvectors can be grouped into the 𝑟 × 𝑝 matrix 𝑇 that contains one eigenvector in each row.

Training method: Covariance

This method uses eigenvalue decomposition of the covariance matrix to compute the principal components of the
datasets. The method relies on the following steps:

1. Computation of the covariance matrix

2. Computation of the eigenvectors and eigenvalues

3. Formation of the matrices storing the results

Covariance matrix computation shall be performed in the following way:

1. Compute the vector-column of sums 𝑠𝑖 =
∑︀𝑛

𝑗=1 𝑥𝑖,𝑗 , 1 ≤ 𝑖 ≤ 𝑝.

2. Compute the cross-product 𝑃 = 𝑋𝑇𝑋 − 𝑠𝑇 𝑠.

3. Compute the covariance matrix Σ = 1
𝑛−1𝑃 .

To compute eigenvalues 𝜆𝑖 and eigenvectors 𝜐𝑖, the implementer can choose an arbitrary method such as [Ping14].

The final step is to sort the set of pairs (𝜆𝑖, 𝜐𝑖) in the descending order by 𝜆𝑖 and form the resulting matrix 𝑇 =
(𝜐𝑖,1, · · · , 𝜐𝑖,𝑟), 1 ≤ 𝑖 ≤ 𝑝. Additionally, the means and variances of the initial dataset shall be returned.

6.7. Algorithms 485

oneAPI Specification, Release 1.4-provisional-rev-1

Training method: SVD

This method uses singular value decomposition of the dataset to compute its principal components. The method relies
on the following steps:

1. Computation of the singular values and singular vectors

2. Formation of the matrices storing the results

To compute singular values 𝜆𝑖 and singular vectors 𝑢𝑖 and 𝑣𝑖, the implementer can choose an arbitrary method such as
[Demmel90].

The final step is to sort the set of pairs (𝜆𝑖, 𝑣𝑖) in the descending order by 𝜆𝑖 and form the resulting matrix 𝑇 =
(𝑣𝑖,1, · · · , 𝑣𝑖,𝑟), 1 ≤ 𝑖 ≤ 𝑝. Additionally, the means and variances of the initial dataset shall be returned.

Sign-flip technique

Eigenvectors computed by some eigenvalue solvers are not uniquely defined due to sign ambiguity. To get the deter-
ministic result, a sign-flip technique should be applied. One of the sign-flip techniques proposed in [Bro07] requires
the following modification of matrix 𝑇 :

𝑇𝑖 = 𝑇𝑖 · sgn(max
1≤𝑗≤𝑝

|𝑇𝑖𝑗 |), 1 ≤ 𝑖 ≤ 𝑟,

where 𝑇𝑖 is 𝑖-th row, 𝑇𝑖𝑗 is the element in the 𝑖-th row and 𝑗-th column, sgn(·) is the signum function,

sgn(𝑥) =

⎧⎪⎨⎪⎩
−1, 𝑥 < 0,

0, 𝑥 = 0,

1, 𝑥 > 0.

Note: The sign-flip technique described above is an example. oneDAL spec does not require implementation of this
sign-flip technique. Implementer can choose an arbitrary technique that modifies the eigenvectors’ signs.

Inference

Given the inference set 𝑋 ′ = {𝑥′1, . . . , 𝑥′𝑚} of 𝑝-dimensional feature vectors and the 𝑟 × 𝑝 matrix 𝑇 produced at the
training stage, the problem is to transform 𝑋 ′ to the set 𝑋 ′′ = {𝑥′′1 , . . . , 𝑥′′𝑚}, where 𝑥′′𝑗 is an 𝑟-dimensional feature
vector, 1 ≤ 𝑗 ≤ 𝑚.

The feature vector 𝑥′′𝑗 is computed through applying linear transformation [Lang87] defined by the matrix 𝑇 to the
feature vector 𝑥′𝑗 ,

𝑥′′𝑗 = 𝑇𝑥′𝑗 , 1 ≤ 𝑗 ≤ 𝑚. (6.3)

Inference methods: Covariance and SVD

Covariance and SVD inference methods compute 𝑥′′𝑗 according to (6.3).

6.7. Algorithms 486

oneAPI Specification, Release 1.4-provisional-rev-1

Usage example

Training

pca::model<> run_training(const table& data) {
const auto pca_desc = pca::descriptor<float>{}

.set_component_count(5)

.set_deterministic(true);

const auto result = train(pca_desc, data);

print_table("means", result.get_means());
print_table("variances", result.get_variances());
print_table("eigenvalues", result.get_eigenvalues());
print_table("eigenvectors", result.get_eigenvectors());

return result.get_model();
}

Inference

table run_inference(const pca::model<>& model,
const table& new_data) {

const auto pca_desc = pca::descriptor<float>{}
.set_component_count(model.get_component_count());

const auto result = infer(pca_desc, model, new_data);

print_table("labels", result.get_transformed_data());
}

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::pca namespace and be available via
inclusion of the oneapi/dal/algo/pca.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:
explicit descriptor(std::int64_t component_count = 0);

int64_t get_component_count() const;
descriptor& set_component_count(int64_t);

(continues on next page)

6.7. Algorithms 487

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool get_deterministic() const;
descriptor& set_deterministic(bool);

};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::cov or
method::svd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Constructors

descriptor(std::int64_t component_count = 0)
Creates a new instance of the class with the given component_count property value.

Properties

bool deterministic
Specifies whether the algorithm applies the Sign-flip technique. If it is true, the directions of the eigenvectors
must be deterministic. Default value: true.

Getter & Setter

bool get_deterministic() const

descriptor & set_deterministic(bool)

int64_t component_count
The number of principal components 𝑟. If it is zero, the algorithm computes the eigenvectors for all features,
𝑟 = 𝑝. Default value: 0.

Getter & Setter

int64_t get_component_count() const

descriptor & set_component_count(int64_t)

Invariants

component_count >= 0

Method tags

namespace method {
struct cov {};
struct svd {};
using by_default = cov;

} // namespace method

struct cov
Tag-type that denotes Covariance computational method.

6.7. Algorithms 488

oneAPI Specification, Release 1.4-provisional-rev-1

struct svd
Tag-type that denotes SVD computational method.

using by_default = cov
Alias tag-type for Covariance computational method.

Task tags

namespace task {
struct dim_reduction {};
using by_default = dim_reduction;

} // namespace task

struct dim_reduction
Tag-type that parameterizes entities used for solving dimensionality reduction problem.

using by_default = dim_reduction
Alias tag-type for dimensionality reduction task.

Model

template <typename Task = task::by_default>
class model {
public:

model();

const table& get_eigenvectors() const;

int64_t get_component_count() const;
};

template<typename Task = task::by_default>
class model

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Constructors

model()

Creates a new instance of the class with the default property values.

Public Methods

const table &get_eigenvectors() const
An 𝑟 × 𝑝 table with the eigenvectors. Each row contains one eigenvector.

int64_t get_component_count() const
The number of components 𝑟 in the trained model.

6.7. Algorithms 489

oneAPI Specification, Release 1.4-provisional-rev-1

Training train(...)

Input

template <typename Task = task::by_default>
class train_input {
public:

train_input(const table& data = table{});

const table& get_data() const;
train_input& set_data(const table&);

};

template<typename Task = task::by_default>
class train_input

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Constructors

train_input(const table &data = table{})
Creates a new instance of the class with the given data property value.

Properties

const table &data
An 𝑛× 𝑝 table with the training data, where each row stores one feature vector. Default value: table{}.

Getter & Setter

const table & get_data() const

train_input & set_data(const table &)

Result

template <typename Task = task::by_default>
class train_result {
public:

train_result();

const model<Task>& get_model() const;

const table& get_means() const;

const table& get_variances() const;

const table& get_eigenvalues() const;

const table& get_eigenvectors() const;
};

template<typename Task = task::by_default>

6.7. Algorithms 490

oneAPI Specification, Release 1.4-provisional-rev-1

class train_result

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Constructors

train_result()

Creates a new instance of the class with the default property values.

Public Methods

const model<Task> &get_model() const
The trained PCA model.

const table &get_means() const
A 1× 𝑟 table that contains the mean values for the first 𝑟 features.

const table &get_variances() const
A 1× 𝑟 table that contains the variances for the first 𝑟 features.

const table &get_eigenvalues() const
A 1× 𝑟 table that contains the eigenvalues for for the first 𝑟 features.

const table &get_eigenvectors() const
An 𝑟 × 𝑝 table with the eigenvectors. Each row contains one eigenvector.

Operation

template <typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task>& desc,

const train_input<Task>& input);

template<typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task> &desc, const train_input<Task> &input)

Runs the training operation for PCA. For more details, see oneapi::dal::train.

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::cov or
method::svd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Parameters

• desc – Descriptor of the algorithm.

• input – Input data for the training operation.

Preconditions

input.data.has_data == true

input.data.column_count >= desc.component_count

Postconditions

6.7. Algorithms 491

oneAPI Specification, Release 1.4-provisional-rev-1

result.means.row_count == 1

result.means.column_count == desc.component_count

result.variances.row_count == 1

result.variances.column_count == desc.component_count

result.variances[i] >= 0.0

result.eigenvalues.row_count == 1

result.eigenvalues.column_count == desc.component_count

result.model.eigenvectors.row_count == 1

result.model.eigenvectors.column_count == desc.component_count

Inference infer(...)

Input

template <typename Task = task::by_default>
class infer_input {
public:

infer_input(const model<Task>& m = model<Task>{},
const table& data = table{});

const model<Task>& get_model() const;
infer_input& set_model(const model&);

const table& get_data() const;
infer_input& set_data(const table&);

};

template<typename Task = task::by_default>
class infer_input

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Constructors

infer_input(const model<Task> &m = model<Task>{}, const table &data = table{})
Creates a new instance of the class with the given model and data property values.

Properties

const table &data
The dataset for inference 𝑋 ′. Default value: table{}.

Getter & Setter

const table & get_data() const

infer_input & set_data(const table &)

const model<Task> &model
The trained PCA model. Default value: model<Task>{}.

Getter & Setter

const model< Task > & get_model() const

infer_input & set_model(const model &)

6.7. Algorithms 492

oneAPI Specification, Release 1.4-provisional-rev-1

Result

template <typename Task = task::by_default>
class infer_result {
public:

infer_result();

const table& get_transformed_data() const;
};

template<typename Task = task::by_default>
class infer_result

Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Public Methods

const table &get_transformed_data() const
An 𝑛× 𝑟 table that contains data projected to the 𝑟 principal components.

Operation

template <typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task>& desc,

const infer_input<Task>& input);

template<typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task> &desc, const infer_input<Task> &input)

Runs the inference operation for PCA. For more details see oneapi::dal::infer.

Template Parameters

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::cov or
method::svd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Parameters

• desc – Descriptor of the algorithm.

• input – Input data for the inference operation.

Preconditions

input.data.has_data == true

input.model.eigenvectors.row_count == desc.component_count

input.model.eigenvectors.column_count == input.data.column_count

6.7. Algorithms 493

oneAPI Specification, Release 1.4-provisional-rev-1

Postconditions

result.transformed_data.row_count == input.data.row_count

result.transformed_data.column_count == desc.component_count

6.8 Appendix

6.8.1 k-d Tree

𝑘-𝑑 tree is a space-partitioning binary tree [Bentley80], where

• Each non-leaf node induces the hyperplane that splits the feature space into two parts. To define the splitting
hyperplane explicitly, a non-leaf node stores the identifier of the feature (that defines axis in the feature space)
and a cut-point

• Each leaf node of the tree has an associated subset (a bucket) of elements of the training data set. Feature vectors
from a bucket belong to the region of the space defined by tree nodes on the path from the root node to the
respective leaf.

Related terms

A cut-point
A feature value that corresponds to a non-leaf node of a 𝑘-𝑑 tree and defines the splitting hyperplane orthogonal
to the axis specified by the given feature.

6.9 Bibliography

For more information about algorithms implemented in oneAPI Data Analytics Library (oneDAL), refer to the following
publications:

6.8. Appendix 494

CHAPTER

SEVEN

ONETBB

7.1 General Information

7.1.1 Introduction

[intro]

This document specifies requirements for implementations of oneAPI Threading Building Blocks (oneTBB).

oneTBB is a programming model for scalable parallel programming using standard ISO C++ code. A program uses
oneTBB to specify logical parallelism in algorithms, while a oneTBB implementation maps that parallelism onto
execution threads.

oneTBB employs generic programming via C++ templates, with most of its interfaces defined by requirements on types
and not specific types. Generic programming makes oneTBB flexible yet efficient through customizing APIs to specific
needs of an application.

Here is the list of specific requirements for oneTBB implementations:

• An implementation should use the C++11 version of the standard and should not require newer versions except
where explicitly specified; it also should not require any non-standard language extensions.

• An implementation can use platform-specific APIs if they are compatible with the C++ execution and memory
models. For example, a platform-specific implementation of threads can be used if that implementation provides
the same execution guarantees as C++ threads.

• An implementation should support execution on single-core and multi-core CPUs, including those that provide
simultaneous multithreading capabilities.

• On CPU, an implementation should support nested parallelism to enable building larger parallel components
from smaller ones.

7.1.2 Notational Conventions

[notational_conventions]

The following conventions are used in this document.

495

oneAPI Specification, Release 1.4-provisional-rev-1

Convention Explanation Example
Italic Used for introducing new terms, de-

notation of terms, placeholders, or
titles of documents.

The filename consists of the base-
name and the extension. For more
information, refer to the TBB Devel-
oper Guide.

Monospace Indicates directory paths and file-
names, commands and command
line options, function names, meth-
ods, classes, data structures in body
text, source code.

oneapi/tbb.h
\alt\include
Use the okCreateObjs() function
to. . .
printf("hello, world\n");

Monospace italic Indicates source code placeholders. blocked_range<Type>
Monospace bold Emphasizes parts of source code. x = (h > 0 ? sizeof(m) :

0xF) + min;
[] Square brackets indicate that the

items enclosed in brackets are op-
tional.

Fa[c]
Indicates Fa or Fac.

{ | } Braces and vertical bars indicate the
choice of one item from a selection
of two or more items.

X{K | W | P}
Indicates XK, XW, or XP.

“[” “]” “{”” }” “|” Writing a metacharacter in quotation
marks negates the syntactical mean-
ing stated above; the character is
taken as a literal.

“[” X “]” [Y]
Denotes the letter X enclosed in
brackets, optionally followed by the
letter Y.

. . . The ellipsis indicates that the pre-
vious item can be repeated several
times.

filename . . .
Indicates that one or more filenames
can be specified.

,. . . The ellipsis preceded by a comma
indicates that the previous item can
be repeated several times, separated
by commas.

word ,. . .
Indicates that one or more words can
be specified. If more than one word
is specified, the words are comma-
separated.

Class members are summarized by informal class declarations that describe the class as it seems to clients, not how it
is actually implemented. For example, here is an informal declaration of class Foo:

class Foo {
public:

int x();
int y;
~Foo();

};

The actual implementation might look like:

namespace internal {
class FooBase {
protected:

int x();
};

class Foo_v3: protected FooBase {
private:

(continues on next page)

7.1. General Information 496

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

int internal_stuff;
public:

using FooBase::x;
int y;

};
}

typedef internal::Foo_v3 Foo;

The example shows two cases where the actual implementation departs from the informal declaration:

• Foo is actually a typedef to Foo_v3.

• Method x() is inherited from a protected base class.

• The destructor is an implicit method generated by the compiler.

The informal declarations are intended to show you what you need to know to use the class without the distraction of
irrelevant clutter particular to the implementation.

7.1.3 Identifiers

[identifiers]

This section describes the identifier conventions used by oneTBB.

Case

The identifier convention in the library follows the style of the ISO C++ standard library. Identifiers are written in
underscore_style, and concepts - in PascalCase.

Reserved Identifier Prefixes

The library reserves the __TBB prefix for internal identifiers and macros that should never be directly referenced by
your code.

7.1.4 Named Requirements

[named_requirements]

This section describes named requirements used in the oneTBB Specification.

A named requirement is a set of requirements on a type. The requirements may be syntactic or semantic. The
named_requirement term is similar to “Requirements on types and expressions” term which is defined by the ISO
C++ Standard (chapter “Library Introduction”) or “Named Requirements” section on the cppreference.com site.

For example, the named requirement of sortable could be defined as a set of requirements that enable an array to be
sorted. A type T would be sortable if:

• x < y returns a boolean value, and represents a total order on items of type T.

• swap(x,y) swaps items x and y

7.1. General Information 497

https://en.cppreference.com/w/cpp/named_req

oneAPI Specification, Release 1.4-provisional-rev-1

You can write a sorting template function in C++ that sorts an array of any type that is sortable.

Two approaches for defining named requirements are valid expressions and pseudo-signatures. The ISO C++ standard
follows the valid expressions approach, which shows what the usage pattern looks like for a requirement. It has the
drawback of relegating important details to notational conventions. This document uses pseudo-signatures because
they are concise and can be cut-and-pasted for an initial implementation.

For example, the table below shows pseudo-signatures for a sortable type T:

Sortable Requirements : Pseudo-Signature, Semantics

bool operator<(const T &x, const T &y)
Compare x and y.

void swap(T &x, T &y)
Swap x and y.

A real signature may differ from the pseudo-signature that it implements in ways where implicit conversions would
deal with the difference. For an example type U, the real signature that implements operator< in the table above
can be expressed as int operator<(U x, U y), because C++ permits implicit conversion from int to bool,
and implicit conversion from U to (const U&). Similarly, the real signature bool operator<(U& x, U& y) is
acceptable because C++ permits implicit addition of a const qualifier to a reference type.

Algorithms

Range

[req.range]

A Range can be recursively subdivided into two parts. Subdivision is done by calling splitting constructor of a Range.
There are two types of splitting constructors:

• Basic splitting constructor. In this constructor, it is recommended that the division is done into nearly equal parts,
but it is not required. Splitting as evenly as possible typically yields the best parallelism.

• Proportional splitting constructor. This constructor is optional and can be omitted. When using this type of
constructor, for the best results, follow the given proportion with rounding to the nearest integer if necessary.

Ideally, a range is recursively splittable until the parts represent portions of work that are more efficient to execute
serially rather than split further. The amount of work represented by Range typically depends on higher level context,
therefore a typical type that models a Range should provide a way to control the degree of splitting. For example, the
template class blocked_range has the grainsize parameter that specifies the biggest range considered indivisible.

If the set of values has a sense of direction, by convention the splitting constructor should construct the second part of
the range and update its argument to be the first part of the range. This causes the parallel_for, parallel_reduce, and
parallel_scan algorithms, when running sequentially, to work across a range in the increasing order, which is typical
of an ordinary sequential loop.

Because a Range declares splitting and copy constructors, the default constructor for it is not generated automatically.
You need to explicitly define the default constructor or add any other constructor to create an instance of a Range type
in the program.

A type R meets Range if it satisfies the following requirements:

Range Requirements: Pseudo-Signature, Semantics

7.1. General Information 498

oneAPI Specification, Release 1.4-provisional-rev-1

R::R(const R&)

Copy constructor.

R::~R()

Destructor.

bool R::empty() const
True if range is empty.

bool R::is_divisible() const
True if range can be partitioned into two subranges.

R::R(R &r, split)
Basic splitting constructor. Splits r into two subranges.

R::R(R &r, proportional_split proportion)
Optional. Proportional splitting constructor. Splits r into two subranges in accordance with proportion.

See also:

• blocked_range class

• blocked_range2d class

• blocked_range3d class

• parallel_reduce algorithm

• parallel_for algorithm

• split class

Splittable

[req.splittable]

A type is splittable if it has a splitting constructor that allows an instance to be split into two pieces. The splitting
constructor takes as arguments a reference to the original object, and a dummy argument of type split, which is
defined by the library. The dummy argument distinguishes the splitting constructor from a copy constructor. After the
constructor runs, x and the newly constructed object should represent the two pieces of the original x. The library uses
splitting constructors in two contexts:

• Partitioning a range into two subranges that can be processed concurrently.

• Forking a body (function object) into two bodies that can run concurrently.

Types that meet the Range requirements may additionally define an optional proportional splitting constructor, distin-
guished by an argument of type proportional_split Class.

A type X satisfies Splittable if it meets the following requirements:

Splittable Requirements: Pseudo-Signature, Semantics

X::X(X &x, split)
Split x into x and newly constructed object.

See also:

• Range requirements

7.1. General Information 499

oneAPI Specification, Release 1.4-provisional-rev-1

ParallelForBody

[req.parallel_for_body]

A type Body satisfies ParallelForBody if it meets the following requirements:

ParallelForBody Requirements: Pseudo-Signature, Semantics

Body::Body(const Body&)

Copy constructor.

Body::~Body()

Destructor.

void Body::operator()(Range &range) const
Applies body to a range. Range type must meet the Range requirements.

See also:

• parallel_for algorithm

ParallelForFunc

[req.parallel_for_func]

A type F satisfies ParallelForFunc if it meets the following requirements:

ParallelForFunc Requirements: Pseudo-Signature, Semantics

void F::operator()(Index index) const
Applies the function to the index. Index type must be the same as corresponding template parameter of the
parallel_for algorithm.

See also:

• parallel_for algorithm

• ParallelForIndex named requirement

ParallelForIndex

[req.parallel_for_index]

A type Index satisfies ParallelForIndex if it meets the following requirements:

ParallelForIndex Requirements: Pseudo-Signature, Semantics

Index::Index(int)
Constructor from an int value.

Index::Index(const Index&)

Copy constructor.

7.1. General Information 500

oneAPI Specification, Release 1.4-provisional-rev-1

Index::~Index()

Destructor.

Index &operator=(const Index&)

Assignment.

Index &operator++()
Adjust *this to the next value.

bool operator<(const Index &i, const Index &j)
Value of i precedes value of j.

bool operator<=(const Index &i, const Index &j)
Value of i precedes or equal to the value of j.

D operator-(const Index &i, const Index &j)
Number of values in range [i,j).

Index operator+(const Index &i, const Index &j)
Sum of i and j values.

Index operator+(const Index &i, D k)
k-th value after i.

Index operator*(const Index &i, const Index &j)
Multiplication of i and j values.

Index operator/(const Index &i, const Index &j)
Quotient of i and j values.

D is the type of the expression j-i. It can be any integral type that is convertible to size_t. Examples that model the
Index requirements are integral types and pointers.

NOTE: It is recommended to use integral types as ParallelForIndex. See the [basic.fundamental] section
of the ISO C++ Standard for information about integral types.

See also:

• parallel_for algorithm

ParallelReduceBody

[req.parallel_reduce_body]

A type Body satisfies ParallelReduceBody if it meets the following requirements:

ParallelReduceBody Requirements: Pseudo-Signature, Semantics

Body::Body(Body&, split)
Splitting constructor. Must be able to run concurrently with operator() and method join.

Body::~Body()

Destructor.

void Body::operator()(const Range &range)
Accumulates result for a subrange. Range type must meet the Range requirements.

7.1. General Information 501

oneAPI Specification, Release 1.4-provisional-rev-1

void Body::join(Body &rhs)
Joins results. The result in rhs should be merged into the result of this.

See also:

• parallel_reduce algorithm

• parallel_determinstic_reduce algorithm

ParallelReduceFunc

[req.parallel_reduce_body]

A type Func satisfies ParallelReduceFunc if it meets the following requirements:

ParallelReduceFunc Requirements: Pseudo-Signature, Semantics

Value Func::operator()(const Range &range, const Value &x) const
Accumulates result for a subrange, starting with initial value x. Range type must meet the Range requirements.
Value type must be the same as a corresponding template parameter for the parallel_reduce algorithm algorithm.

See also:

• parallel_reduce algorithm

• parallel_determinstic_reduce algorithm

ParallelReduceReduction

[req.parallel_reduce_reduction]

A type Reduction satisfies ParallelReduceReduction if it meets the following requirements:

ParallelReduceReduction Requirements: Pseudo-Signature, Semantics

Value Reduction::operator()(const Value &x, const Value &y) const
Combines results x and y. Value type must be the same as a corresponding template parameter for the paral-
lel_reduce algorithm algorithm.

See also:

• parallel_reduce algorithm

• parallel_determinstic_reduce algorithm

ParallelForEachBody

[req.parallel_for_each_body]

A type Body satisfies ParallelForBody if it meets the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. It should also meet one of the following requirements:

ParallelForEachBody Requirements: Pseudo-Signature, Semantics

7.1. General Information 502

oneAPI Specification, Release 1.4-provisional-rev-1

Body::operator()(ItemType item) const
Process the received item.

Body::operator()(ItemType item, oneapi::tbb::feeder<ItemType> &feeder) const
Process the received item. May invoke the feeder.add(T) function to spawn additional items.

Note: ItemTypemay be optionally passed to Body::operator() by reference. const and volatile type qualifiers
are also applicable.

Terms

• iterator determines the type of the iterator passed into the parallel_for_each algorithm, which
is decltype(std::begin(c)) for the overloads that accept the Container template argument or
InputIterator.

• value_type - the type std::iterator_traits<iterator>::value_type.

• reference - the type std::iterator_traits<iterator>::reference.

oneapi::tbb::parallel_for_each requires the Body::operator() call with an object of the reference type to
be well-formed if the iterator meets the Forward iterator requirements described in the [forward.iterators] section
of the ISO C++ Standard.

oneapi::tbb::parallel_for_each algorithm requires the Body::operator() call with an object of type const
value_type& or value_type&& to be well-formed if following requirements are met:

• the iterator meets the Input iterator requirements described in the [input.iterators] section of the ISO C++ Stan-
dard

• the iterator does not meet the Forward iterator requirements described in the [forward.iterators] section of the
ISO C++ Standard

Caution: If the Body only takes non-const lvalue reference to the value_type, the requirements described above
are violated, and the program can be ill-formed.

Additional elements submitted into oneapi::tbb::parallel_for_each through the feeder::add are passed to
the Body as rvalues. In this case, the corresponding execution of the Body is required to be well-formed.

See also:

• parallel_for_each algorithm

• feeder class

7.1. General Information 503

oneAPI Specification, Release 1.4-provisional-rev-1

ContainerBasedSequence

[req.container_based_sequence]

A type C satisfies ContainerBasedSequence if it meets the following requirements:

ContainerBasedSequence Requirements: Pseudo-Signature, Semantics

Note: In this page c is an object of type (possibly const) C.

Templates that use the named requirement can impose stricter requirements on the iterator concept.

std::begin(c)
Returns an input iterator to the beginning of the sequence represented by c.

std::end(c)
Returns an input iterator one past the end of the sequence represented by c.

See also:

• parallel_for_each algorithm

• parallel_sort algorithm

ParallelScanBody

[req.parallel_scan]

A type Body satisfies ParallelScanBody if it meets the following requirements:

ParallelScanBody Requirements: Pseudo-Signature, Semantics

void Body::operator()(const Range &r, pre_scan_tag)
Accumulates summary for range r. For example, when computing a running sum of an array, the summary for
a range r is the sum of the array elements corresponding to r.

void Body::operator()(const Range &r, final_scan_tag)
Computes scan result and summary for range r.

Body::Body(Body &b, split)
Splits b so that this and b can accumulate summaries separately.

void Body::reverse_join(Body &b)
Merges the summary accumulated by b into the summary accumulated by this, where this was created earlier
from b by splitting constructor.

void Body::assign(Body &b)
Assigns summary of b to this.

See also:

• parallel_scan algorithm

7.1. General Information 504

oneAPI Specification, Release 1.4-provisional-rev-1

ParallelScanCombine

[req.parallel_scan_combine]

A type Combine satisfies ParallelScanCombine if it meets the following requirements:

ParallelScanCombine Requirements: Pseudo-Signature, Semantics

Value Combine::operator()(const Value &left, const Value &right) const
Combines summaries left and right and returns the result Value type must be the same as a corresponding
template parameter for the parallel_scan algorithm.

See also:

• parallel_scan algorithm

ParallelScanFunc

[req.parallel_scan_func]

A type Scan satisfies ParallelScanFunc if it meets the following requirements:

ParallelScanFunc Requirements: Pseudo-Signature, Semantics

Value Scan::operator()(const Range &r, const Value &sum, bool is_final) const
Starting with sum, computes the summary and, for is_final == true, the scan result for range r. Re-
turns the computed summary. Value type must be the same as a corresponding template parameter for the
parallel_scan algorithm.

See also:

• parallel_scan algorithm

BlockedRangeValue

[req.blocked_range_value]

A type Value satisfies BlockedRangeValue if it meets the following requirements:

BlockedRangeValue Requirements: Pseudo-Signature, Semantics

Value::Value(const Value&)

Copy constructor.

Value::~Value()

Destructor.

void operator=(const Value&)

Assignment.

Note: The return type void in the pseudo-signature denotes that operator= is not required to return a value.
The actual operator= can return a value, which will be ignored by blocked_range .

7.1. General Information 505

oneAPI Specification, Release 1.4-provisional-rev-1

bool operator<(const Value &i, const Value &j)
Value i precedes value j.

D operator-(const Value &i, const Value &j)
Number of values in range [i,j).

Value operator+(const Value &i, D k)
k-th value after i.

D is the type of the expression j-i. It can be any integral type that is convertible to size_t. Examples that model the
Value requirements are integral types, pointers, and STL random-access iterators whose difference can be implicitly
converted to a size_t.

See also:

• blocked_range class

• blocked_range2d class

• blocked_range3d class

• parallel_reduce algorithm

• parallel_for algorithm

FilterBody

[req.filter_body]

A type Body should meet one of the following requirements depending on the filter type:

MiddleFilterBody Requirements: Pseudo-Signature, Semantics

OutputType Body::operator()(InputType item) const
Processes the received item and then returns it.

FirstFilterBody Requirements: Pseudo-Signature, Semantics

OutputType Body::operator()(oneapi::tbb::flow_control &fc) const
Returns the next item from an input stream. Calls fc.stop() at the end of an input stream.

LastFilterBody Requirements: Pseudo-Signature, Semantics

void Body::operator()(InputType item) const
Processes the received item.

SingleFilterBody Requirements: Pseudo-Signature, Semantics

void Body::operator()(oneapi::tbb::flow_control &fc) const
Processes an element from an input stream. Calls fc.stop() at the end of an input stream.

See also:

• filter class

7.1. General Information 506

oneAPI Specification, Release 1.4-provisional-rev-1

Mutexes

Mutex

[req.mutex]

The mutexes and locks have relatively spartan interfaces that are designed for high performance. The interfaces enforce
the scoped locking pattern, which is widely used in C++ libraries because:

• Does not require to remember to release the lock

• Releases the lock if an exception is thrown out of the mutual exclusion region protected by the lock

There are two parts of the pattern: a mutex object, for which construction of a lock object acquires a lock on the mutex
and destruction of the lock object releases the lock. Here is an example:

{
// Construction of myLock acquires lock on myMutex
M::scoped_lock myLock(myMutex);
// ... actions to be performed while holding the lock ...
// Destruction of myLock releases lock on myMutex

}

If the actions throw an exception, the lock is automatically released as the block is exited.

class M {
// Implementation specifics
// ...

// Represents acquisition of a mutex
class scoped_lock {
public:

constexpr scoped_lock() noexcept;
scoped_lock(M& m);
~scoped_lock();

scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;

void acquire(M& m);
bool try_acquire(M& m);
void release();

};
};

A type M satisfies the Mutex requirements if it meets the following conditions:

type M::scoped_lock
Corresponding scoped lock type.

M::scoped_lock()

Constructs scoped_lock without acquiring mutex.

M::scoped_lock(M&)

Constructs scoped_lock and acquire the lock on a provided mutex.

7.1. General Information 507

oneAPI Specification, Release 1.4-provisional-rev-1

M::~scoped_lock()

Releases a lock (if acquired).

void M::scoped_lock::acquire(M&)

Acquires a lock on a provided mutex.

bool M::scoped_lock::try_acquire(M&)

Attempts to acquire a lock on a provided mutex. Returns true if the lock is acquired, false otherwise.

void M::scoped_lock::release()

Releases an acquired lock.

Also, the Mutex type requires a set of traits to be defined:

static constexpr bool M::is_rw_mutex
True if mutex is a reader-writer mutex; false, otherwise.

static constexpr bool M::is_recursive_mutex
True if mutex is a recursive mutex; false, otherwise.

static constexpr bool M::is_fair_mutex
True if mutex is fair; false, otherwise.

A mutex type and an M::scoped_lock type are neither copyable nor movable.

The following table summarizes the library classes that model the Mutex requirement and provided guarantees.

Table 1: Provided guarantees for Mutexes that model the Mutex require-
ment

. Fair Reentrant
mutex No No
spin_mutex No No
speculative_spin_mutex No No
queuing_mutex Yes No
null_mutex Yes Yes

Note: Implementation is allowed to have an opposite guarantees (positive) in case of negative statements from the
table above.

See the oneAPI Threading Building Blocks Developer Guide for description of the mutex properties and the rationale
for null mutexes.

See also:

• mutex

• spin_mutex

• speculative_spin_mutex

• queuing_mutex

• null_mutex

7.1. General Information 508

oneAPI Specification, Release 1.4-provisional-rev-1

ReaderWriterMutex

[req.rw_mutex]

The ReaderWriterMutex requirement extends the Mutex Requirement to include the notion of reader-writer locks. It
introduces a boolean parameter write that specifies whether a writer lock (write = true) or reader lock (write =
false) is being requested. Multiple reader locks can be held simultaneously on a ReaderWriterMutex if it does not
have a writer lock on it. A writer lock on a ReaderWriterMutex excludes all other threads from holding a lock on the
mutex at the same time.

class RWM {
// Implementation specifics
// ...

// Represents acquisition of a mutex.
class scoped_lock {
public:

constexpr scoped_lock() noexcept;
scoped_lock(RWM& m, bool write = true);
~scoped_lock();

scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;

void acquire(RWM& m, bool write = true);
bool try_acquire(RWM& m, bool write = true);
void release();

bool upgrade_to_writer();
bool downgrade_to_reader();

};
};

A type RWM satisfies ReaderWriterMutex if it meets the following requirements. They form a superset of the Mutex
requirements.

type RWM::scoped_lock
Corresponding scoped-lock type.

RWM::scoped_lock()

Constructs scoped_lock without acquiring any mutex.

RWM::scoped_lock(RWM&, bool write = true)
Constructs scoped_lock and acquires a lock on a given mutex. The lock is a writer lock if write is true; a
reader lock otherwise.

RWM::~scoped_lock()

Releases a lock (if acquired).

void RWM::scoped_lock::acquire(RWM&, bool write = true)
Acquires a lock on a given mutex. The lock is a writer lock if write is true; it is a reader lock, otherwise.

bool RWM::scoped_lock::try_acquire(RWM&, bool write = true)
Attempts to acquire a lock on a given mutex. The lock is a writer lock if write is true; it is a reader lock,
otherwise. Returns true if the lock is acquired, false otherwise.

7.1. General Information 509

oneAPI Specification, Release 1.4-provisional-rev-1

RWM::scoped_lock::release()

Releases a lock. The effect is undefined if no lock is held.

bool RWM::scoped_lock::upgrade_to_writer()
Changes a reader lock to a writer lock. Returns false if lock was released and reacquired. Otherwise, returns
true, including the case when the lock was already a writer lock.

bool RWM::scoped_lock::downgrade_to_reader()
Changes a writer lock to a reader lock. Returns false if lock was released and reacquired. Otherwise, returns
true, including the case when the lock was already a reader lock.

Like the Mutex requirement, ReaderWriterMutex also requires a set of traits to be defined.

static constexpr bool M::is_rw_mutex
True if mutex is a reader-writer mutex; false, otherwise.

static constexpr bool M::is_recursive_mutex
True if mutex is a recursive mutex; false, otherwise.

static constexpr bool M::is_fair_mutex
True if mutex is fair; false, otherwise.

The following table summarizes the library classes that model the ReaderWriterMutex requirement and provided guar-
antees.

Table 2: Provided guarantees for Mutexes that model the ReaderWriter-
Mutex requirement

. Fair Reentrant
rw_mutex No No
spin_rw_mutex No No
speculative_spin_rw_mutex No No
queuing_rw_mutex Yes No
null_rw_mutex Yes Yes

Note: Implementation is allowed to have an opposite guarantees (positive) in case of negative statements from the
table above.

Note: For all currently provided reader-writer mutexes,

• is_recursive_mutex is false

• scoped_lock::downgrade_to_reader always returns true

However, other implementations of the ReaderWriterMutex requirement are not required to do the same.

See also:

• rw_mutex

• spin_rw_mutex

• speculative_spin_rw_mutex

• queuing_rw_mutex

• null_rw_mutex

7.1. General Information 510

oneAPI Specification, Release 1.4-provisional-rev-1

Containers

HashCompare

[req.hash_compare]

HashCompare is an object which is used to calculate hash code for an object and compare two objects for equality.

The type H satisfies HashCompare if it meets the following requirements:

HashCompare Requirements: Pseudo-Signature, Semantics

H::H(const H&)

Copy constructor.

H::~H()

Destructor.

std::size_t H::hash(const KeyType &k) const
Calculates the hash for a provided key.

ReturnType H::equal(const KeyType &k1, const KeyType &k2) const
Requirements:

• The type ReturnType should be implicitly convertible to bool.

Compares k1 and k2 for equality.

If this function returns true, H::hash(k1) should be equal to H::hash(k2).

ContainerRange

[req.container_range]

ContainerRange is a range that represents a concurrent container or a part of the container.

The ContainerRange object can be used to traverse the container in parallel algorithms like parallel_for.

The type CR satisfies the ContainerRange requirements if:

• The type CR meets the requirements of Range requirements.

• The type CR provides the following member types and functions:

type CR::value_type
The type of the item in the range.

type CR::reference
Reference type to the item in the range.

type CR::const_reference
Constant reference type to the item in the range.

type CR::iterator
Iterator type for range traversal.

type CR::size_type
Unsigned integer type for obtaining grain size.

7.1. General Information 511

oneAPI Specification, Release 1.4-provisional-rev-1

type CR::difference_type
The type of the difference between two iterators.

iterator CR::begin()
Returns an iterator to the beginning of the range.

iterator CR::end()
Returns an iterator to the position that follows the last element in the range.

size_type CR::grainsize() const
Returns the range grain size.

Task scheduler

SuspendFunc

[req.suspend_func]

A type Func satisfies SuspendFunc if it meets the following requirements:

SuspendFunc Requirements: Pseudo-Signature, Semantics

Func::Func(const Func&)

Copy constructor.

void Func::operator()(oneapi::tbb::task::suspend_point)
Body that accepts the current task execution point to resume later.

See also:

• resumable tasks

Flow Graph

AsyncNodeBody

[req.async_node_body]

A type Body satisfies AsyncNodeBody if it meets the following requirements:

AsyncNodeBody Requirements: Pseudo-Signature, Semantics

Body::Body(const Body&)

Copy constructor.

Body::~Body()

Destructor.

void Body::operator()(const Input &v, GatewayType &gateway)
Requirements:

• The Input type must be the same as the Input template type argument of the async_node instance in
which the Body object is passed during construction.

7.1. General Information 512

oneAPI Specification, Release 1.4-provisional-rev-1

• The GatewayType type must be the same as the gateway_type member type of the async_node instance
in which the Body object is passed during construction.

The input value v is submitted by the flow graph to an external activity. The gateway interface allows the external
activity to communicate with the enclosing flow graph.

ContinueNodeBody

[req.continue_node_body]

A type Body satisfies ContinueNodeBody if it meets the following requirements:

ContinueNodeBody Requirements: Pseudo-Signature, Semantics

Body::Body(const Body&)

Copy constructor.

Body::~Body()

Destructor.

Output Body::operator()(const continue_msg &v)
Requirements: The type Output must be the same as the template type argument Output of the
continue_node instance in which the Body object is passed during construction.

Performs operation and returns a value of type Output.

See also:

• continue_node class

• continue_msg class

GatewayType

[req.gateway_type]

A type T satisfies GatewayType if it meets the following requirements:

GatewayType Requirements: Pseudo-Signature, Semantics

bool T::try_put(const Output &v)
Requirements: The type Output must be the same as the template type argument Output of the corresponding
async_node instance.

Broadcasts v to all successors of the corresponding async_node instance.

void T::reserve_wait()

Notifies a flow graph that work has been submitted to an external activity.

void T::release_wait()

Notifies a flow graph that work submitted to an external activity has completed.

7.1. General Information 513

oneAPI Specification, Release 1.4-provisional-rev-1

FunctionNodeBody

[req.function_node_body]

A type Body satisfies FunctionNodeBody if it meets the following requirements:

FunctionNodeBody Requirements: Pseudo-Signature, Semantics

Body::Body(const Body&)

Copy constructor.

Body::~Body()

Destructor.

Output Body::operator()(const Input &v)
Requirements: The Input and Output types must be the same as the Input and Output template type argu-
ments of the function_node instance in which the Body object is passed during construction.

Performs operation on v and returns a value of type Output.

JoinNodeFunctionObject

[req.join_node_function_object]

A type Func satisfies JoinNodeFunctionObject if it meets the following requirements:

JoinNodeFunctionObject Requirements: Pseudo-Signature, Semantics

Func::Func(const Func&)

Copy constructor.

Func::~Func()

Destructor.

Key Func::operator()(const Input &v)
Requirements: The Key and Input types must be the same as the K and the corresponding element of the
OutputTuple template arguments of the join_node instance to which the Func object is passed during con-
struction.

Returns key to be used for hashing input messages.

InputNodeBody

[req.input_node_body]

A type Body satisfies InputNodeBody if it meets the following requirements:

InputNodeBody Requirements: Pseudo-Signature, Semantics

Body::Body(const Body&)

Copy constructor.

7.1. General Information 514

oneAPI Specification, Release 1.4-provisional-rev-1

Body::~Body()

Destructor.

Output Body::operator()(oneapi::tbb::flow_control &fc)
Requirements: The type Output must be the same as the template type argument Output of the input_node
instance in which the Body object is passed during construction.

Applies body to generate the next item. Call fc.stop() when new element cannot be generated. Because
Output needs to be returned, Body may return any valid value of Output, to be immediately discarded.

MultifunctionNodeBody

[req.multifunction_node_body]

A type Body satisfies MultifunctionNodeBody if it meets the following requirements:

MultifunctionNodeBody Requirements: Pseudo-Signature, Semantics

Body::Body(const Body&)

Copy constructor.

Body::~Body()

Destructor.

void Body::operator()(const Input &v, OutputPortsType &p)
Requirements:

• The Input type must be the same as the Input template type argument of the multifunction_node
instance in which the Body object is passed during construction.

• The OutputPortsType type must be the same as the output_ports_type member type of the
multifunction_node instance in which the Body object is passed during construction.

Performs operation on v. May call try_put() on zero or more of the output ports. May call try_put() on any
output port multiple times.

Sequencer

[req.sequencer]

A type S satisfies Sequencer if it meets the following requirements:

Sequencer Requirements: Pseudo-Signature, Semantics

S::S(const S&)

Copy constructor.

S::~S()

Destructor.

7.1. General Information 515

oneAPI Specification, Release 1.4-provisional-rev-1

size_t S::operator()(const T &v)
Requirements: The type T must be the same as the template type argument T of the sequencer_node instance
in which the S object is passed during construction.

Returns the sequence number for the provided message v.

See also:

• sequencer_node class

7.1.5 Thread Safety

[thread_safety]

Unless otherwise stated, the thread safety rules for the library are as follows:

• Two threads can invoke a method or function concurrently on different objects, but not the same object.

• It is unsafe for two threads to invoke concurrently methods or functions on the same object.

Departures from this convention are noted in the classes descriptions. For example, the concurrent containers are more
liberal. By their nature, they do permit some concurrent operations on the same container object.

7.2 oneTBB Interfaces

7.2.1 Configuration

[configuration]

This section describes the most general features of oneAPI Threading Building Blocks (oneTBB) such as namespaces,
versioning, and macros.

Namespaces

[configuration.namespaces]

This section describes the oneTBB namespace conventions.

tbb Namespace

The tbb namespace contains public identifiers defined by the library that you can reference in your program.

tbb::flow Namespace

The tbb::flow namespace contains public identifiers defined by the library that you can reference in your program
related to the flow graph feature. See Flow Graph for more information.

7.2. oneTBB Interfaces 516

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::tbb Namespace

The tbb namespace is a part of the top level oneapi namespace. Therefore, all API from the tbb namespace (incl.
the tbb::flow namespace) are available in the oneapi::tbb namespace. The oneapi::tbb namespace can be
considered as an alias for the tbb namespace:

namespace oneapi { namespace tbb = ::tbb; }

Version Information

[configuration.version_information]

oneTBB has macros, an environment variable, and a function that reveal version and runtime information.

// Defined in header <oneapi/tbb/version.h>

#define TBB_VERSION_MAJOR /*implementation-defined*/
#define TBB_VERSION_MINOR /*implementation-defined*/
#define TBB_VERSION_STRING /*implementation-defined*/

#define TBB_INTERFACE_VERSION_MAJOR /*implementation-defined*/
#define TBB_INTERFACE_VERSION_MINOR /*implementation-defined*/
#define TBB_INTERFACE_VERSION /*implementation-defined*/

const char* TBB_runtime_version();
int TBB_runtime_interface_version();

Version Macros

oneTBB defines macros related to versioning, as described below.

• TBB_VERSION_MAJOR macro defined to integral value that represents major library version.

• TBB_VERSION_MINOR macro defined to integral value that represents minor library version.

• TBB_VERSION_STRING macro defined to the string representation of the full library version.

• TBB_INTERFACE_VERSION macro defined to current interface version. The value is a decimal numeral of the
form xyyz where x is the major interface version number and y is the minor interface version number. This
macro is increased in each release.

• TBB_INTERFACE_VERSION_MAJOR macro defined to TBB_INTERFACE_VERSION/1000, which is the major in-
terface version number.

• TBB_INTERFACE_VERSION_MINOR macro defined to TBB_INTERFACE_VERSION%1000/10, which is the minor
interface version number.

7.2. oneTBB Interfaces 517

oneAPI Specification, Release 1.4-provisional-rev-1

TBB_runtime_interface_version Function

Function that returns the interface version of the oneTBB library that was loaded at runtime.

The value returned by TBB_runtime_interface_version() may differ from the value of
TBB_INTERFACE_VERSION obtained at compile time. This can be used to identify whether an application was
compiled against a compatible version of the oneTBB headers.

In general, the run-time value TBB_runtime_interface_version() must be greater than or equal to the compile-
time value of TBB_INTERFACE_VERSION. Otherwise, the application may fail to resolve all symbols at run time.

TBB_runtime_version Function

Function that returns the version string of the oneTBB library that was loaded at runtime.

The value returned by TBB_runtime_version() may differ from the value of TBB_VERSION_STRING obtained at
compile time.

TBB_VERSION Environment Variable

Set the environment variable TBB_VERSION to 1 to cause the library to print information on stderr. Each line is of
the form “TBB: tag value”, where tag and value provide additional library information below.

Caution: This output is implementation specific and may change at any time.

Enabling Debugging Features

[configuration.debug_features]

The following macros control certain debugging features. In general, it is useful to compile with these features on
for development code, and off for production code, because the features may decrease performance. The table below
summarizes the macros and their default values. A value of 1 enables the corresponding feature; a value of 0 disables
the feature.

Table 3: Debugging Macros

Macro Default Value Feature
TBB_USE_DEBUG

• Windows* OS: 1 if _DEBUG is
defined, 0, otherwise.

• All other systems: 0.

Default value for all other macros in
this table.

TBB_USE_ASSERT TBB_USE_DEBUG Enable internal assertion checking.
Can significantly slow down perfor-
mance.

TBB_USE_PROFILING_TOOLS TBB_USE_DEBUG Enable full support for analysis
tools.

7.2. oneTBB Interfaces 518

oneAPI Specification, Release 1.4-provisional-rev-1

TBB_USE_ASSERT Macro

The TBB_USE_ASSERT macro controls whether error checking is enabled in the header files. Define TBB_USE_ASSERT
as 1 to enable error checking.

If an error is detected, the library prints an error message on stderr and calls the standard C routine abort. To stop a
program when internal error checking detects a failure, place a breakpoint on oneapi::tbb::assertion_failure.

TBB_USE_PROFILING_TOOLS Macro

The TBB_USE_PROFILING_TOOLS macro controls support for Intel® Inspector XE, Intel® VTune™ Amplifier XE and
Intel® Advisor.

Define TBB_USE_PROFILING_TOOLS as 1 to enable full support for these tools. Leave TBB_USE_PROFILING_TOOLS
undefined or equal to zero to enable top performance in release builds, at the expense of turning off some support for
tools.

Feature Macros

[configuration.feature_macros]

Macros in this section control optional features of the library.

TBB_USE_EXCEPTIONS macro

The TBB_USE_EXCEPTIONSmacro controls whether the library headers use exception-handling constructs such as try,
catch, and throw. The headers do not use these constructs when TBB_USE_EXCEPTIONS=0.

For the Microsoft Windows*, Linux*, and macOS* operating systems, the default value is 1 if exception handling
constructs are enabled in the compiler, and 0, otherwise.

Caution: The runtime library may still throw an exception when TBB_USE_EXCEPTIONS=0.

TBB_USE_GLIBCXX_VERSION macro

The TBB_USE_GLIBCXX_VERSION macro can be used to specify the proper version of GNU libstdc++ if the detection
fails. Define the value of the macro equal to Major*10000 + Minor*100 + Patch, where Major.Minor.Patch is
the actual GCC/libstdc++ version (if unknown, it can be obtained with the 'gcc -dumpversion' command). For
example, if you use libstdc++ from GCC 4.9.2, define TBB_USE_GLIBCXX_VERSION=40902.

7.2.2 Algorithms

[algorithms]

oneAPI Threading Building Blocks provides a set of generic parallel algorithms.

7.2. oneTBB Interfaces 519

oneAPI Specification, Release 1.4-provisional-rev-1

Parallel Functions

collaborative_call_once

[algorithms.collaborative_call_once]

Function template that executes function exactly once.

// Defined in header <oneapi/tbb/collaborative_call_once.h>

namespace oneapi {
namespace tbb {

template<typename Func, typename... Args>
void collaborative_call_once(collaborative_once_flag& flag, Func&& func, Args&&..

→˓. args);

} // namespace tbb
} // namespace oneapi

Requirements:

• Func type must meet the Function Objects requirements described in the [function.objects] section of the ISO
C++ standard.

Executes the Func object only once, even if it is called concurrently. It allows other threads blocked on the same
collaborative_once_flag to join oneTBB parallel construction called within the Func object.

In case of the exception thrown from the Func object, the thread calling the Func object receives this exception. One
of the threads blocked on the same collaborative_once_flag calls the Func object again.

collaborative_once_flag Class

collaborative_once_flag

[algorithms.collaborative_call_once.collaborative_once_flag]

Special class that collaborative_call_once uses to perform a call only once.

// Defined in header <oneapi/tbb/collaborative_call_once.h>

namespace oneapi {
namespace tbb {

class collaborative_once_flag {
public:

collaborative_once_flag();
collaborative_once_flag(const collaborative_once_flag&) = delete;
collaborative_once_flag& operator=(const collaborative_once_flag&) = delete;

};
} // namespace tbb

} // namespace oneapi

7.2. oneTBB Interfaces 520

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

collaborative_once_flag()

Constructs an collaborative_once_flag object. The initial state indicates that no function has been called.

Example

The following example shows a class in which the “Lazy initialization” pattern is implemented on the cachedProperty
field.

#include "oneapi/tbb/collaborative_call_once.h"
#include "oneapi/tbb/parallel_reduce.h"
#include "oneapi/tbb/blocked_range.h"

extern double foo(int i);

class LazyData {
oneapi::tbb::collaborative_once_flag flag;
double cachedProperty;

public:
double getProperty() {

oneapi::tbb::collaborative_call_once(flag, [&] {
// serial part
double result{};

// parallel part where threads can collaborate
result = oneapi::tbb::parallel_reduce(oneapi::tbb::blocked_range<int>(0,␣

→˓1000), 0.,
[] (auto r, double val) {

for(int i = r.begin(); i != r.end(); ++i) {
val += foo(i);

}
return val;

},
std::plus<double>{}

);

// continue serial part
cachedProperty = result;

});

return cachedProperty;
}

};

7.2. oneTBB Interfaces 521

oneAPI Specification, Release 1.4-provisional-rev-1

parallel_for

[algorithms.parallel_for]

Function template that performs parallel iteration over a range of values.

// Defined in header <oneapi/tbb/parallel_for.h>

namespace oneapi {
namespace tbb {

template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f, /* see-below */␣

→˓partitioner, task_group_context& context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f, task_group_context&␣

→˓context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f, /* see-below */␣

→˓partitioner);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f);

template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f, /* see-

→˓below */ partitioner, task_group_context& context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f, task_group_

→˓context& context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f, /* see-

→˓below */ partitioner);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f);

template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body, /* see-below */␣

→˓partitioner, task_group_context& context);
template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body, task_group_context&␣

→˓context);
template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body, /* see-below */␣

→˓partitioner);
template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body);

} // namespace tbb
} // namespace oneapi

A partitioner type may be one of the following entities:

• const auto_partitioner&

• const simple_partitioner&

7.2. oneTBB Interfaces 522

oneAPI Specification, Release 1.4-provisional-rev-1

• const static_partitioner&

• affinity_partitioner&

Requirements:

• The Range type must meet the Range requirements.

• The Body type must meet the ParallelForBody requirements.

• The Index type must meet the ParallelForIndex requirements.

• The Func type must meet the ParallelForFunc requirements.

The oneapi::tbb::parallel_for(first, last, step, f) overload represents parallel execution of the loop:

for (auto i = first; i < last; i += step) f(i);

The loop must not wrap around. The step value must be positive. If omitted, it is implicitly 1. There is no guarantee that
the iterations run in parallel. A deadlock may occur if a lesser iteration waits for a greater iteration. The partitioning
strategy is auto_partitioner when the parameter is not specified.

The parallel_for(range,body,partitioner) overload provides a more general form of parallel iteration. It
represents parallel execution of body over each value in range. The optional partitioner parameter specifies a
partitioning strategy.

parallel_for recursively splits the range into subranges to the point such that is_divisible() is false for each
subrange, and makes copies of the body for each of these subranges. For each such body/subrange pair, it invokes
Body::operator().

Some of the copies of the range and body may be destroyed after parallel_for returns. This late destruction is not
an issue in typical usage, but is something to be aware of when looking at execution traces or writing range or body
objects with complex side effects.

parallel_for may execute iterations in non-deterministic order. Do not rely on any particular execution order for
correctness. However, for efficiency, do expect parallel_for to tend towards operating on consecutive runs of values.

In case of serial execution, parallel_for performs iterations from left to right in the following sense.

All overloads can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces, the space complexity is O(P log(N)),
where N is the size of the range and P is the number of threads.

See also:

• Partitioners

parallel_reduce

[algorithms.parallel_reduce]

Function template that computes reduction over a range.

// Defined in header <oneapi/tbb/parallel_reduce.h>

namespace oneapi {
namespace tbb {

(continues on next page)

7.2. oneTBB Interfaces 523

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction, /* see-below */ partitioner, task_group_context&␣
→˓context);

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction, /* see-below */ partitioner);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction, task_group_context& context);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction);

template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body, /* see-below */ partitioner,

→˓ task_group_context& context);
template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body, /* see-below */␣

→˓partitioner);
template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body, task_group_context&␣

→˓context);
template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body);

} // namespace tbb
} // namespace oneapi

A partitioner type may be one of the following entities:

• const auto_partitioner&

• const simple_partitioner&

• const static_partitioner&

• affinity_partitioner&

Requirements:

• The Range type must meet the Range requirements.

• The Body type must meet the ParallelReduceBody requirements.

• The Value type must meet the CopyConstructible requirements from the [copyconstructible] section and Copy-
Assignable requirements from the [copyassignable] section of the ISO C++ Standard.

• The Func type must meet the ParallelReduceFunc requirements. Since C++17, Func may also be a pointer to a
const member function in Range that takes const Value& argument and returns Value.

• The Reduction types must meet ParallelReduceReduction requirements. Since C++17, Reduction may also
be a pointer to a const member function in Value that takes const Value& argument and returns Value.

The function template parallel_reduce has two forms: The functional form is designed to be easy to use in con-
junction with lambda expressions. The imperative form is designed to minimize copying of data.

The functional form parallel_reduce(range, identity, func, reduction) performs a parallel reduction by
applying func to subranges in range and reducing the results with the binary operator reduction. It returns the result of

7.2. oneTBB Interfaces 524

oneAPI Specification, Release 1.4-provisional-rev-1

the reduction. The identity parameter specifies the left identity element for func’s operator(). Parameters func and
reduction can be lambda expressions.

The imperative form parallel_reduce(range,body) performs parallel reduction of body over each value in range.

A parallel_reduce recursively splits the range into subranges to the point such that is_divisible() is false for
each subrange. A parallel_reduce uses the splitting constructor to make one or more copies of the body for each
thread. It may copy a body while the body’s operator() or method join runs concurrently. You are responsible for
ensuring the safety of such concurrency. In typical usage, the safety requires no extra effort.

parallel_reduce may invoke the splitting constructor for the body. For each such split of the body, it invokes the
join method to merge the results from the bodies. Define join to update this to represent the accumulated result for
this and rhs. The reduction operation should be associative, but does not have to be commutative. For a noncommutative
operation op, left.join(right) should update left to be the result of left op right.

A body is split only if the range is split, but the converse is not necessarily to be so. The user must neither rely
on a particular choice of body splitting nor on the subranges processed by a given body object being consecutive.
parallel_reduce makes the choice of body splitting nondeterministically.

When executed serially parallel_reduce run sequentially from left to right in the same sense as for parallel_for.
Sequential execution never invokes the splitting constructor or method join.

All overloads can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces, the space complexity is O(P×log(N)),
where N is the size of the range and P is the number of threads.

Example (Imperative Form)

The following code sums the values in an array.

#include "oneapi/tbb/parallel_reduce.h"
#include "oneapi/tbb/blocked_range.h"

using namespace oneapi::tbb;

struct Sum {
float value;
Sum() : value(0) {}
Sum(Sum& s, split) {value = 0;}
void operator()(const blocked_range<float*>& r) {

float temp = value;
for(float* a=r.begin(); a!=r.end(); ++a) {

temp += *a;
}
value = temp;

}
void join(Sum& rhs) {value += rhs.value;}

};

float ParallelSum(float array[], size_t n) {
Sum total;
parallel_reduce(blocked_range<float*>(array, array+n), total);

(continues on next page)

7.2. oneTBB Interfaces 525

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

return total.value;
}

The example generalizes to reduction for any associative operation op as follows:

• Replace occurrences of 0 with the identity element for op

• Replace occurrences of += with op= or its logical equivalent.

• Change the name Sum to something more appropriate for op.

The operation may be noncommutative. For example, op could be matrix multiplication.

Example with Lambda Expressions

The following is similar to the previous example, but written using lambda expressions and the functional form of
parallel_reduce.

#include "oneapi/tbb/parallel_reduce.h"
#include "oneapi/tbb/blocked_range.h"

using namespace oneapi::tbb;

float ParallelSum(float array[], size_t n) {
return parallel_reduce(

blocked_range<float*>(array, array+n),
0.f,
[](const blocked_range<float*>& r, float init)->float {

for(float* a=r.begin(); a!=r.end(); ++a)
init += *a;

return init;
},
[](float x, float y)->float {

return x+y;
}

);
}

See also:

• Partitioners

parallel_deterministic_reduce

[algorithms.parallel_deterministic_reduce]

Function template that computes reduction over a range, with deterministic split/join behavior.

// Defined in header <oneapi/tbb/parallel_reduce.h>

namespace oneapi {
namespace tbb {

(continues on next page)

7.2. oneTBB Interfaces 526

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction, /* see-below */ partitioner, task_group_
→˓context& context);

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction, /* see-below */ partitioner);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction, task_group_context& context);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction);

template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body, /* see-below␣

→˓*/ partitioner, task_group_context& context);
template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body, /* see-below␣

→˓*/ partitioner);
template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body, task_group_

→˓context& context);
template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body);

} // namespace tbb
} // namespace oneapi

A partitioner type may be one of the following entities:

• const simple_partitioner&

• const static_partitioner&

The function template parallel_deterministic_reduce is very similar to the parallel_reduce template. It also
has the functional and imperative forms and has similar requirements.

Unlike parallel_reduce, parallel_deterministic_reduce has deterministic behavior with regard to splits of
both Body and Range and joins of the bodies. For the functional form, Func is applied to a deterministic set of Ranges,
and Reduction merges partial results in a deterministic order. To achieve that, parallel_deterministic_reduce
uses a simple_partitioner or a static_partitioner only because other partitioners react to random work steal-
ing behavior.

Caution: Since simple_partitioner does not automatically coarsen ranges, make sure to specify an appropriate
grain size. See Partitioners section for more information.

parallel_deterministic_reduce always invokes the Body splitting constructor for each range split.

As a result, parallel_deterministic_reduce recursively splits a range until it is no longer divisible, and creates
a new body (by calling the Body splitting constructor) for each new subrange. Like parallel_reduce, for each body
split the method join is invoked in order to merge the results from the bodies.

Therefore, for given arguments, parallel_deterministic_reduce executes the same set of split and join operations

7.2. oneTBB Interfaces 527

oneAPI Specification, Release 1.4-provisional-rev-1

no matter how many threads participate in execution and how tasks are mapped to the threads. If the user-provided
functions are also deterministic (that is, different runs with the same input result in the same output), multiple calls
to parallel_deterministic_reduce produce the same result. Note however that the result might differ from that
obtained with an equivalent sequential (linear) algorithm.

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces, the space complexity is O(P log(N)),
where N is the size of the range and P is the number of threads.

See also:

• parallel_reduce

• Partitioners

parallel_scan

[algorithms.parallel_scan]

Function template that computes a parallel prefix.

// Defined in header <oneapi/tbb/parallel_scan.h>

template<typename Range, typename Body>
void parallel_scan(const Range& range, Body& body);
template<typename Range, typename Body>
void parallel_scan(const Range& range, Body& body, /* see-below */ partitioner);

template<typename Range, typename Value, typename Scan, typename Combine>
Value parallel_scan(const Range& range, const Value& identity, const Scan& scan, const␣
→˓Combine& combine);
template<typename Range, typename Value, typename Scan, typename Combine>
Value parallel_scan(const Range& range, const Value& identity, const Scan& scan, const␣
→˓Combine& combine, /* see-below */ partitioner);

A partitioner type may be one of the following entities:

• const auto_partitioner&

• const simple_partitioner&

Requirements:

• The Range type must meet the Range requirement.

• The Body type must meet the ParallelScanBody requirements.

• The Value type must meet the CopyConstructible requirements from the [copyconstructible] section and Copy-
Assignable requirements from the [copyassignable] section of the ISO C++ Standard.

• The Scan type must meet the ParallelScanFunc requirements. Since C++17, Scan may also be a pointer to a
const member function in Range that takes const Value& and bool arguments and returns Value.

• The Combine type must meet the ParallelScanCombine requirements. Since C++17, Combine may also be a
pointer to a const member function in Value that takes const Value& argument and returns Value.

The function template parallel_scan computes a parallel prefix, also known as a parallel scan. This computation is
an advanced concept in parallel computing that is sometimes useful in scenarios that appear to have inherently serial
dependences.

7.2. oneTBB Interfaces 528

oneAPI Specification, Release 1.4-provisional-rev-1

A mathematical definition of the parallel prefix is as follows. Let × be an associative operation with left-identity element
id×. The parallel prefix of × over a sequence z0, z1, . . . *z*n-1 is a sequence y0, y1, y2, . . . *y*n-1 where:

• y0 = id× × z0

• yi = yi-1 × zi

For example, if × is addition, the parallel prefix corresponds to a running sum. A serial implementation of a parallel
prefix is:

T temp = id;
for(int i=1; i<=n; ++i) {

temp = temp + z[i];
y[i] = temp;

}

Parallel prefix performs this in parallel by reassociating the application of × (+ in example) and using two passes. It
may invoke × up to twice as many times as the serial prefix algorithm. Even though it does more work, given the right
grain size the parallel algorithm can outperform the serial one because it distributes the work across multiple hardware
threads.

The function template parallel_scan has two forms. The imperative form parallel_scan(range, body) imple-
ments parallel prefix generically.

A summary (refer to ParallelScanBody requirements) contains enough information such that for two consecutive sub-
ranges r and s:

• If r has no preceding subrange, the scan result for s can be computed from knowing s and the summary for r.

• A summary of r concatenated with s can be computed from the summaries of r and s.

The functional form parallel_scan(range, identity, scan, combine) is designed to use with functors and
lambda expressions, hiding some complexities of the imperative form. It uses the same scan functor in both passes,
differentiating them via a boolean parameter, combines summaries with combine functor, and returns the summary
computed over the whole range. The identity argument is the left identity element for Scan::operator().

pre_scan and final_scan Classes

pre_scan_tag and final_scan_tag

[algorithms.parallel_scan.scan_tags]

Types that distinguish the phases of parallel_scan.

Types pre_scan_tag and final_scan_tag are dummy types used in conjunction with parallel_scan. See the
example in the parallel_scan section for demonstration of how they are used in the signature of operator().

// Defined in header <oneapi/tbb/parallel_scan.h>

namespace oneapi {
namespace tbb {

struct pre_scan_tag {
static bool is_final_scan();
operator bool();

};

(continues on next page)

7.2. oneTBB Interfaces 529

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

struct final_scan_tag {
static bool is_final_scan();
operator bool();

};

} // namespace tbb
} // namespace oneapi

Member functions

bool is_final_scan()
true for a final_scan_tag, false, otherwise.

operator bool()

true for a final_scan_tag, false, otherwise.

The parallel_scan template makes an effort to avoid prescanning where possible. When executed serially,
parallel_scan processes the subranges without any pre-scans by processing the subranges from left to right us-
ing final scans. That is why final scans must compute a summary as well as the final scan result. The summary might
be needed to process the next subrange if no other thread has pre-scanned it yet.

Example (Imperative Form)

The following code demonstrates how Body could be implemented for parallel_scan to compute the same result as
in the earlier sequential example.

class Body {
T sum;
T* const y;
const T* const z;

public:
Body(T y_[], const T z_[]) : sum(id), z(z_), y(y_) {}
T get_sum() const { return sum; }

template<typename Tag>
void operator()(const oneapi::tbb::blocked_range<int>& r, Tag) {

T temp = sum;
for(int i=r.begin(); i<r.end(); ++i) {

temp = temp + z[i];
if(Tag::is_final_scan())

y[i] = temp;
}
sum = temp;

}
Body(Body& b, oneapi::tbb::split) : z(b.z), y(b.y), sum(id) {}
void reverse_join(Body& a) { sum = a.sum + sum; }
void assign(Body& b) { sum = b.sum; }

};

T DoParallelScan(T y[], const T z[], int n) {
(continues on next page)

7.2. oneTBB Interfaces 530

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

Body body(y,z);
oneapi::tbb::parallel_scan(oneapi::tbb::blocked_range<int>(0,n), body);
return body.get_sum();

}

The definition of operator() demonstrates typical patterns when using parallel_scan.

• A single template defines both versions. Doing so is not required, but usually saves coding effort, because two
versions are usually similar. The library defines the static method is_final_scan to enable differentiation
between the versions.

• The prescan variant computes the × reduction, but does not update y. The prescan is used by parallel_scan
to generate look-ahead partial reductions.

• The final scan variant computes the × reduction and updates y.

The reverse_join operation is similar to the join operation used by parallel_reduce, except that the arguments
are reversed. That is, this is the right argument of ×. The template function parallel_scan decides if and when
to generate parallel work. Thus, it is crucial that × is associative and that the methods of Body faithfully represent
it. Operations such as floating-point addition, which are somewhat associative, can be used with the understanding
that the results may be rounded differently depending on the association used by parallel_scan. The reassociation
may differ between runs even on the same machine. However, when executed serially, parallel_scan associates
identically to the serial form shown at the beginning of this section.

If you change the example to use a simple_partitioner, be sure to provide a grain size. The code below shows how
to do this for the grain size of 1000:

parallel_scan(blocked_range<int>(0,n,1000), total, simple_partitioner());

Example with Lambda Expressions

The following is analogous to the previous example, but written using lambda expressions and the functional form of
parallel_scan:

T DoParallelScan(T y[], const T z[], int n) {
return oneapi::tbb::parallel_scan(

oneapi::tbb::blocked_range<int>(0,n),
id,
[](const oneapi::tbb::blocked_range<int>& r, T sum, bool is_final_scan)->T {

T temp = sum;
for(int i=r.begin(); i<r.end(); ++i) {

temp = temp + z[i];
if(is_final_scan)

y[i] = temp;
}
return temp;

},
[](T left, T right) {

return left + right;
}

);
}

See also:

7.2. oneTBB Interfaces 531

oneAPI Specification, Release 1.4-provisional-rev-1

• blocked_range class

• parallel_reduce algorithm

parallel_for_each

[algorithms.parallel_for_each]

Function template that processes work items in parallel.

// Defined in header <oneapi/tbb/parallel_for_each.h>

namespace oneapi {
namespace tbb {

template<typename InputIterator, typename Body>
void parallel_for_each(InputIterator first, InputIterator last, Body body);
template<typename InputIterator, typename Body>
void parallel_for_each(InputIterator first, InputIterator last, Body body, task_

→˓group_context& context);

template<typename Container, typename Body>
void parallel_for_each(Container& c, Body body);
template<typename Container, typename Body>
void parallel_for_each(Container& c, Body body, task_group_context& context);

template<typename Container, typename Body>
void parallel_for_each(const Container& c, Body body);
template<typename Container, typename Body>
void parallel_for_each(const Container& c, Body body, task_group_context&␣

→˓context);

} // namespace tbb
} // namespace oneapi

Requirements:

• The Body type must meet the ParallelForEachBody requirements. Since C++17, Body may also be a pointer to
a member function in Index.

• The InputIterator type must meet the Input Iterator requirements from the [input.iterators] section of the
ISO C++ Standard.

• If InputIterator type does not meet the Forward Iterator requirements from the [forward.iterators] section
of the ISO C++ Standard, the std::iterator_traits<InputIterator>::value_type type must be con-
structible from std::iterator_traits<InputIterator>::reference.

• The Container type must meet the ContainerBasedSequence requirements.

• The type returned by Container::begin() must meet the same requirements as the InputIterator type
above.

The parallel_for_each template has two forms.

The sequence form parallel_for_each(first, last, body) applies a function object body over a sequence
[first,last). Items may be processed in parallel.

7.2. oneTBB Interfaces 532

oneAPI Specification, Release 1.4-provisional-rev-1

The container form parallel_for_each(c, body) is equivalent to parallel_for_each(std::begin(c),
std::end(c), body).

All overloads can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

feeder Class

Additional work items can be added by body if it has a second argument of type feeder. The function terminates
when body(x) returns for all items x that were in the input sequence or added by method feeder::add.

feeder

[algorithms.parallel_for_each.feeder]

Inlet into which additional work items for a parallel_for_each can be fed.

// Defined in header <oneapi/tbb/parallel_for_each.h>

namespace oneapi {
namespace tbb {

template<typename Item>
class feeder {
public:

void add(const Item& item);
void add(Item&& item);

};

} // namespace tbb
} //namespace oneapi

Member functions

void add(const Item &item)

Adds item to a collection of work items to be processed.

Requirements: The Item type must meet the CopyConstructible requirements from the [copyconstructible]
section of the ISO C++ Standard.

void add(Item &&item)

Same as the above but uses the move constructor of Item, if available.

Requirements: The Item type must meet the MoveConstructible requirements from the [moveconstructible]
section of the ISO C++ Standard.

Caution: Must be called from a Body::operator() created by the parallel_for_each function. Otherwise,
the termination semantics of method operator() are undefined.

7.2. oneTBB Interfaces 533

oneAPI Specification, Release 1.4-provisional-rev-1

Example

The following code sketches a body with the two-argument form of operator().

struct MyBody {
void operator()(item_t item, parallel_do_feeder<item_t>& feeder) {

for each new piece of work implied by item do {
item_t new_item = initializer;
feeder.add(new_item);

}
}

};

parallel_invoke

[algortihms.parallel_invoke]

Function template that evaluates several functions in parallel.

// Defined in header <oneapi/tbb/parallel_invoke.h>

namespace oneapi {
namespace tbb {

template<typename... Functions>
void parallel_invoke(Functions&&... fs);

} // namespace tbb
} // namespace oneapi

Requirements:

• All members of Functions parameter pack must meet Function Objects requirements described in the [func-
tion.objects] section of the ISO C++ standard.

• Last member of Functions parameter pack may be a task_group_context& type.

Evaluates each member passed to parallel_invoke possibly in parallel. Return values are ignored.

The algorithm can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

Example

The following example evaluates f(), g(), h(), and bar(1) in parallel.

#include "oneapi/tbb/parallel_invoke.h"

extern void f();
extern void bar(int);

class MyFunctor {
int arg;

(continues on next page)

7.2. oneTBB Interfaces 534

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

public:
MyFunctor(int a) : arg(a) {}
void operator()() const { bar(arg); }

};

void RunFunctionsInParallel() {
MyFunctor g(2);
MyFunctor h(3);

oneapi::tbb::parallel_invoke(f, g, h, []{bar(1);});
}

parallel_pipeline

[algorithms.parallel_pipeline]

Strongly-typed interface for pipelined execution.

// Defined in header <oneapi/tbb/parallel_pipeline.h>

namespace oneapi {
namespace tbb {

void parallel_pipeline(size_t max_number_of_live_tokens, const filter<void,void>
→˓& filter_chain);

void parallel_pipeline(size_t max_number_of_live_tokens, const filter<void,void>
→˓& filter_chain, task_group_context& context);

} // namespace tbb
} // namespace oneapi

A parallel_pipeline algorithm represents pipelined application of a series of filters to a stream of items. Each
filter operates in a particular mode: parallel, serial in-order, or serial out-of-order.

To build and run a pipeline from functors g0, g1, g2, . . . , gn, write:

parallel_pipeline(max_number_of_live_tokens,
make_filter<void,I1>(mode0,g0) &
make_filter<I1,I2>(mode1,g1) &
make_filter<I2,I3>(mode2,g2) &
...
make_filter<In,void>(moden,gn));

In general, the gi functor should define its operator() to map objects of type I i to objects of type I i+1. Functor g0 is
a special case, because it notifies the pipeline when the end of an input stream is reached. Functor g0 must be defined
such that for a flow_control object fc, the expression g0 (fc) either returns the next value in the input stream, or invokes
fc.stop() if the end of the input stream is reached and returns a dummy value.

Each filter should be specified by two template arguments. These arguments define filters input and output types. The
first and last filters are special cases. Input type of the first filter must be void, output type of the last filter must be void
too.

Before passing to parallel_pipeline, concatenate all filters to one(filter<void, void>) with filter::operator&().
The operator requires that the second template argument of its left operand matches the first template argument of its

7.2. oneTBB Interfaces 535

oneAPI Specification, Release 1.4-provisional-rev-1

second operand.

The number of items processed in parallel depends on the structure of the pipeline and number of available threads.
max_number_of_live_tokens sets the threshold for concurrently processed items.

If the context argument is specified, pipeline’s tasks are executed in this context. By default, the algorithm is executed
in a bound context of its own.

Example

The following example uses parallel_pipeline to compute the root-mean-square of a sequence defined by [first ,
last).

float RootMeanSquare(float* first, float* last) {
float sum=0;
parallel_pipeline(/*max_number_of_live_token=*/16,

make_filter<void,float*>(
filter_mode::serial_in_order,
[&](flow_control& fc)-> float*{

if(first<last) {
return first++;

} else {
fc.stop();
return nullptr;

}
}

) &
make_filter<float*,float>(

filter_mode::parallel,
[](float* p){return (*p)*(*p);}

) &
make_filter<float,void>(

filter_mode::serial_in_order,
[&](float x) {sum+=x;}

)
);
return sqrt(sum);

}

filter Class Template

filter

[algorithms.parallel_pipeline.filter]

A filter class template represents a strongly-typed filter in a parallel_pipeline algorithm, with its template
parameters specifying the filter input and output types. A filter can be constructed from a functor or by composing
two filter objects with operator&(). The same filter object can be reused in multiple & expressions.

The filter class should only be used in conjunction with parallel_pipeline functions.

// Defined in header <oneapi/tbb/parallel_pipeline.h>

(continues on next page)

7.2. oneTBB Interfaces 536

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

namespace oneapi {
namespace tbb {

template<typename InputType, typename OutputType>
class filter {
public:

filter() = default;
filter(const filter& rhs) = default;
filter(filter&& rhs) = default;
void operator=(const filter& rhs) = default;
void operator=(filter&& rhs) = default;

template<typename Body>
filter(filter_mode mode, const Body& body);

filter& operator&=(const filter<OutputType,OutputType>& right);

void clear();
}

template<typename T, typename U, typename Body>
filter<T,U> make_filter(filter::mode mode, const Body& f);
template<typename T, typename V, typename U>
filter<T,U> operator&(const filter<T,V>& left, const filter<V,U>& right);

} // namespace tbb
} // namespace oneapi

Requirements:

• If InputType is void, a Body type must meet the FirstFilterBody requirements.

• If OutputType is void, a Body type must meet the LastFilterBody requirements. Since C++17, Body may also
be a pointer to a member function in InputType.

• If InputType and OutputType are not void, a Body type must meet the MiddleFilterBody requirements. Since
C++17, Body may also be a pointer to a member function in InputType that returns OutputType or a pointer
to a data member in InputType of type OutputType.

• If InputType and OutputType are void, a Body type must meet the SingleFilterBody requirements.

filter_mode Enumeration

filter_mode

[algorithms.parallel_pipeline.filter_mode]

A filter_mode enumeration represents an execution mode of a filter in a parallel_pipeline algorithm.

Its enumerated values and their meanings are as follows:

• A parallel filter can process multiple items in parallel and without a particular order.

• A serial_out_of_order filter processes items one at a time and without a particular order.

7.2. oneTBB Interfaces 537

oneAPI Specification, Release 1.4-provisional-rev-1

• A serial_in_order filter processes items one at a time. The order in which items are processed is implicitly
set by the first serial_in_order filter and respected by all other such filters in the pipeline.

// Defined in header <oneapi/tbb/parallel_pipeline.h>

namespace oneapi {
namespace tbb {

enum class filter_mode {
parallel = /*implementation-defined*/,
serial_in_order = /*implementation-defined*/,
serial_out_of_order = /*implementation-defined*/

};

} // namespace tbb
} // namespace oneapi

Member functions

filter()

Constructs an undefined filter.

Caution: The effect of using an undefined filter by operator&() or parallel_pipeline is undefined.

template<typename Body>
filter(filter_mode mode, const Body &body)

Constructs a filter that uses a copy of a provided body to map an input value of type InputType to an output
value of type OutputType, and that operates in the specified mode.

void clear()
Sets *this to an undefined filter.

Non-member functions

template<typename T, typename U, typename Func>
filter<T , U> make_filter(filter::mode mode, const Func &f)

Returns filter<T, U>(mode, f).

template<typename T, typename V, typename U>
filter<T , U> operator&(const filter<T , V> &left, const filter<V , U> &right)

Returns a filter representing the composition of filters left and right. The composition behaves as if the output
value of left becomes the input value of right.

7.2. oneTBB Interfaces 538

oneAPI Specification, Release 1.4-provisional-rev-1

Deduction Guides

template<typename Body>
filter(filter_mode, Body) -> filter<filter_input<Body>, filter_output<Body>>;

Where:

• filter_input<Body> is an alias to the Body::operator() input parameter type. If Body::operator()
input parameter type is flow_control then filter_input<Body> is void.

• filter_output<Body> is an alias to the Body::operator() return type.

flow_control Class

flow_control

[algorithms.parallel_pipeline.flow_control]

Enables the first filter in a composite filter to indicate when the end of input stream is reached.

Template function parallel_pipeline passes a flow_control object to the functor of the first filter. When the
functor reaches the end of its input stream, it should invoke fc.stop() and return a dummy value that will not be
passed to the next filter.

// Defined in header <oneapi/tbb/parallel_pipeline.h>

namespace oneapi {
namespace tbb {

class flow_control {
public:

void stop();
};

} // namespace tbb
} namespace oneapi

Member functions

void stop()
Indicates that first filter of the pipeline reaches the end of its output.

See also:

• FilterBody requiremnts

• filter class

See also:

• task_group_context

7.2. oneTBB Interfaces 539

oneAPI Specification, Release 1.4-provisional-rev-1

parallel_sort

[algorithms.parallel_sort]

Function template that sorts a sequence.

// Defined in header <oneapi/tbb/parallel_sort.h>

namespace oneapi {
namespace tbb {

template<typename RandomAccessIterator>
void parallel_sort(RandomAccessIterator begin, RandomAccessIterator end);
template<typename RandomAccessIterator, typename Compare>
void parallel_sort(RandomAccessIterator begin, RandomAccessIterator end, const␣

→˓Compare& comp);

template<typename Container>
void parallel_sort(Container&& c);
template<typename Container>
void parallel_sort(Container&& c, const Compare& comp);

} // namespace tbb
} // namespace oneapi

Requirements:

• The RandomAccessIterator type must meet the Random Access Iterators requirements from [ran-
dom.access.iterators] and ValueSwappable requirements from the [swappable.requirements] ISO C++ Standard
section.

• The Compare type must meet the Compare type requirements from the [alg.sorting] ISO C++ Standard section.

• The Container type must meet the ContainerBasedSequence requirements which iterators must meet the Ran-
dom Access Iterators requirements from [random.access.iterators] and Swappable requirements from the [swap-
pable.requirements] ISO C++ Standard section.

• The type of dereferenced RandomAccessIterator or dereferenced Container iterator must meet the Move-
Assignable requirements from [moveassignable] section of ISO C++ Standard and the MoveConstructible re-
quirements from [moveconstructible] section of ISO C++ Standard.

Sorts a sequence or a container. The sort is neither stable nor deterministic: relative ordering of elements with equal
keys is not preserved and not guaranteed to repeat if the same sequence is sorted again.

A call parallel_sort(begin, end, comp) sorts the sequence [begin, end) using the argument comp to deter-
mine relative orderings. If comp(x, y) returns true, x appears before y in the sorted sequence.

A call parallel_sort(begin, end) is equivalent to parallel_sort(begin, end, comp), where comp
uses operator< to determine relative orderings.

A call parallel_sort(c, comp) is equivalent to parallel_sort(std::begin(c), std::end(c), comp
).

A call parallel_sort(c) is equivalent to parallel_sort(c, comp), where comp uses operator< to deter-
mine relative orderings.

Complexity

parallel_sort is a comparison sort with an average time complexity of O(N×log(N)), where N is the number of
elements in the sequence. parallel_sort may be executed concurrently to improve execution time.

7.2. oneTBB Interfaces 540

oneAPI Specification, Release 1.4-provisional-rev-1

Blocked Ranges

Types that meet the Range requirements.

blocked_range

[algorithms.blocked_range]

Class template for a recursively divisible half-open interval.

A blocked_range represents a half-open range [i,*j*) that can be recursively split.

A blocked_range meets the Range requirements.

A blocked_range specifies a grain size of type size_t.

A blocked_range is splittable into two subranges if the size of the range exceeds its grain size. The ideal grain size
depends on the context of the blocked_range, which is typically passed as the range argument to the loop templates
parallel_for, parallel_reduce, or parallel_scan.

// Defined in header <oneapi/tbb/blocked_range.h>

namespace oneapi {
namespace tbb {

template<typename Value>
class blocked_range {
public:

// types
using size_type = size_t;
using const_iterator = Value;

// constructors
blocked_range(Value begin, Value end, size_type grainsize=1);
blocked_range(blocked_range& r, split);
blocked_range(blocked_range& r, proportional_split& proportion);

// capacity
size_type size() const;
bool empty() const;

// access
size_type grainsize() const;
bool is_divisible() const;

// iterators
const_iterator begin() const;
const_iterator end() const;

};

} // namespace tbb
} // namespace oneapi

Requirements:

• The Value type must meet the BlockedRangeValue requirements.

7.2. oneTBB Interfaces 541

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

type size_type
The type for measuring the size of a blocked_range. The type is always a size_t.

type const_iterator
The type of a value in the range. Despite its name, the const_iterator type is not necessarily an STL iterator; it
merely needs to meet the BlockedRangeValue requirements. However, it is convenient to call it const_iterator
so that if it is a const_iterator, the blocked_range behaves like a read-only STL container.

blocked_range(Value begin, Value end, size_type grainsize = 1)
Requirements: The parameter grainsizemust be positive. The debug version of the library raises an assertion
failure if this requirement is not met.

Effects: Constructs a blocked_range representing the half-open interval [begin, end) with the given
grainsize.

Example: The statement "blocked_range<int> r(5, 14, 2);" constructs a range of int that contains the
values 5 through 13 inclusive, with the grain size of 2. Afterwards, r.begin()==5 and r.end()==14.

blocked_range(blocked_range &range, split)
Basic splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges. The newly constructed blocked_range is approximately the
second half of the original range, and range is updated to be the remainder. Each subrange has the same
grainsize as the original range.

Example: Let r be a blocked_range that represents a half-open interval [i, j) with a grain size g. Running
the statement blocked_range<int> s(r, split); subsequently causes r to represent [i, i+(j-i)/2) and
s to represent [i+(j-i)/2, j), both with grain size g.

blocked_range(blocked_range &range, proportional_split proportion)
Proportional splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges such that the ratio of their sizes is close to the ratio of proportion.
left() to proportion.right(). The newly constructed blocked_range is the subrange at the right, and
range is updated to be the subrange at the left.

Example: Let r be a blocked_range that represents a half-open interval [i, j) with a grain size g. Run-
ning the statement blocked_range<int> s(r, proportional_split(2, 3)); subsequently causes r to
represent [i, i+2*(j-i)/(2+3)) and s to represent [i+2*(j-i)/(2+3), j), both with grain size g.

size_type size() const
Requirements: end()<begin() is false.

Effects: Determines size of range.

Returns: end()-begin().

bool empty() const
Effects: Determines if range is empty.

Returns: !(begin()<end())

size_type grainsize() const
Returns: Grain size of range.

7.2. oneTBB Interfaces 542

oneAPI Specification, Release 1.4-provisional-rev-1

bool is_divisible() const
Requirements: end()<begin() is false.

Effects: Determines if the range can be split into subranges.

Returns: True if size()>grainsize(); false, otherwise.

const_iterator begin() const
Returns: Inclusive lower bound of the range.

const_iterator end() const
Returns: Exclusive upper bound of the range.

See also:

• parallel_reduce

• parallel_for

• parallel_scan

blocked_range2d

[algorithms.blocked_range2d]

Class template that represents a recursively divisible two-dimensional half-open interval.

A blocked_range2d represents a half-open two-dimensional range [i0,j0)×[i1,j1). Each axis of the range has
its own splitting threshold. A blocked_range2d is divisible if either axis is divisible.

A blocked_range2d meets the Range requirements.

// Defined in header <oneapi/tbb/blocked_range2d.h>

namespace oneapi {
namespace tbb {

template<typename RowValue, typename ColValue=RowValue>
class blocked_range2d {
public:

// Types
using row_range_type = blocked_range<RowValue>;
using col_range_type = blocked_range<ColValue>;

// Constructors
blocked_range2d(

RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

blocked_range2d(RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

// Splitting constructors
blocked_range2d(blocked_range2d& r, split);
blocked_range2d(blocked_range2d& r, proportional_split proportion);

// Capacity
(continues on next page)

7.2. oneTBB Interfaces 543

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool empty() const;

// Access
bool is_divisible() const;
const row_range_type& rows() const;
const col_range_type& cols() const;

};

} // namespace tbb
} // namespace oneapi

Requirements:

• The RowValue and ColValue must meet the blocked_range requirements

Member types

using row_range_type = blocked_range<RowValue>;

The type of the row values.

using col_range_type = blocked_range<ColValue>;

The type of the column values.

Member functions

blocked_range2d(
RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

Effects: Constructs a blocked_range2d representing a two-dimensional space of values. The space is the half-open
Cartesian product [row_begin, row_end) x [col_begin, col_end), with the given grain sizes for the rows and
columns.

Example: The statement blocked_range2d<char,int> r('a', 'z'+1, 3, 0, 10, 2); constructs a two-
dimensional space that contains all value pairs of the form (i, j), where i ranges from 'a' to 'z' with a grain
size of 3, and j ranges from 0 to 9 with a grain size of 2.

blocked_range2d(RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

Same as blocked_range2d(row_begin,row_end,1,col_begin,col_end,1).

blocked_range2d(blocked_range2d& range, split);

Basic splitting constructor.

Requirements: is_divisible() is true.

7.2. oneTBB Interfaces 544

oneAPI Specification, Release 1.4-provisional-rev-1

Effects: Partitions range into two subranges. The newly constructed blocked_range2d is approximately the second
half of the original range, and range is updated to be the remainder. Each subrange has the same grain size as the
original range. Splitting is done either by rows or columns. The choice of which axis to split is intended to cause,
after repeated splitting, the subranges to approach the aspect ratio of the respective row and column grain sizes.

blocked_range2d(blocked_range2d& range, proportional_split proportion);

Proportional splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges in the given proportion across one of its axes. The choice of which
axis to split is made in the same way as for the basic splitting constructor; then, proportional splitting is done for the
chosen axis. The second axis and the grain sizes for each subrange remain the same as in the original range.

bool empty() const;

Effects: Determines if range is empty.

Returns: rows().empty()||cols().empty()

bool is_divisible() const;

Effects: Determines if range can be split into subranges.

Returns: rows().is_divisible()||cols().is_divisible()

const row_range_type& rows() const;

Returns: Range containing the rows of the value space.

const col_range_type& cols() const;

Returns: Range containing the columns of the value space.

See also:

• blocked_range

blocked_range3d

[algorithms.blocked_range3d]

Class template that represents a recursively divisible three-dimensional half-open interval.

A blocked_range3d is the three-dimensional extension of blocked_range2d.

namespace oneapi {
namespace tbb {

template<typename PageValue, typename RowValue=PageValue, typename␣
→˓ColValue=RowValue>

class blocked_range3d {
public:

// Types
using page_range_type = blocked_range<PageValue>;
using row_range_type = blocked_range<RowValue>;
using col_range_type = blocked_range<ColValue>;

(continues on next page)

7.2. oneTBB Interfaces 545

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// Constructors
blocked_range3d(

PageValue page_begin, PageValue page_end,
typename page_range_type::size_type page_grainsize,
RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

blocked_range3d(PageValue page_begin, PageValue page_end
RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

blocked_range3d(blocked_range3d& r, split);
blocked_range3d(blocked_range3d& r, proportional_split& proportion);

// Capacity
bool empty() const;

// Access
bool is_divisible() const;
const page_range_type& pages() const;
const row_range_type& rows() const;
const col_range_type& cols() const;

};

} // namespace tbb
} // namespace oneapi

Requirements:

• The PageValue, RowValue and ColValue must meet the blocked_range requirements

Member types

using page_range_type = blocked_range<PageValue>;

The type of the page values.

using row_range_type = blocked_range<RowValue>;

The type of the row values.

using col_range_type = blocked_range<ColValue>;

The type of the column values.

7.2. oneTBB Interfaces 546

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

blocked_range3d(PageValue page_begin, PageValue page_end,
typename page_range_type::size_type page_grainsize,
RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

Effects: Constructs a blocked_range3d representing a three-dimensional space of values. The space is the half-open
Cartesian product [page_begin, page_end) x [row_begin, row_end) x [col_begin, col_end), with the
given grain sizes for the pages, rows and columns.

Example: The statement blocked_range3d<int,char,int> r(0, 6, 2, 'a', 'z'+1, 3, 0, 10, 2);
constructs a three-dimensional space that contains all value pairs of the form (i, j, k), where i ranges from 0
to 6 with a grain size of 2, j ranges from 'a' to 'z' with a grain size of 3, and k ranges from 0 to 9 with a grain size
of 2.

blocked_range3d(PageValue page_begin, PageValue page_end,
RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

Same as blocked_range3d(page_begin,page_end,1,row_begin,row_end,1,col_begin,col_end,1).

blocked_range3d(blocked_range3d& range, split);

Basic splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges. The newly constructed blocked_range3d is approximately the second
half of the original range, and range is updated to be the remainder. Each subrange has the same grain size as the
original range. Splitting is done either by pages, rows, or columns. The choice of which axis to split is intended to
cause, after repeated splitting, the subranges to approach the aspect ratio of the respective page, row, and column grain
sizes.

blocked_range3d(blocked_range3d& range, proportional_split proportion);

Proportional splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges in the given proportion across one of its axes. The choice of which
axis to split is made in the same way as for the basic splitting constructor; then, proportional splitting is done for the
chosen axis. The second axis and the grain sizes for each subrange remain the same as in the original range.

bool empty() const;

Effects: Determines if range is empty.

Returns: pages.empty()||rows().empty()||cols().empty()

bool is_divisible() const;

Effects: Determines if the range can be split into subranges.

Returns: pages().is_divisible()||rows().is_divisible()||cols().is_divisible()

7.2. oneTBB Interfaces 547

oneAPI Specification, Release 1.4-provisional-rev-1

const page_range_type& pages() const;

Returns: Range containing the pages of the value space.

const row_range_type& rows() const;

Returns: Range containing the rows of the value space.

const col_range_type& cols() const;

Returns: Range containing the columns of the value space.

See also:

• blocked_range

• blocked_range2d

Partitioners

A partitioner specifies how a loop template should partition its work among threads.

auto_partitioner

[algorithms.auto_partitioner]

Specifies that a parallel loop should optimize its range subdivision based on work-stealing events.

A loop template with an auto_partitioner attempts to minimize range splitting while providing ample opportunities
for work stealing.

The range subdivision is initially limited to S subranges, where S is proportional to the number of threads specified by
the global_contol or task_arena. Each of these subranges is not divided further unless it is stolen by an idle thread.
If stolen, it is further subdivided to create additional subranges. Thus a loop template with an auto_partitioner
creates additional subranges only when it is necessary to balance a load.

An auto_partitioner performs sufficient splitting to balance load, not necessarily splitting as finely as
Range::is_divisible permits. When used with classes such as blocked_range, the selection of an appropriate
grain size is less important, and often acceptable performance can be achieved with the default grain size of 1.

The auto_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [utility.arg.requirements]
section.

Tip: When using auto_partitioner and a blocked_range for a parallel loop, the body may receive a subrange
larger than the grain size of the blocked_range. Therefore, do not assume that the grain size is an upper bound of the
subrange size. Use simple_partitioner if an upper bound is required.

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class auto_partitioner {
public:

(continues on next page)

7.2. oneTBB Interfaces 548

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

auto_partitioner() = default;
~auto_partitioner() = default;

};

} // namespace tbb
} // namespace oneapi

affinity_partitioner

[algorithms.affinity_partitioner]

Hints that loop iterations should be assigned to threads in a way that optimizes for cache affinity.

An affinity_partitioner hints that execution of a loop template should use the same task affinity pattern for
splitting the work as used by previous execution of the loop (or another loop) with the same affinity_partitioner
object.

affinity_partitioner uses proportional splitting when it is enabled for a Range type.

Unlike the other partitioners, it is important that the same affinity_partitioner object be passed to the loop
templates to be optimized for affinity.

The affinity_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [util-
ity.arg.requirements] section.

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class affinity_partitioner {
public:

affinity_partitioner() = default;
~affinity_partitioner() = default;

};

} // namespace tbb
} // namespace oneapi

See also:

• Range named requirement

static_partitioner

[algorithms.static_partitioner]

Specifies that a parallel algorithm should distribute the work uniformly across threads and should not do additional
load balancing.

An algorithm with a static_partitioner distributes the range across threads in subranges of approximately equal
size. The number of subranges is equal to the number of threads that can possibly participate in task execution, as
specified by global_contol or task_arena classes. These subranges are not further split.

7.2. oneTBB Interfaces 549

oneAPI Specification, Release 1.4-provisional-rev-1

Caution: The regularity of subrange sizes is not guaranteed if the range type does not support proportional
splitting, or if the grain size is set larger than the size of the range divided by the number of threads participating in
task execution.

In addition, static_partitioner uses a deterministic task affinity pattern to hint the task scheduler how the sub-
ranges should be assigned to threads.

The static_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [util-
ity.arg.requirements] section.

Tip: Use static_partitioner to:

• Parallelize small well-balanced workloads where enabling additional load balancing opportunities brings more
overhead than performance benefits.

• Port OpenMP* parallel loops with schedule(static) if deterministic work partitioning across threads is im-
portant.

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class static_partitioner {
public:

static_partitioner() = default;
~static_partitioner() = default;

};

} // namespace tbb
} // namespace oneapi

See also:

• Range named requirement

simple_partitioner

[algorithms.simple_partitioner]

Specifies that a parallel loop should recursively split its range until it cannot be further subdivided.

A simple_partitioner specifies that a loop template should recursively divide its range until for each subrange r, the
condition !r.is_divisible() holds. This is the default behavior of the loop templates that take a range argument.

The simple_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [util-
ity.arg.requirements] section.

Tip: When using simple_partitioner and a blocked_range for a parallel loop, make sure to specify an appro-
priate grain size for the blocked_range. The default grain size is 1, which may make the subranges much too small
for efficient execution.

7.2. oneTBB Interfaces 550

oneAPI Specification, Release 1.4-provisional-rev-1

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class simple_partitioner {
public:

simple_partitioner() = default;
~simple_partitioner() = default;

};

} // namespace tbb
} // namespace oneapi

See also:

• Range named requirement

Split Tags

proportional split

[algorithms.proportional_split]

Type of an argument for a proportional splitting constructor of Range.

An argument of type proportional_split may be used by classes that satisfy Range requirements to distinguish a
proportional splitting constructor from a basic splitting constructor and from a copy constructor, and to suggest a ratio
in which a particular instance of the class should be split.

// Defined in header <oneapi/tbb/blocked_range.h>
// Defined in header <oneapi/tbb/blocked_range2d.h>
// Defined in header <oneapi/tbb/blocked_range3d.h>
// Defined in header <oneapi/tbb/partitioner.h>
// Defined in header <oneapi/tbb/parallel_for.h>
// Defined in header <oneapi/tbb/parallel_reduce.h>
// Defined in header <oneapi/tbb/parallel_scan.h>

namespace oneapi {
namespace tbb {
class proportional_split {
public:

proportional_split(std::size_t _left = 1, std::size_t _right = 1);

std::size_t left() const;
std::size_t right() const;

explicit operator split() const;
};

} // namespace tbb
} // namespace oneapi

7.2. oneTBB Interfaces 551

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

proportional_split(std::size_t _left = 1, std::size_t _right = 1)
Constructs a proportion with the ratio specified by coefficients _left and _right.

std::size_t left() const
Returns the size of the left part of the proportion.

std::size_t right() const
Returns the size of the right part of the proportion.

explicit operator split() const
Makes proportional_split convertible to the split type to use with ranges that do not support proportional
splitting.

See also:

• split

• Range requirements

split

[algorithms.split]

Type of an argument for a splitting constructor of Range. An argument of type split is used to distinguish a splitting
constructor from a copy constructor.

// Defined in header <oneapi/tbb/blocked_range.h>
// Defined in header <oneapi/tbb/blocked_range2d.h>
// Defined in header <oneapi/tbb/blocked_range3d.h>
// Defined in header <oneapi/tbb/partitioner.h>
// Defined in header <oneapi/tbb/parallel_for.h>
// Defined in header <oneapi/tbb/parallel_reduce.h>
// Defined in header <oneapi/tbb/parallel_scan.h>

class split;

See also:

• Range requirements

7.2.3 Flow Graph

[flow_graph]

In addition to loop parallelism, the oneAPI Threading Building Blocks (oneTBB) library also supports graph paral-
lelism. With this feature, highly scalable and completely sequential graphs can be created.

There are three types of components used to implement a graph:

• A graph class instance

• Nodes

• Ports and edges

7.2. oneTBB Interfaces 552

oneAPI Specification, Release 1.4-provisional-rev-1

Graph Class

The graph class instance owns all the tasks created on behalf of the flow graph. Users can wait on the graph if they
need to wait for the completion of all of the tasks related to the flow graph execution. Users can also register external
interactions with the graph and run tasks under the ownership of the flow graph.

graph

[flow_graph.graph]

Class that serves as a handle to a flow graph of nodes and edges.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

class graph {
public:

graph();
graph(task_group_context& context);
~graph();

void wait_for_all();

void reset(reset_flags f = rf_reset_protocol);
void cancel();
bool is_cancelled();
bool exception_thrown();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

reset_flags enumeration

reset_flags Enumeration

[flow_graph.reset_flags]

A reset_flags enumeration represents flags that can be passed to the graph::reset() function.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

enum reset_flags {
rf_reset_protocol = /*implementation-defined*/,

(continues on next page)

7.2. oneTBB Interfaces 553

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

rf_reset_bodies = /*implementation-defined*/,
rf_clear_edges = /*implementation-defined*/

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Its enumerated values and their meanings are as follows:

• rf_reset_protocol - All buffers are emptied, internal state of nodes reinitialized. All calls to reset() per-
form these actions.

• rf_reset_bodies - When nodes with bodies are created, the body specified in the constructor is copied and
preserved. When rf_reset_bodies is specified, the current body of the node is deleted and replaced with a
copy of the body saved during construction.

Caution: If the body contains state which has an external component (such as a file descriptor), the node
may not behave the same on re-execution of the graph after body replacement. In this case, the node should
be re-created.

• rf_clear_edges - All edges are removed from the graph.

Member functions

graph(task_group_context &context)
Constructs a graph with no nodes. If context is specified, the graph tasks are executed in this context. By
default, the graph is executed in a bound context of its own.

~graph()

Calls wait_for_all() on the graph, then destroys the graph.

void wait_for_all()
Blocks execution until all tasks associated with the graph have completed or cancelled.

void reset(reset_flags f = rf_reset_protocol)
Resets the graph according to the specified flags. Flags to reset() can be combined with bitwise-or.

Note: reset() is a thread-unsafe operation, don’t call it concurrently.

void cancel()
Cancels all tasks in the graph.

bool is_cancelled()
Returns: true if the graph was cancelled during the last call to wait_for_all(); false, otherwise.

bool exception_thrown()
Returns: true if during the last call to wait_for_all() an exception was thrown; false, otherwise.

7.2. oneTBB Interfaces 554

oneAPI Specification, Release 1.4-provisional-rev-1

Nodes

Abstract Interfaces

To be used as a graph node type, a class needs to inherit certain abstract types and implement the corresponding
interfaces. graph_node is the base class for any other node type; its interfaces always have to be implemented. If a
node sends messages to other nodes, it has to implement the sender interface, while with the receiver interface the
node may accept messages. For nodes that have multiple inputs and/or outputs, each input port is a receiver and each
output port is a sender.

graph_node

[flow_graph.graph_node]

A base class for all graph nodes.

namespace oneapi {
namespace tbb {
namespace flow {

class graph_node {
public:

explicit graph_node(graph &g);
virtual ~graph_node();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

The graph_node class is a base class for all flow graph nodes. The virtual destructor allows flow graph nodes to
be destroyed through pointers to graph_node. For example, a vector< graph_node * > can be used to hold the
addresses of flow graph nodes that will need to be destroyed later.

sender

[flow_graph.sender]

A base class for all nodes that may send messages.

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class sender { /*unspecified*/ };

} // namespace flow
} // namespace tbb
} // namespace oneapi

The T type is a message type.

7.2. oneTBB Interfaces 555

oneAPI Specification, Release 1.4-provisional-rev-1

receiver

[flow_graph.receiver]

A base class for all nodes that may receive messages.

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class receiver { /*unspecified*/ };

} // namespace flow
} // namespace tbb
} // namespace oneapi

The T type is a message type.

Properties

Every node in a flow graph has its own properties.

Forwarding and Buffering

[flow_graph.forwarding_and_buffering]

Forwarding

In a flow::graph, nodes that forward messages to successors have one of two possible forwarding policies, which are
a property of the node:

• broadcast-push - the message will be pushed to as many successors as will accept the message. If no successor
accepts the message, the fate of the message depends on the output buffering policy of the node.

• single-push - if the message is accepted by a successor, no further push of that message will occur. If a successor
rejects the message, the next successor in the set is tried. This continues until a successor accepts the message, or
all successors have been attempted. If no successor accepts the message, it will be retained for a possible future
resend. Message that is successfully transferred to a successor is removed from the node.

Buffering

There are two policies for handling a message that cannot be pushed to any successor:

• buffering - if no successor accepts a message, it is stored so subsequent node processing can use it. Nodes that
buffer outputs have “yes” in the “try_get()?” column below.

• discarding - if no successor accepts a message, it is discarded and has no further effect on graph execution.
Nodes that discard outputs have “no” in the “try_get()?” column below.

The following table lists the policies of each node:

7.2. oneTBB Interfaces 556

oneAPI Specification, Release 1.4-provisional-rev-1

Table 4: Buffering and Forwarding properties summary

Node try_get()? Forwarding
Functional Nodes
input_node yes broadcast-push
function_node<rejecting> no broadcast-push
function_node<queueing> no broadcast-push
continue_node no broadcast-push
multifunction_node<rejecting> no broadcast-push
multifunction_node<queueing> no broadcast-push
Buffering Nodes
buffer_node yes single-push
priority_queue_node yes single-push
queue_node yes single-push
sequencer_node yes single-push
overwrite_node yes broadcast-push
write_once_node yes broadcast-push
Split/Join Nodes
join_node<queueing> yes broadcast-push
join_node<reserving> yes broadcast-push
join_node<tag_matching> yes broadcast-push
split_node no broadcast-push
indexer_node no broadcast-push
Other Nodes
broadcast_node no broadcast-push
limiter_node no broadcast-push

Functional Nodes

Functional nodes do computations in response to input messages (if any), and send the result or a signal to their suc-
cessors.

continue_node

[flow_graph.continue_node]

A node that executes a specified body object when triggered.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename Output, typename Policy = /*implementation-defined*/ >
class continue_node : public graph_node, public receiver<continue_msg>, public sender

→˓<Output> {
public:

template<typename Body>
continue_node(graph &g, Body body, node_priority_t priority = no_priority);
template<typename Body>

(continues on next page)

7.2. oneTBB Interfaces 557

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

continue_node(graph &g, Body body, Policy /*unspecified*/ = Policy(),
node_priority_t priority = no_priority);

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

node_priority_t priority = no_priority);
template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

Policy /*unspecified*/ = Policy(), node_priority_t priority = no_
→˓priority);

continue_node(const continue_node &src);
~continue_node();

bool try_put(const input_type &v);
bool try_get(output_type &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type Output must meet the CopyConstructible requirements from [copyconstructible] ISO C++ Standard
section.

• The type Policy can be specified as lightweight policy or defaulted.

• The type Body must meet the ContinueNodeBody requirements.

A continue_node is a graph_node, receiver<continue_msg>, and sender<Output>.

This node is used for nodes that wait for their predecessors to complete before executing, but no explicit data is passed
across the incoming edges.

A continue_nodemaintains an internal threshold that defines the number of predecessors. This value can be provided
at construction. Call of the make_edge function with continue_node as a receiver increases its threshold. Call of the
remove_edge function with continue_node as a receiver decreases it.

Each time the number of try_put() calls reaches the defined threshold, node’s body is called and the node starts
counting the number of try_put() calls from the beginning.

continue_node has a discarding and broadcast-push properties.

The body object passed to a continue_node is copied. Updates to member variables do not affect the original object
used to construct the node. If the state held within a body object must be inspected from outside of the node, the
copy_body function can be used to obtain an updated copy.

7.2. oneTBB Interfaces 558

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

template<typename Body>
continue_node(graph &g, Body body, node_priority_t priority = no_priority);

Constructs a continue_node that invokes body. The internal threshold is set to 0.

This function specifies node priority.

template<typename Body>
continue_node(graph &g, Body body, Policy /*unspecified*/ = Policy(),

node_priority_t priority = no_priority);

Constructs a continue_node that invokes body. The internal threshold is set to 0.

This function specifies lightweight policy and node priority.

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

node_priority_t priority = no_priority);

Constructs a continue_node that invokes body. The internal threshold is set to number_of_predecessors.

This function specifies node priority.

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

Policy /*unspecified*/ = Policy(), node_priority_t priority = no_priority␣
→˓);

Constructs a continue_node that invokes body. The internal threshold is set to number_of_predecessors.

This function specifies lightweight policy and node priority.

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body);

Constructs a continue_node that invokes body. The internal threshold is set to number_of_predecessors.

continue_node(const continue_node &src)

Constructs a continue_node that has the same initial state that src had after its construction. It does not copy the
current count of try_puts received, or the current known number of predecessors. The continue_node that is
constructed has a reference to the same graph object as src, has a copy of the initial body used by src, and only has
a non-zero threshold if src is constructed with a non-zero threshold.

The new body object is copy-constructed from a copy of the original body provided to src at its construction.

7.2. oneTBB Interfaces 559

oneAPI Specification, Release 1.4-provisional-rev-1

bool try_put(const Input &v)

Increments the count of try_put() calls received. If the incremented count is equal to the number of known prede-
cessors, performs the body function object execution. It does not wait for the execution of the body to complete.

Returns: true

bool try_get(Output &v)

Returns: false

Deduction Guides

template <typename Body, typename Policy>
continue_node(graph&, Body, Policy, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, Policy>
→˓;

template <typename Body, typename Policy>
continue_node(graph&, int, Body, Policy, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, Policy>
→˓;

template <typename Body>
continue_node(graph&, Body, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, /
→˓*default-policy*/>;

template <typename Body>
continue_node(graph&, int, Body, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, /
→˓*default-policy*/>;

Where:

• continue_output_t<Output> is an alias to Output template argument type. If Output specified as void,
continue_output_t<Output> is an alias to continue_msg type.

Example

A set of continue_nodes forms a Dependency Flow Graph.

7.2. oneTBB Interfaces 560

oneAPI Specification, Release 1.4-provisional-rev-1

function_node

[flow_graph.function_node]

A node that executes a user-provided body on incoming messages.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Input, typename Output = continue_msg, typename Policy = /
→˓*implementation-defined*/ >
class function_node : public graph_node, public receiver<Input>, public sender

→˓<Output> {
public:

template<typename Body>
function_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣

→˓Policy(),
node_priority_t priority = no_priority);

template<typename Body>
function_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);
~fuction_node();

function_node(const function_node &src);

bool try_put(const Input &v);
bool try_get(Output &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Input type must meet the DefaultConstructible requirements from [defaultconstructible] and the CopyCon-
structible requirements from [copyconstructible] ISO C++ Standard sections.

• The Output type must meet the CopyConstructible requirements from [copyconstructible] ISO C++ Standard
section.

• The type Policy may be specified as lightweight, queueing and rejecting policies or defaulted.

• The type Body must meet the FunctionNodeBody requirements. Since C++17, Body may also be a pointer to a
const member function in Input that returns Output or a pointer to a data member in Input of type Output.

function_node has a user-settable concurrency limit. It can be set to one of predefined values. The user can also
provide a value of type std::size_t to limit concurrency to a value between 1 and tbb::flow::unlimited.

Messages that cannot be immediately processed due to concurrency limits are handled according to the Policy template
argument.

function_node is a graph_node, receiver<Input>, and sender<Output>.

function_node has a discarding and broadcast-push properties.

7.2. oneTBB Interfaces 561

oneAPI Specification, Release 1.4-provisional-rev-1

The body object passed to a function_node is copied. Updates to member variables do not affect the original object
used to construct the node. If the state held within a body object must be inspected from outside of the node, the
copy_body function can be used to obtain an updated copy.

Member functions

template<typename Body>
function_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

Constructs a function_node that invokes a copy of body. Most of concurrency calls to body can be made concur-
rently.

Use this function to specify node priority.

template<typename Body>
function_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣
→˓Policy(),

node_priority_t priority = no_priority);

Constructs a function_node that invokes a copy of body. Most of concurrency calls to body can be made concur-
rently.

Use this function to specify policy and node priority.

function_node(const function_node &src)

Constructs a function_node that has the same initial state that src had when it was constructed. The function_node
that is constructed has a reference to the same graph object as src, has a copy of the initial body used by src, and has
the same concurrency threshold as src. The predecessors and successors of src are not copied.

The new body object is copy-constructed from a copy of the original body provided to src at its construction.
Changes made to member variables in src’s body after the construction of src do not affect the body of the new
function_node.

bool try_put(const Input &v)

If the concurrency limit allows, executes the user-provided body on the incoming message v. Otherwise, depending on
the policy of the node, either queues the incoming message v or rejects it.

Returns: true if the input was accepted; and false, otherwise.

bool try_get(Output &v)

Returns: false

7.2. oneTBB Interfaces 562

oneAPI Specification, Release 1.4-provisional-rev-1

Deduction Guides

template <typename Body, typename Policy>
function_node(graph&, size_t, Body, Policy, node_priority_t = no_priority)

->function_node<std::decay_t<input_t<Body>>, output_t<Body>, Policy>;

template <typename Body>
function_node(graph&, size_t, Body, node_priority_t = no_priority)

->function_node<std::decay_t<input_t<Body>>, output_t<Body>, /*default-policy*/>;

Where:

• input_t is an alias to Body input argument type.

• output_t is an alias to Body return type.

Example

Data Flow Graph example illustrates how function_node performs computation on input data and passes the result
to successors.

input_node

[flow_graph.input_node]

A node that generates messages by invoking the user-provided functor and broadcasts the result to all of its successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Output >
class input_node : public graph_node, public sender<Output> {
public:

template< typename Body >
input_node(graph &g, Body body);
input_node(const input_node &src);
~input_node();

void activate();
bool try_get(Output &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Output type must meet the DefaultConstructible requirements from [defaultconstructible], CopyCon-
structible requirements from [copyconstructible] and CopyAssignable requirements from [copyassignable] ISO
C++ Standard sections.

7.2. oneTBB Interfaces 563

oneAPI Specification, Release 1.4-provisional-rev-1

• The type Body must meet the InputNodeBody requirements.

This node can have no predecessors. It executes a user-provided body function object to generate messages that are
broadcast to all successors. It is a serial node and never calls its body concurrently. This node can buffer a single item.
If no successor accepts an item that it has generated, the message is buffered and provided to successors before a new
item is generated.

input_node is a graph_node and sender<Output>.

input_node has a buffering and broadcast-push properties.

An input_node continues to invoke body and broadcast messages until the body toggles fc.stop() or it has no valid
successors. A message may be generated and then rejected by all successors. In this case, the message is buffered and
will be the next message sent once a successor is added to the node or try_get is called. Calls to try_get return a
message from the buffer, or invoke body to attempt to generate a new message. A call to body is made only when the
buffer is empty.

The body object passed to an input_node is copied. Updates to member variables do not affect the original object used
to construct the node. If the state held within a body object must be inspected from outside of the node, the copy_body
function can be used to obtain an updated copy.

Member functions

template<typename Body>
input_node(graph &g, Body body)

Constructs an input_node that invokes body. By default, the node is created in an inactive state, which means
that messages are not generated until a call to activate is made.

input_node(const input_node &src)
Constructs an input_node that has the same initial state that src had when it was constructed. The input_node
that is constructed has a reference to the same graph object as src, has a copy of the initial body used by src,
and has the same initial active state as src. The successors of src are not copied.

The new body object is copy-constructed from a copy of the original body provided to src at its construction.
Changes made to member variables in src body after the construction of src do not affect the body of the new
input_node.

void activate()
Sets the input_node to the active state, which enables messages generation.

bool try_get(Output &v)
Copies the message from the buffer to v if available, or, if the node is in active state, invokes body to attempt to
generate a new message that will be copied into v.

Returns: true if a message is copied to v; false, otherwise.

Deduction Guides

template <typename Body>
input_node(graph&, Body) -> input_node<std::decay_t<input_t<Body>>>;

Where:

• input_t is an alias to Body input argument type.

7.2. oneTBB Interfaces 564

oneAPI Specification, Release 1.4-provisional-rev-1

multifunction_node

[flow_graph.multifunction_node]

A node that used for nodes that receive messages at a single input port and may generate one or more messages that
are broadcast to successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Input, typename Output, typename Policy = /*implementation-
→˓defined*/ >
class multifunction_node : public graph_node, public receiver<Input> {
public:

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body, Policy /

→˓*unspecified*/ = Policy(),
node_priority_t priority = no_priority);

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

multifunction_node(const multifunction_node& other);
~multifunction_node();

bool try_put(const Input &v);

using output_ports_type = /*implementation-defined*/;
output_ports_type& output_ports();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Input type must meet the DefaultConstructible requirements from [defaultconstructible] and the CopyCon-
structible requirements from [copyconstructible] ISO C++ Standard sections.

• The type Policy can be specified as lightweight, queueing and rejecting policies or defaulted.

• The type Body must meet the MultifunctionNodeBody requirements. Since C++17, Body may also be a pointer
to a const member function in Input that takes output_ports_type& argument.

multifunction_node has a user-settable concurrency limit. It can be set to one of predefined values. The user can
also provide a value of type std::size_t to limit concurrency to a value between 1 and tbb::flow::unlimited.

When the concurrency limit allows, it executes the user-provided body on incoming messages. The body can create
one or more output messages and broadcast them to successors.

multifunction_node is a graph_node, receiver<InputType> and has a tuple of sender<Output> outputs.

multifunction_node has a discarding and broadcast-push properties.

7.2. oneTBB Interfaces 565

oneAPI Specification, Release 1.4-provisional-rev-1

The body object passed to a multifunction_node is copied. Updates to member variables do not affect the original
object used to construct the node. If the state held within a body object must be inspected from outside of the node, the
copy_body function can be used to obtain an updated copy.

Member types

output_ports_type is an alias to a std::tuple of output ports.

Member functions

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

Constructs a multifunction_node that invokes a copy of body. Most concurrency calls to body can be made
concurrently.

Use this function to specify node priority.

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣
→˓Policy(),

node_priority_t priority = no_priority);

Constructs a multifunction_node that invokes a copy of body. Most concurrency calls to body can be made
concurrently.

Use this function to specify a policy and node priority.

multifunction_node(const multifunction_node &src)

Constructs a multifunction_node that has the same initial state that other had when it was constructed. The
multifunction_node that is constructed has a reference to the same graph object as other, has a copy of the initial
body used by other, and has the same concurrency threshold as other. The predecessors and successors of other
are not copied.

The new body object is copy-constructed from a copy of the original body provided to other at its construction.
Changes made to member variables in other body after the construction of other do not affect the body of the new
multifunction_node.

bool try_put(const input_type &v)

If the concurrency limit allows, executes the user-provided body on the incoming message v. Otherwise, depending on
the policy of the node, either queues the incoming message v or rejects it.

Returns: true if the input was accepted; false, otherwise.

7.2. oneTBB Interfaces 566

oneAPI Specification, Release 1.4-provisional-rev-1

output_ports_type& output_ports();

Returns: a std::tuple of output ports.

async_node

[flow_graph.async_node]

A node that enables communication between a flow graph and an external activity managed by the user or another
runtime.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Input, typename Output, typename Policy = /*implemetation-
→˓defined*/ >
class async_node : public graph_node, public receiver<Input>, public sender<Output> {
public:

template<typename Body>
async_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣

→˓Policy(),
node_priority_t priority = no_priority);

template<typename Body>
async_node(graph &g, size_t concurrency, Body body, node_priority_t priority =␣

→˓no_priority);

async_node(const async_node& src);
~async_node();

using gateway_type = /*implementation-defined*/;
gateway_type& gateway();

bool try_put(const input_type& v);
bool try_get(output_type& v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Input type must meet the DefaultConstructible requirements from [defaultconstructible] and the CopyCon-
structible requirements from [copyconstructible] ISO C++ Standard sections.

• The type Policy can be specified as lightweight, queueing and rejecting policies or defaulted.

• The type Body must meet the AsyncNodeBody requirements. Since C++17, Body may also be a pointer to a const
member function in Input that takes gateway_type& argument.

async_node executes a user-provided body on incoming messages. The body typically submits the messages to an
external activity for processing outside of the graph. It is responsibility of body to be able to pass the message to an

7.2. oneTBB Interfaces 567

oneAPI Specification, Release 1.4-provisional-rev-1

external activity. This node also provides the gateway_type interface that allows an external activity to communicate
with the flow graph.

async_node is a graph_node, receiver<Input>, and a sender<Output>.

async_node has a discarding and broadcast-push properties.

async_node has a user-settable concurrency limit, which can be set to one of predefined values. The user can also
provide a value of type std::size_t to limit concurrency to a value between 1 and tbb::flow::unlimited.

The body object passed to a async_node is copied. Updates to member variables do not affect the original object used
to construct the node. If the state held within a body object must be inspected from outside of the node, the copy_body
function can be used to obtain an updated copy.

Member types

gateway_type meets the GatewayType requirements.

Member functions

template<typename Body>
async_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

Constructs an async_node that invokes a copy of body. The concurrency value limits the number of simultaneous
body invocations for the node.

This function specifies node priority.

template<typename Body>
async_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ = Policy(),

node_priority_t priority = no_priority);

Constructs a async_node that invokes a copy of body. Most concurrency calls to body can be made concurrently.

This function specifies a policy and node priority.

async_node(const async_node &src)

Constructs an async_node that has the same initial state that src had when it was constructed. The async_node that
is constructed has a reference to the same graph object as src, has a copy of the initial body used by src, and has the
same concurrency threshold as src. The predecessors and successors of src are not copied.

The new body object is copy-constructed from a copy of the original body provided to src at its construction. Changes
made to member variables in src’s body after the construction of src do not affect the body of the new async_node.

gateway_type& gateway()

Returns reference to the gateway_type interface.

7.2. oneTBB Interfaces 568

oneAPI Specification, Release 1.4-provisional-rev-1

bool try_put(const input_type& v)

If the concurrency limit allows, executes the user-provided body on the incoming message v. Otherwise, depending on
the policy of the node, either queues the incoming message v or rejects it.

Returns: true if the input was accepted; and false, otherwise.

bool try_get(output_type& v)

Returns: false

Auxiliary

Function Nodes Policies

[flow_graph.function_node_policies]

function_node, multifunction_node, async_node and continue_node can be specified by the Policy param-
eter, which is represented as a set of tag classes. This parameter affects behavior of node execution.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

class queueing { /*unspecified*/ };
class rejecting { /*unspecified*/ };
class lightweight { /*unspecified*/ };
class queueing_lightweight { /*unspecified*/ };
class rejecting_lightweight { /*unspecified*/ };

} // namespace flow
} // namespace tbb
} // namespace oneapi

Each policy class satisfies the CopyConstructible requirements from [copyconstructible] ISO C++ Standard sections.

Queueing

This policy defines behavior for input messages acceptance. The queueing policy means that input messages that
cannot be processed right away are kept to be processed when possible.

7.2. oneTBB Interfaces 569

oneAPI Specification, Release 1.4-provisional-rev-1

Rejecting

This policy defines behavior for input messages acceptance. The rejecting policy means that input messages that
cannot be processed right away are not accepted by the node and it is responsibility of a predecessor to handle this.

Lightweight

This policy allows to specify that the node body takes little time to process, as a non-binding hint for an implementation
to reduce overheads associated with the node execution. Any optimization applied by an implementation must have no
observable side effects on the node and graph execution.

When combined with another policy, the lightweight policy results in extending the behavior of that other policy
with the optimization hint. This rule automatically applies to functional nodes that have a default value for the Policy
template parameter. For example, if the default value of Policy is queueing, specifying lightweight as the Policy
value is equivalent to specifying queueing_lightweight.

The function call operator() of a node body must be noexcept for lightweight policies to have effect.

Example

The example below shows the application of the lightweight policy to a graph with a pipeline topology. It is rea-
sonable to apply the lightweight policy to the second and third nodes because the bodies of these nodes are small.
This allows the second and third nodes to execute without task scheduling overhead. The lightweight policy is not
specified for the first node in order to permit concurrent invocations of the graph.

#include "oneapi/tbb/flow_graph.h"

int main() {
using namespace oneapi::tbb::flow;

graph g;

function_node< int, int > add(g, unlimited, [](const int &v) {
return v+1;

});
function_node< int, int, lightweight > multiply(g, unlimited, [](const int &v)␣

→˓noexcept {
return v*2;

});
function_node< int, int, lightweight > cube(g, unlimited, [](const int &v) noexcept

→˓{
return v*v*v;

});

make_edge(add, multiply);
make_edge(multiply, cube);

for(int i = 1; i <= 10; ++i)
add.try_put(i);

g.wait_for_all();

(continues on next page)

7.2. oneTBB Interfaces 570

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

return 0;
}

Nodes Priorities

[flow_graph.node_priorities]

Flow graph provides interface for setting relative priorities at construction of flow graph functional nodes, guiding
threads that execute the graph to prefer nodes with higher priority.

namespace oneapi {
namespace tbb {
namespace flow {

typedef unsigned int node_priority_t;

const node_priority_t no_priority = node_priority_t(0);

} // namespace flow
} // namespace tbb
} // namespace oneapi

function_node, multifunction_node, async_node and continue_node has a constructor with parameter of
node_priority_t type, which sets the node priority in the graph: the larger the specified value for the parameter, the
higher the priority. The special constant value no_priority, which is also the default value of the parameter, switches
priority off for a particular node.

For a particular graph, tasks to execute the nodes whose priority is specified have precedence over tasks for the nodes
with lower or no priority value set. When looking for a task to execute, a thread chooses the one with the highest
priority from those in the graph that are available for execution.

Example

The following basic example demonstrates prioritization of one path in the graph over the other, which may help to
improve overall performance of the graph.

Consider executing the graph from the picture above using two threads. Assume that the nodes f1 and f3 take equal
time to execute, while the node f2 takes longer. That makes the nodes bs, f2, and fe constitute the critical path in
this graph. Due to the non-deterministic behavior in selection of the tasks, oneTBB might execute nodes f1 and f3
in parallel first, which would make the whole graph execution time last longer than the case when one of the threads
chooses the node f2 just after the broadcast node. By setting a higher priority on node f2, threads are guided to take
the critical path task earlier, thus reducing overall execution time.

#include <iostream>
#include <cmath>

#include "oneapi/tbb/tick_count.h"
#include "oneapi/tbb/global_control.h"

#include "oneapi/tbb/flow_graph.h"

(continues on next page)

7.2. oneTBB Interfaces 571

oneAPI Specification, Release 1.4-provisional-rev-1

Fig. 1: Dependency flow graph with a critical path.

(continued from previous page)

void spin_for(double delta_seconds) {
oneapi::tbb::tick_count start = oneapi::tbb::tick_count::now();
while((oneapi::tbb::tick_count::now() - start).seconds() < delta_seconds) ;

}

static const double unit_of_time = 0.1;

struct Body {
unsigned factor;
Body(unsigned times) : factor(times) {}
void operator()(const oneapi::tbb::flow::continue_msg&) {

// body execution takes 'factor' units of time
spin_for(factor * unit_of_time);

}
};

int main() {
using namespace oneapi::tbb::flow;

const int max_threads = 2;
oneapi::tbb::global_control control(oneapi::tbb::global_control::max_allowed_

→˓parallelism, max_threads);

graph g;

broadcast_node<continue_msg> bs(g);

(continues on next page)

7.2. oneTBB Interfaces 572

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

continue_node<continue_msg> f1(g, Body(5));

// f2 is a heavy one and takes the most execution time as compared to the other␣
→˓nodes in the

// graph. Therefore, let the graph start this node as soon as possible by␣
→˓prioritizing it over

// the other nodes.
continue_node<continue_msg> f2(g, Body(10), node_priority_t(1));

continue_node<continue_msg> f3(g, Body(5));

continue_node<continue_msg> fe(g, Body(7));

make_edge(bs, f1);
make_edge(bs, f2);
make_edge(bs, f3);

make_edge(f1, fe);
make_edge(f2, fe);
make_edge(f3, fe);

oneapi::tbb::tick_count start = oneapi::tbb::tick_count::now();

bs.try_put(continue_msg());
g.wait_for_all();

double elapsed = std::floor((oneapi::tbb::tick_count::now() - start).seconds() /␣
→˓unit_of_time);

std::cout << "Elapsed approximately " << elapsed << " units of time" << std::endl;

return 0;
}

Predefined Concurrency Limits

[flow_graph.concurrency_limits]

Predefined constants that can be used as function_node, multifunction_node, and async_node constructors
arguments to define concurrency limit.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

std::size_t unlimited = /*implementation-defined*/;
std::size_t serial = /*implementation-defined*/;

} // namespace flow
(continues on next page)

7.2. oneTBB Interfaces 573

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

unlimited concurrency allows an unlimited number of invocations of the body to execute concurrently.

serial concurrency allows only a single call of body to execute concurrently.

copy_body

[flow_graph.copy_body]

copy_body is a function template that returns a copy of the body function object from the following nodes:

• continue_node

• function_node

• multifunction_node

• input_node

• async_node

namespace oneapi {
namespace tbb {
namespace flow {

// Defined in header <oneapi/tbb/flow_graph.h>

template< typename Body, typename Node >
Body copy_body(Node &n);

} // namespace flow
} // namespace tbb
} // namespace oneapi

Buffering Nodes

Buffering nodes are designed to accumulate input messages and pass them to successors in a predefined order, depend-
ing on the node type.

overwrite_node

[flow_graph.overwrite_node]

A node that is a buffer of a single item that can be overwritten.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

(continues on next page)

7.2. oneTBB Interfaces 574

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template<typename T>
class overwrite_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit overwrite_node(graph &g);
overwrite_node(const overwrite_node &src);
~overwrite_node();

bool try_put(const T &v);
bool try_get(T &v);

bool is_valid();
void clear();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the DefaultConstructible requirements from [defaultconstructible] and CopyAssignable
requirements from [copyassignable] ISO C++ Standard sections.

This type of node buffers a single item of type T. The value is initially invalid. Gets from the node are non-destructive.

overwrite_node is a graph_node, receiver<T> and sender<T>.

overwrite_node has a buffering and broadcast-push properties.

overwrite_node allows overwriting its single item buffer.

Member functions

explicit overwrite_node(graph &g)
Constructs an object of type overwrite_node that belongs to the graph g with an invalid internal buffer item.

overwrite_node(const overwrite_node &src)
Constructs an object of type overwrite_node that belongs to the graph g with an invalid internal buffer item.
The buffered value and list of successors and predecessors are not copied from src.

~overwrite_node()

Destroys the overwrite_node.

bool try_put(const T &v)
Stores v in the internal single item buffer and calls try_put(v) on all successors.

Returns: true

bool try_get(T &v)
If the internal buffer is valid, assigns the value to v.

Returns:true if v is assigned to; false, otherwise.

bool is_valid()
Returns: true if the buffer holds a valid value; false, otherwise.

7.2. oneTBB Interfaces 575

oneAPI Specification, Release 1.4-provisional-rev-1

void clear()
Invalidates the value held in the buffer.

Examples

The example demonstrates overwrite_node as a single-value storage that might be updated. Data can be accessed
with direct try_get() call.

#include "oneapi/tbb/flow_graph.h"

int main() {
const int data_limit = 20;
int count = 0;

oneapi::tbb::flow::graph g;

oneapi::tbb::flow::function_node< int, int > data_set_preparation(g,
oneapi::tbb::flow::unlimited, [](int data) {

printf("Prepare large data set and keep it inside node storage\n");
return data;

});

oneapi::tbb::flow::overwrite_node< int > overwrite_storage(g);

oneapi::tbb::flow::input_node< int > data_generator(g,
[&](oneapi::tbb::flow_control& fc) -> int {

if (count < data_limit) {
return ++count;

}
fc.stop();
return {};

});

oneapi::tbb::flow::function_node< int > process(g, oneapi::tbb::flow::unlimited,
[&](const int& data) {

int data_from_storage = 0;
overwrite_storage.try_get(data_from_storage);
printf("Data from a storage: %d\n", data_from_storage);
printf("Data to process: %d\n", data);

});

oneapi::tbb::flow::make_edge(data_set_preparation, overwrite_storage);
oneapi::tbb::flow::make_edge(data_generator, process);

data_set_preparation.try_put(1);
data_generator.activate();

g.wait_for_all();

return 0;
}

overwrite_node supports reserving join_node as its successor. See the example in the example section of

7.2. oneTBB Interfaces 576

oneAPI Specification, Release 1.4-provisional-rev-1

write_once_node.

write_once_node

[flow_graph.write_once_node]

A node that is a buffer of a single item that cannot be overwritten.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class write_once_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit write_once_node(graph &g);
write_once_node(const write_once_node &src);
~write_once_node();

bool try_put(const T &v);
bool try_get(T &v);

bool is_valid();
void clear();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The T type must meet the DefaultConstructible requirements from [defaultconstructible] and CopyAssignable
requirements from [copyassignable] ISO C++ Standard sections.

This type of node buffers a single item of type T. The value is initially invalid. Gets from the node are non-destructive.

write_once_node is a graph_node, receiver<T> and sender<T>.

write_once_node has a buffering and broadcast-push properties.

write_once_node does not allow overwriting its single item buffer.

Member functions

explicit write_once_node(graph &g)
Constructs an object of type write_once_node that belongs to the graph g, with an invalid internal buffer item.

write_once_node(const write_once_node &src)
Constructs an object of type write_once_node with an invalid internal buffer item. The buffered value and list
of successors is not copied from src.

7.2. oneTBB Interfaces 577

oneAPI Specification, Release 1.4-provisional-rev-1

~write_once_node()

Destroys the write_once_node.

bool try_put(const T &v)
Stores v in the internal single item buffer if it does not contain a valid value already. If a new value is set, the
node broadcast it to all successors.

Returns: true for the first time after construction or a call to clear(); false, otherwise.

bool try_get(T &v)
If the internal buffer is valid, assigns the value to v.

Returns: true if v is assigned to; false, otherwise.

bool is_valid()
Returns: true if the buffer holds a valid value; false, otherwise.

void clear()
Invalidates the value held in the buffer.

Example

Usage scenario is similar to overwrite_node but an internal buffer can be updated only after clear() call. The following
example shows the possibility to connect the node to a reserving join_node, avoiding direct calls to the try_get()
method from the body of the successor node.

#include "oneapi/tbb/flow_graph.h"

typedef int data_type;

int main() {
using namespace oneapi::tbb::flow;

graph g;

function_node<data_type, data_type> static_result_computer_n(
g, serial,
[&](const data_type& msg) {

// compute the result using incoming message and pass it further, e.g.:
data_type result = data_type((msg << 2 + 3) / 4);
return result;

});
write_once_node<data_type> write_once_n(g); // for buffering once computed value

buffer_node<data_type> buffer_n(g);
join_node<tuple<data_type, data_type>, reserving> join_n(g);

function_node<tuple<data_type, data_type>> consumer_n(
g, unlimited,
[&](const tuple<data_type, data_type>& arg) {

// use the precomputed static result along with dynamic data
data_type precomputed_result = get<0>(arg);
data_type dynamic_data = get<1>(arg);

});
(continues on next page)

7.2. oneTBB Interfaces 578

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

make_edge(static_result_computer_n, write_once_n);
make_edge(write_once_n, input_port<0>(join_n));
make_edge(buffer_n, input_port<1>(join_n));
make_edge(join_n, consumer_n);

// do one-time calculation that will be reused many times further in the graph
static_result_computer_n.try_put(1);

for (int i = 0; i < 100; i++) {
buffer_n.try_put(1);

}

g.wait_for_all();

return 0;
}

buffer_node

[flow_graph.buffer_node]

A node that is an unbounded buffer of messages. Messages are forwarded in an arbitrary order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T>
class buffer_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit buffer_node(graph &g);
buffer_node(const buffer_node &src);
~buffer_node();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

buffer_node is a graph_node, receiver<T>, and sender<T>.

buffer_node has a buffering and single-push properties.

7.2. oneTBB Interfaces 579

oneAPI Specification, Release 1.4-provisional-rev-1

buffer_node forwards messages in an arbitrary order to a single successor in its successor set.

Member functions

explicit buffer_node(graph &g)
Constructs an empty buffer_node that belongs to the graph g.

explicit buffer_node(const buffer_node &src)
Constructs an empty buffer_node that belongs to the same graph g as src. Any intermediate state of src,
including its links to predecessors and successors, is not copied.

bool try_put(const T &v)
Adds v to the set of items managed by the node, and tries forwarding it to a successor.

Returns: true

bool try_get(T &v)
Returns: true if an item can be removed from the node and assigned to v. Returns false if there is no non-
reserved item currently in the node.

queue_node

[flow_graph.queue_node]

A node that forwards messages in a first-in first-out (FIFO) order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template <typename T >
class queue_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit queue_node(graph &g);
queue_node(const queue_node &src);
~queue_node();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

queue_node forwards messages in a FIFO order to a single successor in its successor set.

queue_node is a graph_node, receiver and sender.

7.2. oneTBB Interfaces 580

oneAPI Specification, Release 1.4-provisional-rev-1

queue_node has a buffering and single-push properties.

Member functions

explicit queue_node(graph &g)
Constructs an empty queue_node that belongs to the graph g.

queue_node(const queue_node &src)
Constructs an empty queue_node that belongs to the same graph g as src. Any intermediate state of src,
including its links to predecessors and successors, is not copied.

bool try_put(const T &v)
Adds v to the set of items managed by the node, and tries forwarding the least recently added item to a successor.

Returns: true.

bool try_get(T &v)
Returns: true if an item can be taken from the node and assigned to v. Returns false if there is no item
currently in the queue_node or if the node is reserved.

Example

Usage scenario is similar to buffer_node except that messages are passed in first-in first-out (FIFO) order.

priority_queue_node

[flow_graph.priority_queue_node]

A class template that forwards messages in a priority order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T, typename Compare = std::less<T>>
class priority_queue_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit priority_queue_node(graph &g);
priority_queue_node(const priority_queue_node &src);
~priority_queue_node();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

7.2. oneTBB Interfaces 581

oneAPI Specification, Release 1.4-provisional-rev-1

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

• The type Compare must meet the Compare type requirements from [alg.sorting] ISO C++ Standard section. If
Compare instance throws an exception, then behavior is undefined.

The next message to be forwarded has the largest priority as determined by the Compare template argument.

priority_queue_node is a graph_node, receiver<T>, and sender<T>.

priority_queue_node has a buffering and single-push properties.

Member functions

explicit priority_queue_node(graph &g)
Constructs an empty priority_queue_node that belongs to the graph g.

priority_queue_node(const priority_queue_node &src)
Constructs an empty priority_queue_node that belongs to the same graph g as src. Any intermediate state
of src, including its links to predecessors and successors, is not copied.

bool try_put(const T &v)
Adds v to the priority_queue_node and tries forwarding to a successor the item with the largest priority
among all of the items that were added to the node and have not been yet forwarded to successors.

Returns: true

bool try_get(T &v)
Returns: true if a message is available in the node and the node is not currently reserved. Otherwise, returns
false. If the node returns true, the message with the largest priority is copied to v.

Example

Usage scenario is similar to sequencer_node except that the priority_queue_node provides local order, passing the
message with highest priority of all stored at the moment, while sequencer_node enforces global order and does not
allow a “smaller priority” message to pass through before all preceding messages.

sequencer_node

[flow_graph.sequencer_node]

A node that forwards messages in a sequence order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class sequencer_node : public graph_node, public receiver<T>, public sender<T> {
public:

template< typename Sequencer >
sequencer_node(graph &g, const Sequencer &s);

(continues on next page)

7.2. oneTBB Interfaces 582

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sequencer_node(const sequencer_node &src);

bool try_put(const T &v);
bool try_get(output_type &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

• The type Sequencer must meet the Sequencer requirements. Since C++17, Sequencer may also be a pointer
to a const member function in T that returns size_t or a pointer to a data member in T of type size_t. If
Sequencer instance throws an exception, behavior is undefined.

sequencer_node forwards messages in a sequence order to a single successor in its successor set.

sequencer_node is a graph_node, receiver<T> and sender<T>.

Each item that passes through a sequencer_node is ordered by its sequencer order number. These sequence order
numbers range from 0 to the largest integer representable by the std::size_t type. Sequencer order number of an
item is determined by passing the item to a user-provided Sequencer function object.

Note: The sequencer_node rejects duplicate sequencer numbers.

Member functions

template<typename Sequencer>
sequencer_node(graph &g, const Sequencer &s)

Constructs an empty sequencer_node that belongs to the graph g and uses s to compute sequence numbers for
items.

sequencer_node(const sequencer_node &src)
Constructs an empty sequencer_node that belongs to the same graph g as src and uses a copy of the Sequencer
s used to construct src. The list of predecessors, the list of successors, and the messages inside are not copied.

Caution: The new sequencer object is copy-constructed from a copy of the original sequencer object pro-
vided to src at its construction. Changes made to member variables in the src object do not affect the
sequencer of the new sequencer_node.

bool try_put(const T &v)
Adds v to the sequencer_node and tries forwarding the next item in the sequence to a successor.

Returns: true

bool try_get(T &v)
Returns: true if the next item in the sequence is available in the sequencer_node. If so, it is removed from

7.2. oneTBB Interfaces 583

oneAPI Specification, Release 1.4-provisional-rev-1

the node and assigned to v. Returns false if the next item in sequencer order is not available or if the node is
reserved.

Deduction Guides

template <typename Body>
sequencer_node(graph&, Body) -> input_node<std::decay_t<input_t<Body>>>;

Where:

• input_t is an alias to Body input argument type.

Example

The example demonstrates ordering capabilities of the sequencer_node. While being processed in parallel, the data
is passed to the successor node in the exact same order it was read.

#include "oneapi/tbb/flow_graph.h"

struct Message {
int id;
int data;

};

int main() {
oneapi::tbb::flow::graph g;

// Due to parallelism the node can push messages to its successors in any order
oneapi::tbb::flow::function_node< Message, Message > process(g,␣

→˓oneapi::tbb::flow::unlimited, [] (Message msg) -> Message {
msg.data++;
return msg;

});

oneapi::tbb::flow::sequencer_node< Message > ordering(g, [](const Message& msg) ->␣
→˓int {

return msg.id;
});

oneapi::tbb::flow::function_node< Message > writer(g, oneapi::tbb::flow::serial, []␣
→˓(const Message& msg) {

printf("Message recieved with id: %d\n", msg.id);
});

oneapi::tbb::flow::make_edge(process, ordering);
oneapi::tbb::flow::make_edge(ordering, writer);

for (int i = 0; i < 100; ++i) {
Message msg = { i, 0 };
process.try_put(msg);

}

(continues on next page)

7.2. oneTBB Interfaces 584

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

g.wait_for_all();
}

Service Nodes

These nodes are designed for advanced control of the message flow, such as combining messages from different paths
in a graph or limiting the number of simultaneously processed messages, as well as for creating reusable custom nodes.

limiter_node

[flow_graph.limiter_node]

A node that counts and limits the number of messages that pass through it.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T, typename DecrementType=continue_msg >
class limiter_node : public graph_node, public receiver<T>, public sender<T> {
public:

limiter_node(graph &g, size_t threshold);
limiter_node(const limiter_node &src);

receiver<DecrementType>& decrementer();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• T type must meet the DefaultConstructible requirements from [defaultconstructible] ISO C++ Standard section.

• The DecrementType type must be an integral type or continue_msg.

limiter_node is a graph_node, receiver<T>, and sender<T>

limiter_node has a discarding and broadcast-push properties.

This node does not accept new messages once the user-specified threshold is reached. The internal counter of broad-
casts is adjusted through use of the decrementer, a receiver object embedded into the node that can be obtained by
calling the decrementer method. The counter values are truncated to be inside the [0, threshold] interval.

The template parameter DecrementType specifies the type of the message that can be sent to the decrementer. This
template parameter is defined to continue_msg by default. If an integral type is specified, positive values sent to the
decrementer determine the value by which the internal counter of broadcasts will be decreased, while negative values
determine the value by which the internal counter of broadcasts will be increased.

7.2. oneTBB Interfaces 585

oneAPI Specification, Release 1.4-provisional-rev-1

If continue_msg is used as an argument for the DecrementType template parameter, the decrementer’s port of the
limiter_node also acquires the behavior of the continue_node. This behavior requires the number of messages
sent to it to be equal to the number of connected predecessors before decrementing the internal counter of broadcasts
by one.

When try_put call on the decrementer results in the new value of the counter of broadcasts to be less than the
threshold, the limiter_node tries to get a message from one of its known predecessors and forward that message
to all its successors. If it cannot obtain a message from a predecessor, it decrements the counter of broadcasts.

Member functions

limiter_node(graph &g, size_t threshold)
Constructs a limiter_node that allows up to threshold items to pass through before rejecting try_put’s.

limiter_node(const limiter_node &src)
Constructs a limiter_node that has the same initial state that src had at its construction. The new
limiter_node belongs to the same graph g as src, has the same threshold. The list of predecessors, the
list of successors, and the current count of broadcasts are not copied from src.

receiver<DecrementType> &decrementer()
Obtains a reference to the embedded receiver object that is used for the internal counter adjustments.

bool try_put(const T &v)
If the broadcast count is below the threshold, v is broadcast to all successors.

Returns: true if v is broadcast; false if v is not broadcast because the threshold has been reached.

bool try_get(T &v)
Returns: false.

broadcast_node

[flow_graph.broadcast_node]

A node that broadcasts incoming messages to all of its successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class broadcast_node :
public graph_node, public receiver<T>, public sender<T> {
public:

explicit broadcast_node(graph &g);
broadcast_node(const broadcast_node &src);

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
(continues on next page)

7.2. oneTBB Interfaces 586

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace tbb
} //namespace oneapi

broadcast_node is a graph_node, receiver<T>, and sender<T>.

broadcast_node has a discarding and broadcast-push properties.

All messages are forwarded immediately to all successors.

Member functions

explicit broadcast_node(graph &g)
Constructs an object of type broadcast_node that belongs to the graph g.

broadcast_node(const broadcast_node &src)
Constructs an object of type broadcast_node that belongs to the same graph g as src. The list of predecessors
and the list of successors are not copied.

bool try_put(const input_type &v)
Broadcasts v to all successors.

Returns: always returns true, even if it was unable to successfully forward the message to any of its successors.

bool try_get(output_type &v)
Returns: false.

join_node

[flow_graph.join_node]

A node that creates a tuple from a set of messages received at its input ports and broadcasts the tuple to all of its
successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

using tag_value = /*implementation-specific*/;

template<typename OutputTuple, class JoinPolicy = /*implementation-defined*/>
class join_node : public graph_node, public sender< OutputTuple > {
public:

using input_ports_type = /*implementation-defined*/;

explicit join_node(graph &g);
join_node(const join_node &src);

input_ports_type &input_ports();

bool try_get(OutputTuple &v);
};

(continues on next page)

7.2. oneTBB Interfaces 587

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template<typename OutputTuple, typename K, class KHash=tbb_hash_compare<K> >
class join_node< OutputTuple, key_matching<K,KHash> > : public graph_node, public␣

→˓sender< OutputTuple > {
public:

using input_ports_type = /*implementation-defined*/;

explicit join_node(graph &g);
join_node(const join_node &src);

template<typename B0, typename B1>
join_node(graph &g, B0 b0, B1 b1);
template<typename B0, typename B1, typename B2>
join_node(graph &g, B0 b0, B1 b1, B2 b2);
template<typename B0, typename B1, typename B2, typename B3>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3);
template<typename B0, typename B1, typename B2, typename B3, typename B4>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4);
template<typename B0, typename B1, typename B2, typename B3, typename B5>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B7>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B7, typename B8>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8␣

→˓b8);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B7, typename B8, typename B9>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8␣

→˓b8, B9 b9);

input_ports_type &input_ports();

bool try_get(OutputTuple &v);
};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type OutputTuple must be an instantiation of std::tuple. Each type that the tuple stores must meet the
DefaultConstructible requirements from [defaultconstructible], CopyConstructible requirements from [copycon-
structible] and CopyAssignable requirements from [copyassignable] ISO C++ Standard sections.

• The JoinPolicy type must be specified as one of buffering policies for join_node.

7.2. oneTBB Interfaces 588

oneAPI Specification, Release 1.4-provisional-rev-1

• The KHash type must meet the HashCompare requirements.

• The Bi types must meet the JoinNodeFunctionObject requirements. Since C++17, each of Bi types may also
be a pointer to a const member function in Input that returns Key or a pointer to a data member of type Key in
Input.

A join_node is a graph_node and a sender<OutputTuple>. It contains a tuple of input ports, each of which
is a receiver<Type> for each Type in OutputTuple. It supports multiple input receivers with distinct types and
broadcasts a tuple of received messages to all of its successors. All input ports of a join_node must use the same
buffering policy.

The behavior of a join_node is based on its buffering policy.

join_node Policies

[flow_graph.join_node_policies]

join_node supports three buffering policies at its input ports: reserving, queueing, and key_matching.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

struct reserving;
struct queueing;
template<typename K, class KHash=tbb_hash_compare<K> > struct key_matching;
using tag_matching = key_matching<tag_value>;

} // namespace flow
} // namespace tbb
} // namespace oneapi

• queueing - As each input port is put to, the incoming message is added to an unbounded first-in first-out queue
in the port. When there is at least one message at each input port, the join_node broadcasts a tuple containing
the head of each queue to all successors. If at least one successor accepts the tuple, the head of each input port’s
queue is removed; otherwise, the messages remain in their respective input port queues.

• reserving - As each input port is put to, the join_node marks that an input may be available at that port and
returns false. When all ports have been marked as possibly available, the join_node tries to reserve a message
at each port from their known predecessors. If it is unable to reserve a message at a port, it unmarks that port,
and releases all previously acquired reservations. If it is able to reserve a message at all ports, it broadcasts a
tuple containing these messages to all successors. If at least one successor accepts the tuple, the reservations are
consumed; otherwise, they are released.

• key_matching<typename K, class KHash=tbb_hash_compare<K>> - As each input port is put to, a user-
provided function object is applied to the message to obtain its key. The message is then added to a hash table of
the input port. When there is a message at each input port for a given key, the join_node removes all matching
messages from the input ports, constructs a tuple containing the matching messages and attempts to broadcast it
to all successors. If no successor accepts the tuple, it is saved and will be forwarded on a subsequent try_get.

• tag_matching - A specialization of key_matching that accepts keys of type tag_value.

The function template input_port simplifies the syntax for getting a reference to a specific input port.

join_node has a buffering and broadcast-push properties.

7.2. oneTBB Interfaces 589

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

input_ports_type is an alias to a tuple of input ports.

Member functions

explicit join_node(graph &g);

Constructs an empty join_node that belongs to the graph g.

template<typename B0, typename B1>
join_node(graph &g, B0 b0, B1 b1);
template<typename B0, typename B1, typename B2>
join_node(graph &g, B0 b0, B1 b1, B2 b2);
template<typename B0, typename B1, , typename B2, typename B3>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3);
template<typename B0, typename B1, , typename B2, typename B3, typename B4>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4);
template<typename B0, typename B1, , typename B2, typename B3, typename B5>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B7>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B7, typename B8>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B7, typename B8, typename B9>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8, B9␣
→˓b9);

A constructor only available in the key_matching specialization of join_node.

Creates a join_node that uses the function objects b0, b1, . . . , bN to determine the tags for the input ports 0 through
N.

Caution: Function objects passed to the join_node constructor must not throw. They are called in parallel, and
should be pure, take minimal time, and be non-blocking.

join_node(const join_node &src)

Creates a join_node that has the same initial state that src had at its construction. The list of predecessors, messages
in the input ports, and successors are not copied.

7.2. oneTBB Interfaces 590

oneAPI Specification, Release 1.4-provisional-rev-1

input_ports_type &input_ports()

Returns: a std::tuple of receivers. Each element inherits values from receiver<T>, where T is the type of message
expected at that input. Each tuple element can be used like any other receiver<T>. The behavior of the ports is based
on the selected join_node policy.

bool try_get(output_type &v)

Attempts to generate a tuple based on the buffering policy of the join_node.

If it can successfully generate a tuple, it copies it to v and returns true. Otherwise, it returns false.

Non-Member Types

using tag_value = /*implementation-specific*/;

tag_value is an unsigned integral type for defining the tag_matching policy.

Deduction Guides

template <typename Body, typename... Bodies>
join_node(graph&, Body, Bodies...)

->join_node<std::tuple<std::decay_t<input_t<Body>>, std::decay_t<input_t<Bodies>>...>
→˓, key_matching<output_t<Body>>>;

Where:

• input_t is an alias to the input argument type of the passed function object.

• output_t is an alias to the return type of the passed function object.

split_node

[flow_graph.split_node]

A split_node sends each element of the incoming std::tuple to the output port that matches the element index in
the incoming tuple.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename TupleType >
class split_node : public graph_node, public receiver<TupleType> {
public:

explicit split_node(graph &g);
split_node(const split_node &other);
~split_node();

(continues on next page)

7.2. oneTBB Interfaces 591

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool try_put(const TupleType &v);

using output_ports_type = /*implementation-defined*/ ;
output_ports_type& output_ports();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type TupleType must be an instantiation of std::tuple.

split_node is a receiver<TupleType> and has a tuple of sender output ports. Each of output ports is specified
by corresponding tuple element type. This node receives a tuple at its single input port and generates a message from
each element of the tuple, passing each to the corresponding output port.

split_node has a discarding and broadcast-push properties.

split_node has unlimited concurrency, and behaves as a broadcast_node with multiple output ports.

Member functions

explicit split_node(graph &g)
Constructs a split_node registered with graph g.

split_node(const split_node &other)
Constructs a split_node that has the same initial state that other had when it was constructed. The
split_node that is constructed has a reference to the same graph object as other. The predecessors and
successors of other are not copied.

~split_node()

Destructor

bool try_put(const TupleType &v)
Broadcasts each element of the incoming tuple to the nodes connected to the split_node output ports. The
element at index i of v will be broadcast through the ith output port.

Returns: true

output_ports_type &output_ports()
Returns: a std::tuple of output ports.

7.2. oneTBB Interfaces 592

oneAPI Specification, Release 1.4-provisional-rev-1

indexer_node

[flow_graph.indexer_node]

indexer_node broadcasts messages received at input ports to all of its successors. The messages are broadcast in-
dividually as they are received at each port. The output is a tagged message that contains a tag and a value; the tag
identifies the input port on which the message was received.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<typename T0, typename... TN>
class indexer_node : public graph_node, public sender</*implementation_defined*/> {
public:

indexer_node(graph &g);
indexer_node(const indexer_node &src);

using input_ports_type = /*implementation_defined*/;
input_ports_type &input_ports();

using output_type = tagged_msg<size_t, T0, TN...>;
bool try_get(output_type &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The T0 type and all types in TN template parameter pack must meet the CopyConstructible requirements from
[copyconstructible] ISO C++ Standard section.

An indexer_node is a graph_node and sender<tagged_msg<size_t, T0, TN...>>. It contains a tuple of input
ports, each of which is a receiver specified by corresponding input template parameter pack element. It supports
multiple input receivers with distinct types and broadcasts each received message to all of its successors. Unlike a
join_node, each message is broadcast individually to all successors of the indexer_node as it arrives at an input
port. Before broadcasting, a message is tagged with the index of the port on which the message arrived.

indexer_node has a discarding and broadcast-push properties.

The function template input_port simplifies the syntax for getting a reference to a specific input port.

7.2. oneTBB Interfaces 593

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

• input_ports_type is an alias to a std::tuple of input ports.

• output_type is an alias to the message of type tagged_msg, which is sent to successors.

Member functions

indexer_node(graph &g)
Constructs an indexer_node that belongs to the graph g.

indexer_node(const indexer_node &src)
Constructs an indexer_node. The list of predecessors, messages in the input ports, and successors are not
copied.

input_ports_type &input_ports()
Returns: A std::tuple of receivers. Each element inherits from receiver<T> where T is the type of message
expected at that input. Each tuple element can be used like any other receiver<T>.

bool try_get(output_type &v)
An indexer_node contains no buffering and therefore does not support gets.

Returns: false.

See also:

• input_port function template

• tagged_msg template class

composite_node

[flow_graph.composite_node]

A node that encapsulates a collection of other nodes as a first class graph node.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename InputTuple, typename OutputTuple > class composite_node;

// composite_node with both input ports and output ports
template< typename... InputTypes, typename... OutputTypes>
class composite_node <std::tuple<InputTypes...>, std::tuple<OutputTypes...> > :␣

→˓public graph_node {
public:

typedef std::tuple< receiver<InputTypes>&... > input_ports_type;
typedef std::tuple< sender<OutputTypes>&... > output_ports_type;

composite_node(graph &g);
virtual ~composite_node();

(continues on next page)

7.2. oneTBB Interfaces 594

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

void set_external_ports(input_ports_type&& input_ports_tuple, output_ports_type&&
→˓ output_ports_tuple);

input_ports_type& input_ports();
output_ports_type& output_ports();

};

// composite_node with only input ports
template< typename... InputTypes>
class composite_node <std::tuple<InputTypes...>, std::tuple<> > : public graph_node{
public:

typedef std::tuple< receiver<InputTypes>&... > input_ports_type;

composite_node(graph &g);
virtual ~composite_node();

void set_external_ports(input_ports_type&& input_ports_tuple);
input_ports_type& input_ports();

};

// composite_nodes with only output_ports
template<typename... OutputTypes>
class composite_node <std::tuple<>, std::tuple<OutputTypes...> > : public graph_node{
public:

typedef std::tuple< sender<OutputTypes>&... > output_ports_type;

composite_node(graph &g);
virtual ~composite_node();

void set_external_ports(output_ports_type&& output_ports_tuple);
output_ports_type& output_ports();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

• The InputTuple and OutputTuple must be instantiations of std::tuple.

composite_node is a graph_node, receiver<T>, and sender<T>.

The composite_node can package any number of other nodes. It maintains input and output port references to nodes
in the package that border the composite_node. This allows the references to be used to make edges to other nodes
outside of the composite_node. The InputTuple is a tuple of input types. The composite_node has an input port
for each type in InputTuple. Likewise, the OutputTuple is a tuple of output types. The composite_node has an
output port for each type in OutputTuple.

The composite_node is a multi-port node with three specializations.

• A multi-port node with multi-input ports and multi-output ports: This specialization has a tuple of input
ports, each of which is a receiver of a type in InputTuple. Each input port is a reference to a port of a
node that the composite_node encapsulates. Similarly, this specialization also has a tuple of output ports, each
of which is a sender of a type in OutputTuple. Each output port is a reference to a port of a node that the
composite_node encapsulates.

• A multi-port node with only input ports and no output ports: This specialization only has a tuple of input

7.2. oneTBB Interfaces 595

oneAPI Specification, Release 1.4-provisional-rev-1

ports.

• A multi-port node with only output ports and no input_ports: This specialization only has a tuple of output
ports.

The function template input_port can be used to get a reference to a specific input port and the function template
output_port can be used to get a reference to a specific output port.

Construction of a composite_node is done in two stages:

• Defining the composite_node with specification of InputTuple and OutputTuple.

• Making aliases from the encapsulated nodes that border the composite_node to the input and output ports of
the composite_node. This step is mandatory as without it the composite_node input and output ports are not
bound to any actual nodes. Making the aliases is achieved by calling the method set_external_ports.

The composite_node does not meet the CopyConstructible requirements from [copyconstructible] ISO C++ Standard
section.

Member functions

composite_node(graph &g)
Constructs a composite_node that belongs to the graph g.

void set_external_ports(input_ports_type &&input_ports_tuple, output_ports_type &&output_ports_tuple)
Creates input and output ports of the composite_node as aliases to the ports referenced by
input_ports_tuple and output_ports_tuple, respectively. That is, a port referenced at position N
in input_ports_tuple is mapped as the Nth input port of the composite_node, similarly for output ports.

input_ports_type &input_ports()

Returns: A std::tuple of receivers. Each element is a reference to the actual node or input port
that was aliased to that position in set_external_ports().

Caution: Calling input_ports() without a prior call to set_external_ports() results in undefined
behavior.

output_ports_type &output_ports()
Returns: A std::tuple of senders. Each element is a reference to the actual node or output port that was
aliased to that position in set_external_ports().

Caution: Calling output_ports() without a prior call to set_external_ports() results in undefined
behavior.

See also:

• input_port function template

• output_port function template

7.2. oneTBB Interfaces 596

oneAPI Specification, Release 1.4-provisional-rev-1

Ports and Edges

Flow Graph provides an API to manage connections between the nodes. For nodes that have more than one input or
output ports (for example, join_node), making a connection requires to specify a certain port by using special helper
functions.

input_port

[flow_graph.input_port]

A template function that returns a reference to a specific input port of a given join_node, indexer_node or
composite_node.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<size_t N, typename NodeType>
/*implementation-defined*/& input_port(NodeType &n);

} // namespace flow
} // namespace tbb
} // namespace oneapi

See also:

• join_node template class

• indexer_node template class

• composite_node template class

output_port

[flow_graph.output_port]

A template function that returns a reference to a specific output port of a given split_node, indexer_node, or
composite_node.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<size_t N, typename NodeType>
/*implementation-defined*/& output_port(NodeType &n);

} // namespace flow
} // namespace tbb
} // namespace oneapi

See also:

7.2. oneTBB Interfaces 597

oneAPI Specification, Release 1.4-provisional-rev-1

• split_node Template Class

• multifunction_node Template Class

• composite_node Template Class

make_edge

[flow_graph.make_edge]

A function template for building edges between nodes.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<typename Message>
inline void make_edge(sender<Message> &p, receiver<Message> &s);

template< typename MultiOutputNode, typename MultiInputNode >
inline void make_edge(MultiOutputNode& output, MultiInputNode& input);

template<typename MultiOutputNode, typename Message>
inline void make_edge(MultiOutputNode& output, receiver<Message> input);

template<typename Message, typename MultiInputNode>
inline void make_edge(sender<Message> output, MultiInputNode& input);

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The MultiOutputNode type must have a valid MultiOutputNode::output_ports_type qualified-id that de-
notes a type.

• The MultiInputNode type must have a valid MultiInputNode::input_ports_type qualified-id that denotes
a type.

The common form of make_edge(sender, receiver) creates an edge between provided sender and receiver
instances.

Overloads that accept a MultiOutputNode type instance make an edge from port 0 of a multi-output predecessor.

Overloads that accept a MultiInputNode type instance make an edge to port 0 of a multi-input successor.

7.2. oneTBB Interfaces 598

oneAPI Specification, Release 1.4-provisional-rev-1

remove_edge

[flow_graph.remove_edge]

A function template for building edges between nodes.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<typename Message>
inline void remove_edge(sender<Message> &p, receiver<Message> &s);

template< typename MultiOutputNode, typename MultiInputNode >
inline void remove_edge(MultiOutputNode& output, MultiInputNode& input);

template<typename MultiOutputNode, typename Message>
inline void remove_edge(MultiOutputNode& output, receiver<Message> input);

template<typename Message, typename MultiInputNode>
inline void remove_edge(sender<Message> output, MultiInputNode& input);

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The MultiOutputNode type must have a valid MultiOutputNode::output_ports_type qualified-id that de-
notes a type.

• The MultiInputNode type must have a valid MultiInputNode::input_ports_type qualified-id that denotes
a type.

The common form of remove_edge(sender, receiver) creates an edge between provided sender and receiver
instances.

Overloads that accept a MultiOutputNode type instance remove an edge from port 0 of a multi-output predecessor.

Overloads that accept a MultiInputNode type instance remove an edge to port 0 of a multi-input successor.

7.2. oneTBB Interfaces 599

oneAPI Specification, Release 1.4-provisional-rev-1

Special Messages Types

Flow Graph supports a set of specific message types.

continue_msg

[flow_graph.continue_msg]

An empty class that represents a continue message. An object of this class is used to indicate that the sender has
completed.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

class continue_msg {};

} // namespace flow
} // namespace tbb
} // namespace oneapi

tagged_msg

[flow_graph.tagged_msg]

A class template composed of a tag and a message. The message is a value that can be one of several defined types.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<typename TagType, typename... TN>
class tagged_msg {
public:

template<typename T, typename R>
tagged_msg(T const &index, R const &val);

TagType tag() const;

template<typename V>
const V& cast_to() const;

template<typename V>
bool is_a() const;

};

} // namespace flow
(continues on next page)

7.2. oneTBB Interfaces 600

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Requirements:

• All types in TN template parameter pack must meet the CopyConstructible requirements from [copyconstructible]
ISO C++ Standard section.

• The type TagType must be an integral unsigned type.

The tagged_msg class template is intended for messages whose type is determined at runtime. A message of one of
the types TN is tagged with a tag of type TagType. The tag then can serve to identify the message. In the flow graph,
tagged_msg is used as the output of indexer_node.

Member functions

template<typename T, typename R>
tagged_msg(T const &index, R const &value)

Requirements:

• The type R must be the same as one of the TN types.

• The type T must be acceptable as a TagType constructor parameter.

Constructs a tagged_msg with tag index and value val.

TagType tag() const
Returns the current tag.

template<typename V>
const V &cast_to() const

Requirements:

• The type V must be the same as one of the TN types.

Returns the value stored in tagged_msg. If the value is not of type V, the std::runtime_error exception is
thrown.

template<typename V>
bool is_a() const

Requirements:

• The type V must be the same as one of the TN types.

Returns true if V is the type of the value held by the tagged_msg. Returns false, otherwise.

Non-member functions

template<typename V, typename T>
const V& cast_to(T const &t) {

return t.cast_to<V>();
}

template<typename V, typename T>
bool is_a(T const &t);

7.2. oneTBB Interfaces 601

oneAPI Specification, Release 1.4-provisional-rev-1

Requirements:

• The type T must be an instantiated tagged_msg class template.

• The type V must be the same as one of the corresponding template arguments for tagged_msg.

The free-standing template functions cast_to and is_a applied to a tagged_msg object are equivalent to the calls of
the corresponding methods of that object.

See also:

• indexer_node class template

Examples

Dependency Flow Graph Example

In the following example, five computations A-E are set up with the partial ordering shown below in “A simple depen-
dency graph.”. For each edge in the flow graph, the node at the tail of the edge must complete its execution before the
node at the head may begin.

Fig. 2: A simple dependency graph.

#include <cstdio>
#include "oneapi/tbb/flow_graph.h"

using namespace oneapi::tbb::flow;

(continues on next page)

7.2. oneTBB Interfaces 602

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

struct body {
std::string my_name;
body(const char *name) : my_name(name) {}
void operator()(continue_msg) const {

printf("%s\n", my_name.c_str());
}

};

int main() {
graph g;

broadcast_node< continue_msg > start(g);
continue_node<continue_msg> a(g, body("A"));
continue_node<continue_msg> b(g, body("B"));
continue_node<continue_msg> c(g, body("C"));
continue_node<continue_msg> d(g, body("D"));
continue_node<continue_msg> e(g, body("E"));

make_edge(start, a);
make_edge(start, b);
make_edge(a, c);
make_edge(b, c);
make_edge(c, d);
make_edge(a, e);

for (int i = 0; i < 3; ++i) {
start.try_put(continue_msg());
g.wait_for_all();

}

return 0;
}

In this example, nodes A-E print out their names. All of these nodes are therefore able to use struct body to construct
their body objects.

In function main, the flow graph is set up once and then run three times. All of the nodes in this example pass around
continue_msg objects. This type is used to communicate that a node has completed execution.

The first line in function main instantiates a graph object g. On the next line, a broadcast_node named start is
created. Anything passed to this node will be broadcast to all of its successors. The node start is used in the for
loop at the bottom of main to launch the execution of the rest of the flow graph.

In the example, five continue_node objects are created, named a - e. Each node is constructed with a reference to
graph g and the function object to invoke when it runs. The successor / predecessor relationships are set up by the
make_edge calls that follow the declaration of the nodes.

After the nodes and edges are set up, the try_put in each iteration of the for loop results in a broadcast of a
continue_msg to both a and b. Both a and b are waiting for a single continue_msg, since they both have only
a single predecessor, start.

When they receive the message from start, they execute their body objects. When complete, each of them forwards
a message to a successor, and so on. The graph uses tasks to execute the node bodies as well as to forward messages
between the nodes, allowing computation to execute concurrently when possible.

See also:

7.2. oneTBB Interfaces 603

oneAPI Specification, Release 1.4-provisional-rev-1

• continue_msg class

• continue_node class

Message Flow Graph Example

This example calculates the sum x*x + x*x*x for all x = 1 to 10. The layout of this example is shown in the figure
below.

Fig. 3: A simple message flow graph.

Each value enters through the broadcast_node<int> input. This node broadcasts the value to both squarer and
cuber, which calculate x*x and x*x*x, respectively. The output of each of these nodes is put to one of join’s ports.
A tuple containing both values is created by join_node<std::tuple<int,int>> join and forwarded to summer,
which adds both values to the running total. Both squarer and cuber allow unlimited concurrency, that is they each
may process multiple values simultaneously. The final summer, which updates a shared total, is only allowed to process
a single incoming tuple at a time, eliminating the need for a lock around the shared value.

#include <cstdio>
#include "oneapi/tbb/flow_graph.h"

using namespace oneapi::tbb::flow;

struct square {
int operator()(int v) { return v*v; }

};

struct cube {
int operator()(int v) { return v*v*v; }

};

class sum {
int &my_sum;

public:
sum(int &s) : my_sum(s) {}
int operator()(std::tuple<int, int> v) {

(continues on next page)

7.2. oneTBB Interfaces 604

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

my_sum += get<0>(v) + get<1>(v);
return my_sum;

}
};

int main() {
int result = 0;

graph g;
broadcast_node<int> input(g);
function_node<int,int> squarer(g, unlimited, square());
function_node<int,int> cuber(g, unlimited, cube());
join_node<std::tuple<int,int>, queueing> join(g);
function_node<std::tuple<int,int>,int>

summer(g, serial, sum(result));

make_edge(input, squarer);
make_edge(input, cuber);
make_edge(squarer, get<0>(join.input_ports()));
make_edge(cuber, get<1>(join.input_ports()));
make_edge(join, summer);

for (int i = 1; i <= 10; ++i)
input.try_put(i);

g.wait_for_all();

printf("Final result is %d\n", result);
return 0;

}

In the example code above, the classes square, cube, and sum define the three user-defined operations. Each class is
used to create a function_node.

In function main, the flow graph is set up and then the values 1-10 are put into the node input. All the nodes in this
example pass around values of type int. The nodes used in this example are all class templates and therefore can be
used with any type that supports copy construction, including pointers and objects.

7.2.4 Task Scheduler

[scheduler]

oneAPI Threading Building Blocks (oneTBB) provides a task scheduler, which is the engine that drives the algorithm
templates and task groups. The exact tasking API depends on the implementation.

The tasks are quanta of computation. The scheduler implements worker thread pool and maps tasks onto these threads.
The mapping is non-preemptive. Once a thread starts running a task, the task is bound to that thread until completion.
During that time, the thread services other tasks only when it waits for completion of nested parallel constructs, as
described below. While waiting, either user or worker thread may run any available task, including unrelated tasks
created by this or other threads.

The task scheduler is intended for parallelizing computationally intensive work. Because task objects are not scheduled
preemptively, they should generally avoid making calls that might block a thread for long periods during which the
thread cannot service other tasks.

7.2. oneTBB Interfaces 605

oneAPI Specification, Release 1.4-provisional-rev-1

Caution: There is no guarantee that potentially parallel tasks actually execute in parallel, because the scheduler
adjusts actual parallelism to fit available worker threads. For example, given a single worker thread, the scheduler
creates no actual parallelism. For example, it is generally unsafe to use tasks in a producer consumer relationship,
because there is no guarantee that the consumer runs at all while the producer is running.

Scheduling controls

task_group_context

[scheduler.task_group_context]

task_group_context represents a set of properties used by task scheduler for execution of the associated tasks. Each
task is associated with only one task_group_context object.

The task_group_context objects form a forest of trees. Each tree’s root is a task_group_context constructed as
isolated.

task_group_context is cancelled explicitly by the user request, or implicitly when an exception is thrown out of an
associated task. Canceling task_group_context causes the entire subtree rooted at it to be cancelled.

The task_group_context carries floating point settings inherited from the parent task_group_context object or
captured with a dedicated interface.

// Defined in header <oneapi/tbb/task_group.h>

namespace oneapi {
namespace tbb {

class task_group_context {
public:

enum kind_t {
isolated = /* implementation-defined */,
bound = /* implementation-defined */

};
enum traits_type {

fp_settings = /* implementation-defined */,
default_traits = 0

};

task_group_context(kind_t relation_with_parent = bound,
uintptr_t traits = default_traits);

~task_group_context();

void reset();
bool cancel_group_execution();
bool is_group_execution_cancelled() const;
void capture_fp_settings();
uintptr_t traits() const;

};

} // namespace tbb;
} // namespace oneapi

7.2. oneTBB Interfaces 606

oneAPI Specification, Release 1.4-provisional-rev-1

Member types and constants

enum kind_t::isolated

When passed to the specific constructor, the created task_group_context object has no parent.

enum kind_t::bound

When passed to the specific constructor, the created task_group_context object becomes a child of the in-
nermost running task’s group when the first task associated to the task_group_context is passed to the task
scheduler. If there is no innermost running task on the current thread, the task_group_context becomes
isolated.

enum traits_type::fp_settings

When passed to the specific constructor, the flag forces the context to capture floating-point settings from the
current thread.

Member functions

task_group_context(kind_t relation_to_parent = bound, uintptr_t traits = default_traits)
Constructs an empty task_group_context.

~task_group_context()

Destroys an empty task_group_context. The behavior is undefined if there are still extant tasks associated with
this task_group_context.

bool cancel_group_execution()
Requests that tasks associated with this task_group_context are not executed.

Returns false if this task_group_context is already cancelled; true, otherwise. If concurrently called by
multiple threads, exactly one call returns true and the rest return false.

bool is_group_execution_cancelled() const
Returns true if this task_group_context has received the cancellation request.

void reset()
Reinitializes this task_group_context to the uncancelled state.

Caution: This method is only safe to call once all tasks associated with the group’s subordinate groups have
completed. This method must not be invoked concurrently by multiple threads.

void capture_fp_settings()
Captures floating-point settings from the current thread.

Caution: This method is only safe to call once all tasks associated with the group’s subordinate groups have
completed. This method must not be invoked concurrently by multiple threads.

uintptr_t traits() const
Returns traits of this task_group_context.

7.2. oneTBB Interfaces 607

oneAPI Specification, Release 1.4-provisional-rev-1

global_control

[scheduler.global_control]

Use this class to control certain settings or behavior of the oneTBB dynamic library.

An object of class global_control, or a “control variable”, affects one of several behavioral aspects, or parameters, of
TBB. The global_control class is primarily intended for use at the application level, to control the whole application
behavior.

The current set of parameters that you can modify is defined by the global_control::parameter enumeration. The
parameter and the value it should take are specified as arguments to the constructor of a control variable. The impact
of the control variable ends when its lifetime is complete.

Control variables can be created in different threads, and may have nested or overlapping scopes. However, at any point
in time each controlled parameter has a single active value that applies to the whole process. This value is selected
from all currently existing control variables by applying a parameter-specific selection rule.

// Defined in header <oneapi/tbb/global_control.h>

namespace oneapi {
namespace tbb {

class global_control {
public:

enum parameter {
max_allowed_parallelism,
thread_stack_size,
terminate_on_exception

};

global_control(parameter p, size_t value);
~global_control();

static size_t active_value(parameter param);
};

} // namespace tbb
} // namespace oneapi

Member types and constants

enum parameter::max_allowed_parallelism

Selection rule: minimum

Limits total number of worker threads that can be active in the task scheduler to parameter_value - 1.

Note: With max_allowed_parallelism set to 1, global_control enforces serial execution of all tasks by
the application thread(s), that is, the task scheduler does not allow worker threads to run. There is one exception:
if some work is submitted for execution via task_arena::enqueue, a single worker thread will still run ignoring
the max_allowed_parallelism restriction.

enum parameter::thread_stack_size

Selection rule: maximum

Set stack size for working threads created by the library.

7.2. oneTBB Interfaces 608

oneAPI Specification, Release 1.4-provisional-rev-1

enum parameter::terminate_on_exception

Selection rule: logical disjunction

Setting the parameter to 1 causes termination in any condition that would throw or rethrow an exception. If set
to 0 (default), the parameter does not affect the implementation behavior.

Member functions

global_control(parameter param, size_t value)
Constructs a global_control object with a specified control parameter and it’s value.

~global_control()

Destructs a control variable object and ends it’s impact.

static size_t active_value(parameter param)

Returns the currently active value of the setting defined by param.

See also:

• task_arena

Resumable tasks

[scheduler.resumable_tasks]

Functions to suspend task execution at a specific point and signal to resume it later.

// Defined in header <oneapi/tbb/task.h>

using oneapi::tbb::task::suspend_point = /* implementation-defined */;
template < typename Func > void oneapi::tbb::task::suspend(Func);
void oneapi::tbb::task::resume(oneapi::tbb::task::suspend_point);

Requirements:

• The Func type must meet the SuspendFunc requirements.

The oneapi::tbb::task::suspend function called within a running task suspends execution of the task and
switches the thread to participate in other oneTBB parallel work. This function accepts a user callable object with
the current execution context oneapi::tbb::task::suspend_point as an argument. The user-specified callable
object is executed by the calling thread.

The oneapi::tbb::task::suspend_point context tag must be passed to the oneapi::tbb::task::resume func-
tion to trigger a program execution at the suspended point. The oneapi::tbb::task::resume function can be called
at any point of an application, even on a separate thread. In this regard, this function acts as a signal for the task sched-
uler.

Note: There are no guarantees that the same thread that called oneapi::tbb::task::suspend contin-
ues execution after the suspended point. However, these guarantees are provided for the outermost blocking
oneTBB calls (such as oneapi::tbb::parallel_for and oneapi::tbb::flow::graph::wait_for_all) and
oneapi::tbb::task_arena::execute calls.

7.2. oneTBB Interfaces 609

oneAPI Specification, Release 1.4-provisional-rev-1

Example

// Parallel computation region
oneapi::tbb::parallel_for(0, N, [&](int) {

// Suspend the current task execution and capture the context
oneapi::tbb::task::suspend([&] (oneapi::tbb::task::suspend_point tag) {

// Dedicated user-managed activity that processes async requests.
async_activity.submit(tag); // could be OpenCL/IO/Database/Network etc.

}); // execution will be resumed after this function
});

// Dedicated user-managed activity:

// Signal to resume execution of the task referenced by the oneapi::tbb::task::suspend_
→˓point
// from a dedicated user-managed activity
oneapi::tbb::task::resume(tag);

task_scheduler_handle

[scheduler.task_scheduler_handle]

The oneapi::tbb::task_scheduler_handle class and the oneapi::tbb::finalize function allow user to wait
for completion of worker threads.

When the oneapi::tbb::finalize function is called with an oneapi::tbb::task_scheduler_handle instance,
it blocks the calling thread until the completion of all worker threads that were implicitly created by the library.

// Defined in header <oneapi/tbb/global_control.h>

namespace oneapi {
namespace tbb {

class task_scheduler_handle {
public:

task_scheduler_handle() = default;
task_scheduler_handle(oneapi::tbb::attach);
~task_scheduler_handle();

task_scheduler_handle(const task_scheduler_handle& other) = delete;
task_scheduler_handle(task_scheduler_handle&& other) noexcept;
task_scheduler_handle& operator=(const task_scheduler_handle& other) =␣

→˓delete;
task_scheduler_handle& operator=(task_scheduler_handle&& other) noexcept;

explicit operator bool() const noexcept;

void release();
};

void finalize(task_scheduler_handle& handle);
bool finalize(task_scheduler_handle& handle, const std::nothrow_t&) noexcept;

(continues on next page)

7.2. oneTBB Interfaces 610

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Member Functions

task_scheduler_handle()

Effects: Creates an empty instance of the task_scheduler_handle class that does not contain any references
to the task scheduler.

task_scheduler_handle(oneapi::tbb::attach)
Effects: Creates an instance of the task_scheduler_handle class that holds a reference to the task scheduler
preventing its premature destruction.

~task_scheduler_handle()

Effects: Destroys an instance of the task_scheduler_handle class. If not empty, releases a reference to the
task scheduler and deactivates an instance of the task_scheduler_handle class.

task_scheduler_handle(task_scheduler_handle &&other) noexcept
Effects: Creates an instance of the task_scheduler_handle class that references the task scheduler referenced
by other. In turn, other releases its reference to the task scheduler.

task_scheduler_handle &operator=(task_scheduler_handle &&other) noexcept
Effects: If not empty, releases a reference to the task scheduler referenced by this. Adds a reference to the task
scheduler referenced by other. In turn, other releases its reference to the task scheduler. Returns: A reference
to *this.

explicit operator bool() const noexcept
Returns: true if this is not empty and refers to some task scheduler; false otherwise.

void release()
Effects: If not empty, releases a reference to the task scheduler and deactivates an instance of the
task_scheduler_handle class; otherwise, does nothing. Non-blocking method.

Non-member Functions

7.2. oneTBB Interfaces 611

oneAPI Specification, Release 1.4-provisional-rev-1

void finalize(task_scheduler_handle &handle)
Effects: If handle is not empty, blocks the program execution until all worker threads have been completed;
otherwise, does nothing. Throws the oneapi::tbb::unsafe_wait exception if it is not safe to wait for the
completion of the worker threads.

The following conditions should be met for finalization to succeed:

• No active, not yet terminated, instances of task_arena class exist in the whole program.

• task_scheduler_handle::release is called for each other active instance of task_scheduler_handle
class, possibly by different application threads.

Under these conditions, it is guaranteed that at least one finalize call succeeds, at which point all worker threads
have been completed. If calls are performed simultaneously, more than one call might succeed.

Note: If user knows how many active task_scheduler_handle instances exist in the program, it is necessary to
release all but the last one, then call finalize for the last instance.

Caution: The method always fails if called within a task, a parallel algorithm, or a flow graph node.

bool finalize(task_scheduler_handle &handle, const std::nothrow_t&) noexcept
Effects: If handle is not empty, blocks the program execution until all worker threads have been completed;
otherwise, does nothing. The behavior is the same as finalize(handle) however, false is returned instead
of exception or true if no exception.

Examples

#include <oneapi/tbb/global_control.h>
#include <oneapi/tbb/parallel_for.h>

#include <iostream>

int main() {
oneapi::tbb::task_scheduler_handle handle;

handle = oneapi::tbb::task_scheduler_handle{oneapi::tbb::attach{}};

// Do some parallel work here, e.g.
oneapi::tbb::parallel_for(0, 10000, [](int){});
try {

oneapi::tbb::finalize(handle);
// oneTBB worker threads are terminated at this point.

} catch (const oneapi::tbb::unsafe_wait&) {
std::cerr << "Failed to terminate the worker threads." << std::endl;

}
return 0;

}

See also:

• attach

7.2. oneTBB Interfaces 612

oneAPI Specification, Release 1.4-provisional-rev-1

Task Group

task_group

[scheduler.task_group]

A task_group represents the concurrent execution of a group of tasks. You can dynamically add tasks to the group
while it is executing. The thread executing task_group::wait() might participate in other tasks that are not related
to the particular task_group.

// Defined in header <oneapi/tbb/task_group.h>

namespace oneapi {
namespace tbb {

class task_group {
public:

task_group();
task_group(task_group_context& context);

~task_group();

template<typename Func>
void run(Func&& f);

template<typename Func>
task_handle defer(Func&& f);

void run(task_handle&& h);

template<typename Func>
task_group_status run_and_wait(const Func& f);

task_group_status run_and_wait(task_handle&& h);

task_group_status wait();
void cancel();

};

bool is_current_task_group_canceling();

} // namespace tbb
} // namespace oneapi

7.2. oneTBB Interfaces 613

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

task_group()

Constructs an empty task_group.

task_group(task_group_context &context)
Constructs an empty task_group. All tasks added into the task_group are associated with the context.

~task_group()

Destroys the task_group.

Requires: Method wait must be called before destroying a task_group, otherwise, the destructor throws an
exception.

template<typename F>
task_handle defer(F &&f)

Creates a deferred task to compute f() and returns task_handle pointing to it.

The task is not scheduled for the execution until it is explicitly requested, for example, with the
task_group::runmethod. However, the task is still added into the task_group, thus the task_group::wait
method waits until the task_handle is either scheduled or destroyed.

The F type must meet the Function Objects requirements described in the [function.objects] section of the ISO
C++ standard.

Returns: task_handle object pointing to a task to compute f().

template<typename Func>
void run(Func &&f)

Adds a task to compute f() and returns immediately. The Func type must meet the Function Objects require-
ments described in the [function.objects] section of the ISO C++ standard.

void run(task_handle &&h)
Schedules the task object pointed by the h for the execution.

Note:

The failure to satisfy the following conditions leads to undefined behavior:

• h is not empty.

• *this is the same task_group that h is created with.

template<typename Func>
task_group_status run_and_wait(const Func &f)

Equivalent to {run(f); return wait();}. The Func type must meet the Function Objects requirements
described in the [function.objects] section of the ISO C++ standard.

Returns: The status of task_group. See task_group_status.

task_group_status wait()
Waits for all tasks in the group to complete or be cancelled.

Returns: The status of task_group. See task_group_status.

void cancel()
Cancels all tasks in this task_group.

7.2. oneTBB Interfaces 614

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member functions

bool is_current_task_group_canceling()
Returns true if an innermost task_group executing on this thread is cancelling its tasks.

task_group_status

[scheduler.task_group_status]

A task_group_status type represents the status of a task_group.

namespace oneapi {
namespace tbb {

enum task_group_status {
not_complete,
complete,
canceled

};
} // namespace tbb
} // namespace oneapi

Member constants

not_complete

Not cancelled and not all tasks in a group have completed.

complete

Not cancelled and all tasks in a group have completed.

canceled

Task group received cancellation request.

task_handle

[scheduler.task_handle]

An instance of task_handle type owns a deferred task object.

namespace oneapi {
namespace tbb {

class task_handle {
public:

task_handle();
task_handle(task_handle&& src);

~task_handle();

task_handle& operator=(task_handle&& src);

explicit operator bool() const noexcept;
(continues on next page)

7.2. oneTBB Interfaces 615

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

};

bool operator==(task_handle const& h, std::nullptr_t) noexcept;
bool operator==(std::nullptr_t, task_handle const& h) noexcept;

bool operator!=(task_handle const& h, std::nullptr_t) noexcept;
bool operator!=(std::nullptr_t, task_handle const& h) noexcept;

} // namespace tbb
} // namespace oneapi

Member Functions

task_handle()

Creates an empty task_handle object.

task_handle(task_handle &&src)
Constructs task_handle object with the content of src using move semantics. src becomes empty after the
construction.

~task_handle()

Destroys the task_handle object and associated task if it exists.

task_handle &operator=(task_handle &&src)
Replaces the content of task_handle object with the content of src using move semantics. src becomes empty
after the assignment. The previously associated task object, if any, is destroyed before the assignment.

Returns: Reference to *this.

explicit operator bool() const noexcept
Checks if *this has an associated task object.

Returns: true if *this is not empty, false otherwise.

Non-Member Functions

bool operator==(task_handle const& h, std::nullptr_t) noexcept
bool operator==(std::nullptr_t, task_handle const& h) noexcept

Returns: true if h is empty, false otherwise.

bool operator!=(task_handle const& h, std::nullptr_t) noexcept
bool operator!=(std::nullptr_t, task_handle const& h) noexcept

Returns: true if h is not empty, false otherwise.

7.2. oneTBB Interfaces 616

oneAPI Specification, Release 1.4-provisional-rev-1

Task Arena

task_arena

[scheduler.task_arena]

A class that represents an explicit, user-managed task scheduler arena.

// Defined in header <oneapi/tbb/task_arena.h>

namespace oneapi {
namespace tbb {

class task_arena {
public:

static const int automatic = /* unspecified */;
static const int not_initialized = /* unspecified */;
enum class priority : /* unspecified type */ {

low = /* unspecified */,
normal = /* unspecified */,
high = /* unspecified */

};

struct constraints {
constraints(numa_node_id numa_node_ = task_arena::automatic,

int max_concurrency_ = task_arena::automatic);

constraints& set_numa_id(numa_node_id id);
constraints& set_max_concurrency(int maximal_concurrency);
constraints& set_core_type(core_type_id id);
constraints& set_max_threads_per_core(int threads_number);

numa_node_id numa_id = task_arena::automatic;
int max_concurrency = task_arena::automatic;
core_type_id core_type = task_arena::automatic;
int max_threads_per_core = task_arena::automatic;

};

task_arena(int max_concurrency = automatic, unsigned reserved_for_masters =␣
→˓1,

priority a_priority = priority::normal);
task_arena(constraints a_constraints, unsigned reserved_for_masters = 1,

priority a_priority = priority::normal);
task_arena(const task_arena &s);
explicit task_arena(oneapi::tbb::attach);
~task_arena();

void initialize();
void initialize(int max_concurrency, unsigned reserved_for_masters = 1,

priority a_priority = priority::normal);
void initialize(constraints a_constraints, unsigned reserved_for_masters = 1,

priority a_priority = priority::normal);
void initialize(oneapi::tbb::attach);

(continues on next page)

7.2. oneTBB Interfaces 617

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

void terminate();

bool is_active() const;
int max_concurrency() const;

template<typename F> auto execute(F&& f) -> decltype(f());
template<typename F> void enqueue(F&& f);

void enqueue(task_handle&& h);
};

} // namespace tbb
} // namespace oneapi

A task_arena class represents a place where threads may share and execute tasks.

The number of threads that may simultaneously execute tasks in a task_arena is limited by its concurrency level.

Each user thread that invokes any parallel construction outside an explicit task_arena uses an implicit task arena
representation object associated with the calling thread.

The tasks spawned or enqueued into one arena cannot be executed in another arena.

Each task_arena has a priority. The tasks from task_arena with higher priority are given a precedence in
execution over the tasks from task_arena with lower priority.

Note: The task_arena constructors do not create an internal task arena representation object. It may already exist in
case of the “attaching” constructor; otherwise, it is created by an explicit call to task_arena::initialize or lazily
on first use.

Member types and constants

static const int automatic
When passed as max_concurrency to the specific constructor, arena concurrency is automatically set based on
the hardware configuration.

static const int not_initialized
When returned by a method or function, indicates that there is no active task_arena or that the task_arena
object has not yet been initialized.

enum priority::low

When passed to a constructor or the initialize method, the initialized task_arena has a lowered priority.

enum priority::normal

When passed to a constructor or the initialize method, the initialized task_arena has regular priority.

enum priority::high

When passed to a constructor or the initialize method, the initialized task_arena has a raised priority.

struct constraints
Represents limitations applied to threads within task_arena.

Starting from C++20 this class should be an aggregate type to support the designated initialization.

7.2. oneTBB Interfaces 618

oneAPI Specification, Release 1.4-provisional-rev-1

numa_node_id constraints::numa_id
An integral logical index uniquely identifying a NUMA node. If set to non-automatic value, then this NUMA
node will be considered as preferred for all the threads within the arena.

Note: NUMA node ID is considered valid if it was obtained through tbb::info::numa_nodes().

int constraints::max_concurrency
The maximum number of threads that can participate in work processing within the task_arena at the same
time.

core_type_id constraints::core_type
An integral logical index uniquely identifying a core type. If set to non-automatic value, then this core type will
be considered as preferred for all the threads within the arena.

Note: core type ID is considered valid if it was obtained through tbb::info::core_types().

int constraints::max_threads_per_core
The maximum number of threads that can be scheduled to one core simultaneously.

constraints::constraints(numa_node_id numa_node_ = task_arena::automatic, int max_concurrency_ =
task_arena::automatic)

Constructs the constraints object with the provided numa_id and max_concurrency settings.

Note: To support designated initialization this constructor is omitted starting from C++20. Aggregate initial-
ization is supposed to be used instead.

constraints &constraints::set_numa_id(numa_node_id id)
Sets the numa_id to the provided id. Returns the reference to the updated constraints object.

constraints &constraints::set_max_concurrency(int maximal_concurrency)
Sets the max_concurrency to the provided maximal_concurrency. Returns the reference to the updated con-
straints object.

constraints &constraints::set_core_type(core_type_id id)
Sets the core_type to the provided id. Returns the reference to the updated constraints object.

constraints &constraints::set_max_threads_per_core(int threads_number)
Sets the max_threads_per_core to the provided threads_number. Returns the reference to the updated con-
straints object.

Member functions

task_arena(int max_concurrency = automatic, unsigned reserved_for_masters = 1, priority a_priority =
priority::normal)

Creates a task_arenawith a certain concurrency limit (max_concurrency) and priority (a_priority). Some
portion of the limit can be reserved for application threads with reserved_for_masters. The amount for
reservation cannot exceed the limit.

7.2. oneTBB Interfaces 619

oneAPI Specification, Release 1.4-provisional-rev-1

Caution: If max_concurrency and reserved_for_masters are explicitly set to be equal and greater
than 1, oneTBB worker threads will never join the arena. As a result, the execution guarantee for enqueued
tasks is not valid in such arena. Do not use task_arena::enqueue() with an arena set to have no worker
threads.

task_arena(constraints a_constraints, unsigned reserved_for_masters = 1, priority a_priority = priority::normal)
Creates a task_arena with a certain constraints(a_constraints) and priority (a_priority). Some portion
of the limit can be reserved for application threads with reserved_for_masters. The amount for reservation
cannot exceed the concurrency limit specified in constraints.

Caution: If constraints::max_concurrency and reserved_for_masters are explicitly set to be
equal and greater than 1, oneTBB worker threads will never join the arena. As a result, the execution guarantee
for enqueued tasks is not valid in such arena. Do not use task_arena::enqueue() with an arena set to
have no worker threads.

If constraints::numa_node is specified, then all threads that enter the arena are automatically pinned to
corresponding NUMA node.

task_arena(const task_arena&)

Copies settings from another task_arena instance.

explicit task_arena(oneapi::tbb::attach)
Creates an instance of task_arena that is connected to the internal task arena representation currently used by
the calling thread. If no such arena exists yet, creates a task_arena with default parameters.

Note: Unlike other constructors, this one automatically initializes the new task_arena when connecting to an
already existing arena.

~task_arena()

Destroys the task_arena instance, but the destruction may not be synchronized with any task execution inside
this task_arena. It means that an internal task arena representation associated with this task_arena instance
can be destroyed later. Not thread-safe for concurrent invocations of other methods.

void initialize()
Performs actual initialization of internal task arena representation.

Note: After the call to initialize, the arena parameters are fixed and cannot be changed.

void initialize(int max_concurrency, unsigned reserved_for_masters = 1, priority a_priority = priority::normal)
Same as above, but overrides previous arena parameters.

void initialize(constraints a_constraints, unsigned reserved_for_masters = 1, priority a_priority =
priority::normal)

Same as above.

void initialize(oneapi::tbb::attach)
If an internal task arena representation currently used by the calling thread, the method ignores arena parameters
and connects task_arena to that internal task arena representation. The method has no effect when called for
an already initialized task_arena.

7.2. oneTBB Interfaces 620

oneAPI Specification, Release 1.4-provisional-rev-1

void terminate()
Removes the reference to the internal task arena representation without destroying the task_arena object, which
can then be re-used. Not thread safe for concurrent invocations of other methods.

bool is_active() const
Returns true if the task_arena has been initialized; false, otherwise.

int max_concurrency() const
Returns the concurrency level of the task_arena. Does not require the task_arena to be initialized and does
not perform initialization.

template<F>
void enqueue(F &&f)

Enqueues a task into the task_arena to process the specified functor and immediately returns. The F type must
meet the Function Objects requirements described in the [function.objects] section of the ISO C++ standard. The
task is scheduled for eventual execution by a worker thread even if no thread ever explicitly waits for the task to
complete. If the total number of worker threads is zero, a special additional worker thread is created to execute
enqueued tasks.

Note: The method does not require the calling thread to join the arena; that is, any number of threads outside
of the arena can submit work to it without blocking.

Caution: There is no guarantee that tasks enqueued into an arena execute concurrently with respect to any
other tasks there.

Caution: An exception thrown and not caught in the functor results in undefined behavior.

template<F>
auto execute(F &&f) -> decltype(f ())

Executes the specified functor in the task_arena and returns the value returned by the functor. The F type must
meet the Function Objects requirements described in the [function.objects] section of the ISO C++ standard.

The calling thread joins the task_arena if possible, and executes the functor. Upon return it restores the previous
task scheduler state and floating-point settings.

If joining the task_arena is not possible, the call wraps the functor into a task, enqueues it into the arena, waits
using an OS kernel synchronization object for another opportunity to join, and finishes after the task completion.

An exception thrown in the functor will be captured and re-thrown from execute.

Note: Any number of threads outside of the arena can submit work to the arena and be blocked. However, only
the maximal number of threads specified for the arena can participate in executing the work.

void enqueue(task_handle &&h)
Enqueues a task owned by h into the task_arena for processing.

The behavior of this function is identical to the generic version (template<typename F> void
task_arena::enqueue(F&& f)), except parameter type.

7.2. oneTBB Interfaces 621

oneAPI Specification, Release 1.4-provisional-rev-1

Note: h should not be empty to avoid an undefined behavior.

Example

The example demonstrates task_arena NUMA support API. Each constructed task_arena is pinned to the corre-
sponding NUMA node.

#include "oneapi/tbb/task_group.h"
#include "oneapi/tbb/task_arena.h"

#include <vector>

int main() {
std::vector<oneapi::tbb::numa_node_id> numa_nodes = oneapi::tbb::info::numa_nodes();
std::vector<oneapi::tbb::task_arena> arenas(numa_nodes.size());
std::vector<oneapi::tbb::task_group> task_groups(numa_nodes.size());

for (int i = 0; i < numa_nodes.size(); i++) {
arenas[i].initialize(oneapi::tbb::task_arena::constraints(numa_nodes[i]));

}

for (int i = 0; i < numa_nodes.size(); i++) {
arenas[i].execute([&task_groups, i] {

task_groups[i].run([] {
/* executed by the thread pinned to specified NUMA node */

});
});

}

for (int i = 0; i < numa_nodes.size(); i++) {
arenas[i].execute([&task_groups, i] {

task_groups[i].wait();
});

}

return 0;
}

See also:

• attach

• task_group

• task_scheduler_observer

7.2. oneTBB Interfaces 622

oneAPI Specification, Release 1.4-provisional-rev-1

this_task_arena

[scheduler.this_task_arena]

The namespace for functions applicable to the current task_arena.

The namespace this_task_arena contains global functions for interaction with the task_arena currently used by
the calling thread.

// Defined in header <oneapi/tbb/task_arena.h>

namespace oneapi {
namespace tbb {

namespace this_task_arena {
int current_thread_index();
int max_concurrency();
template<typename F> auto isolate(F&& f) -> decltype(f());

void enqueue(task_handle&& h);

template<typename F> void enqueue(F&& f) ;
}

} // namespace tbb
} // namespace oneapi

int current_thread_index()
Returns the thread index in a task_arena currently used by the calling thread, or
task_arena::not_initialized if the thread has not yet initialized the task scheduler.

A thread index is an integer number between 0 and the task_arena concurrency level. Thread indexes are
assigned to both application threads and worker threads on joining an arena and are kept until exiting the arena.
Indexes of threads that share an arena are unique, that is, no two threads within the arena can have the same index
at the same time - but not necessarily consecutive.

Note: Since a thread may exit the arena at any time if it does not execute a task, the index of a thread may change
between any two tasks, even those belonging to the same task group or algorithm.

Note: Threads that use different arenas may have the same current index value.

Note: Joining a nested arena in execute() may change current index value while preserving the index in the
outer arena which will be restored on return.

int max_concurrency()
Returns the concurrency level of the task_arena currently used by the calling thread. If the thread has not yet
initialized the task scheduler, returns the concurrency level determined automatically for the hardware configu-
ration.

template<F>
auto isolate(F &&f) -> decltype(f ())

Runs the specified functor in isolation by restricting the calling thread to process only tasks scheduled in the
scope of the functor (also called the isolation region). The function returns the value returned by the functor.

7.2. oneTBB Interfaces 623

oneAPI Specification, Release 1.4-provisional-rev-1

The F type must meet the Function Objects requirements described in the [function.objects] section of the ISO
C++ standard.

Caution: The object returned by the functor cannot be a reference. std::reference_wrapper can be
used instead.

template<typename F>
void enqueue(F &&f)

Enqueues a task into the task_arena currently used by the calling thread to process the specified functor, then
returns immediately. The F type must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard.

Behavior of this function is identical to template<typename F> void task_arena::enqueue(F&& f) ap-
plied to the task_arena object constructed with attach parameter.

void enqueue(task_handle &&h)
Enqueues a task owned by h into the task_arena that is currently used by the calling thread.

The behavior of this function is identical to the generic version (template<typename F> void enqueue(F&&
f)), except the parameter type.

Note: h should not be empty to avoid an undefined behavior.

task_scheduler_observer

[scheduler.task_scheduler_observer]

Class that represents thread interest in task scheduling services.

// Defined in header <oneapi/tbb/task_scheduler_observer.h>

namespace oneapi {
namespace tbb {

class task_scheduler_observer {
public:

task_scheduler_observer();
explicit task_scheduler_observer(task_arena& a);
virtual ~task_scheduler_observer();

void observe(bool state=true);
bool is_observing() const;

virtual void on_scheduler_entry(bool is_worker) {}
virtual void on_scheduler_exit(bool is_worker } {}

};

} // namespace tbb
} // namespace oneapi

A task_scheduler_observer permits clients to observe when a thread starts and stops processing tasks,
either globally or in a certain task scheduler arena. You typically derive your own observer class from

7.2. oneTBB Interfaces 624

oneAPI Specification, Release 1.4-provisional-rev-1

task_scheduler_observer, and override virtual methods on_scheduler_entry or on_scheduler_exit. Obser-
vation can be enabled and disabled for an observer instance; it is disabled on creation. Remember to call observe()
to enable observation.

Exceptions thrown and not caught in the overridden methods of task_scheduler_observer result in undefined
behavior.

Member functions

task_scheduler_observer()

Constructs a task_scheduler_observer object in the inactive state (observation is disabled). For a created
observer, entry/exit notifications are invoked whenever a worker thread joins/leaves the arena of the observer’s
owner thread. If a thread is already in the arena when the observer is activated, the entry notification is called
before it executes the first stolen task.

explicit task_scheduler_observer(task_arena&)

Constructs a task_scheduler_observer object for a given arena in inactive state (observation is disabled).
For created observer, entry/exit notifications are invoked whenever a thread joins/leaves arena. If a thread is
already in the arena when the observer is activated, the entry notification is called before it executes the first
stolen task.

Constructs a task_scheduler_observer object in the inactive state (observation is disabled), which receives
notifications from threads entering and exiting the specified task_arena.

~task_scheduler_observer()

Disables observing and destroys the observer instance. Waits for extant invocations of on_scheduler_entry
and on_scheduler_exit to complete.

void observe(bool state = true)
Enables observing if state is true; disables observing if state is false.

bool is_observing() const
Returns: True if observing is enabled; false, otherwise.

virtual void on_scheduler_entry(bool is_worker)
The task scheduler invokes this method for each thread that starts participating in oneTBB work or enters an arena
after the observation is enabled. For threads that already execute tasks, the method is invoked before executing
the first task stolen after enabling the observation.

If a thread enables the observation and then spawns a task, it is guaranteed that the task, as well as all the tasks
it creates, will be executed by threads which have invoked on_scheduler_entry.

The flag is_worker is true if the thread was created by oneTBB; false, otherwise.

Effects: The default behavior does nothing.

virtual void on_scheduler_exit(bool is_worker)
The task scheduler invokes this method when a thread stops participating in task processing or leaves an arena.

Caution: A process does not wait for the worker threads to clean up, and can terminate before
on_scheduler_exit is invoked.

Effects: The default behavior does nothing.

7.2. oneTBB Interfaces 625

oneAPI Specification, Release 1.4-provisional-rev-1

Example

The following example sketches the code of an observer that pins oneTBB worker threads to hardware threads.

class pinning_observer : public oneapi::tbb::task_scheduler_observer {
public:

affinity_mask_t m_mask; // HW affinity mask to be used for threads in an arena
pinning_observer(oneapi::tbb::task_arena &a, affinity_mask_t mask)

: oneapi::tbb::task_scheduler_observer(a), m_mask(mask) {
observe(true); // activate the observer

}
void on_scheduler_entry(bool worker) override {

set_thread_affinity(oneapi::tbb::this_task_arena::current_thread_index(), m_
→˓mask);

}
void on_scheduler_exit(bool worker) override {

restore_thread_affinity();
}

};

Helper types

attach tag type

[scheduler.attach]

An attach tag type is specifically used with task_arena and task_scheduler_handle interfaces. It is guaranteed
to be constructible by default.

namespace oneapi {
namespace tbb {

using attach = /* unspecified */
}

}

See also:

• task_arena

• task_scheduler_handle

7.2.5 Containers

[containers]

The container classes provided by oneAPI Threading Building Blocks (oneTBB) permit multiple threads to simulta-
neously invoke certain methods on the same container.

7.2. oneTBB Interfaces 626

oneAPI Specification, Release 1.4-provisional-rev-1

Sequences

concurrent_vector

[containers.concurrent_vector]

concurrent_vector is a class template for a vector that can be concurrently grown and accessed.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_vector.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Allocator = cache_aligned_allocator<T>>

class concurrent_vector {
using value_type = T;
using allocator_type = Allocator;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<allocator_type>::pointer;
using const_pointer = typename std::allocator_traits<allocator_type>::const_

→˓pointer;

using iterator = <implementation-defined RandomAccessIterator>;
using const_iterator = <implementation-defined constant RandomAccessIterator>

→˓;

using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_vector();
explicit concurrent_vector(const allocator_type& alloc) noexcept;

explicit concurrent_vector(size_type count, const value_type& value,
const allocator_type& alloc = allocator_type());

explicit concurrent_vector(size_type count,
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
(continues on next page)

7.2. oneTBB Interfaces 627

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_vector(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type());

concurrent_vector(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

concurrent_vector(const concurrent_vector& other);
concurrent_vector(const concurrent_vector& other, const allocator_type&␣

→˓alloc);

concurrent_vector(concurrent_vector&& other) noexcept;
concurrent_vector(concurrent_vector&& other, const allocator_type& alloc);

~concurrent_vector();

concurrent_vector& operator=(const concurrent_vector& other);

concurrent_vector& operator=(concurrent_vector&& other) noexcept(/*See␣
→˓details*/);

concurrent_vector& operator=(std::initializer_list<value_type> init);

void assign(size_type count, const value_type& value);

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

void assign(std::initializer_list<value_type> init);

// Concurrent growth
iterator grow_by(size_type delta);
iterator grow_by(size_type delta, const value_type& value);

template <typename InputIterator>
iterator grow_by(InputIterator first, InputIterator last);

iterator grow_by(std::initializer_list<value_type> init);

iterator grow_to_at_least(size_type n);
iterator grow_to_at_least(size_type n, const value_type& value);

iterator push_back(const value_type& value);
iterator push_back(value_type&& value);

template <typename... Args>
iterator emplace_back(Args&&... args);

// Element access
value_type& operator[](size_type index);
const value_type& operator[](size_type index) const;

value_type& at(size_type index);

(continues on next page)

7.2. oneTBB Interfaces 628

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const value_type& at(size_type index) const;

value_type& front();
const value_type& front() const;

value_type& back();
const value_type& back() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
const_reverse_iterator crbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;
const_reverse_iterator crend() const;

// Size and capacity
size_type size() const noexcept;

bool empty() const noexcept;

size_type max_size() const noexcept;

size_type capacity() const noexcept;

// Concurrently unsafe operations
void reserve(size_type n);

void resize(size_type n);
void resize(size_type n, const value_type& value);

void shrink_to_fit();

void swap(concurrent_vector& other) noexcept(/*See details*/);

void clear();

allocator_type get_allocator() const;

// Parallel iteration
range_type range(size_type grainsize = 1);
const_range_type range(size_type grainsize = 1) const;

}; // class concurrent_vector

(continues on next page)

7.2. oneTBB Interfaces 629

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Requirements

• The type T must meet the following requirements:

– Requirements of Erasable from the [container.requirements] ISO C++ Standard section.

– Its destructor must not throw an exception.

– If its default constructor can throw an exception, the destructor must be non-virtual and work correctly on
zero-filled memory.

– Member functions can impose stricter requirements depending on the type of the operation.

• The type Allocatormust meet the Allocator requirements from the [allocator.requirements] ISO C++ section.

Description

oneapi::tbb::concurrent_vector is a class template that represents a sequence container with the following fea-
tures:

• Multiple threads can concurrently grow the container and append new elements.

• Random access by index. The index of the first element is zero.

• Growing the container does not invalidate any existing iterators or indices.

Exception Safety

Concurrent growing is fundamentally incompatible with ideal exception safety. Nonetheless,
oneapi::tbb::concurrent_vector offers a practical level of exception safety.

Growth and vector assignment append a sequence of elements to a vector. If an exception occurs, the impact on the
vector depends on the cause of the exception:

• If the exception is thrown by the constructor of an element, all subsequent elements in the appended sequence
will be zero-filled.

• Otherwise, the exception is thrown by the vector allocator. The vector becomes broken. Each element in the
appended sequence will be in one of three states:

– constructed

– zero-filled

– unallocated in memory

Once a vector becomes broken, note the following when accessing it:

• Accessing an unallocated element with the method at causes an exception std::range_error. Accessing an
unallocated element using any other method has undefined behavior.

• The values of capacity() and size() may be less than expected.

• Access to a broken vector via back() has undefined behavior.

7.2. oneTBB Interfaces 630

oneAPI Specification, Release 1.4-provisional-rev-1

However, the following guarantees hold for broken or unbroken vectors:

• Let k be an index of an unallocated element. Then size() <= capacity() <= k.

• Growth operations never cause size() or capacity() to decrease.

If a concurrent growth operation successfully completes, the appended sequence remains valid and accessible even if
a subsequent growth operations fails.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_vector();

explicit concurrent_vector(const allocator_type& alloc);

Constructs an empty concurrent_vector.

If provided, uses the allocator alloc to allocate the memory.

Constructors from the sequence of elements

explicit concurrent_vector(size_type count, const value_type& value,
const allocator_type& alloc = allocator_type());

Constructs a concurrent_vector containing count copies of the value using the allocator alloc.

explicit concurrent_vector(size_type count,
const allocator_type& alloc = allocator_type());

Constructs a concurrent_vector containing n default constructed in-place elements using the allocator
alloc.

template <typename InputIterator>
concurrent_vector(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs a concurrent_vector contains all elements from the half-open interval [first, last)
using the allocator alloc.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_vector(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_vector(init.begin(), init.end(), alloc).

7.2. oneTBB Interfaces 631

oneAPI Specification, Release 1.4-provisional-rev-1

Copying constructors

concurrent_vector(const concurrent_vector& other);

concurrent_vector(const concurrent_vector& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_vector(concurrent_vector&& other);

concurrent_vector(concurrent_vector&& other,
const allocator_type& alloc);

Constructs a concurrent_vector with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_vector();

Destroys the concurrent_vector. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_vector& operator=(const concurrent_vector& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

7.2. oneTBB Interfaces 632

oneAPI Specification, Release 1.4-provisional-rev-1

concurrent_vector& operator=(concurrent_vector&& other) noexcept(/*See␣
→˓below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::propagate_on_container_
→˓move_assignment::value ||

std::allocator_traits<allocator_type>::is_always_equal::value)

concurrent_vector& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

assign

void assign(size_type count, const value_type& value);

Replaces all elements in *this by count copies of value.

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

Replaces all elements in *this by the elements from the half-open interval [first, last).

This overload only participates in overload resolution if the type InputIterator meets the requirements
of InputIterator from the [input.iterators] ISO C++ Standard section.

void assign(std::initializer_list<value_type> init);

Equivalent to assign(init.begin(), init.end()).

7.2. oneTBB Interfaces 633

oneAPI Specification, Release 1.4-provisional-rev-1

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

Concurrent growth

All member functions in this section can be performed concurrently with each other, element access methods and while
traversing the container.

grow_by

iterator grow_by(size_type delta);

Appends a sequence comprising delta new default-constructed in-place elements to the end of the vector.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the DefaultConstructible and
EmplaceConstructible requirements from [defaultconstructible] and [container.requirements]
ISO C++ sections.

iterator grow_by(size_type delta, const value_type& value);

Appends a sequence comprising delta copies of value to the end of the vector.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

template <typename InputIterator>
iterator grow_by(InputIterator first, InputIterator last);

Appends a sequence comprising all elements from the half-open interval [first, last) to the end of
the vector.

Returns: iterator to the beginning of the appended sequence.

This overload participates in overload resolution only if the type InputIterator meets the requirements
of InputIterator from the [input.iterators] ISO C++ Standard section.

iterator grow_by(std::initializer_list<value_type> init);

Equivalent to grow_by(init.begin(), init.end()).

7.2. oneTBB Interfaces 634

oneAPI Specification, Release 1.4-provisional-rev-1

grow_to_at_least

iterator grow_to_at_least(size_type n);

Appends minimal sequence of default constructed in-place elements such that size() >= n.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the DefaultConstructible and
EmplaceConstructible requirements from [defaultconstructible] and [container.requirements]
ISO C++ sections.

iterator grow_to_at_least(size_type n, const value_type& value);

Appends minimal sequence of comprising copies of value such that size() >= n.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

push_back

iterator push_back(const value_type& value);

Appends a copy of value to the end of the vector.

Returns: iterator to the appended element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator push_back(value_type&& value);

Appends value to the end of the vector using move semantics.

value is left in a valid, but unspecified state.

Returns: iterator to the appended element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

emplace_back

template <typename... Args>
iterator emplace_back(Args&&... args);

Appends an element constructed in-place from args to the end of the vector.

Returns: iterator to the appended element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

7.2. oneTBB Interfaces 635

oneAPI Specification, Release 1.4-provisional-rev-1

Element access

All member functions in this section can be performed concurrently with each other, concurrent growth methods and
while traversing the container.

In case of concurrent growth, the element returned by the access method can refer to the element that is under con-
struction of the other thread.

Access by index

value_type& operator[](size_type index);

const value_type& operator[](size_type index) const;

Returns: a reference to the element on the position index.

The behavior is undefined if index() >= size().

value_type& at(size_type index);

const value_type& at(size_type index) const;

Returns: a reference to the element on the position index.

Throws:

• std::out_of_range if index >= size().

• std::range_error if the vector is broken and the element on the position index unallocated.

Access the first and the last element

value_type& front();

const value_type& front() const;

Returns: a reference to the first element in the vector.

value_type& back();

const value_type& back() const;

Returns: a reference to the last element in the vector.

7.2. oneTBB Interfaces 636

oneAPI Specification, Release 1.4-provisional-rev-1

Iterators

The types concurrent_vector::iterator and concurrent_vector::const_iterator meet the requirements
of RandomAccessIterator from the [random.access.iterators] ISO C++ Standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the vector.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the vector.

rbegin and crbegin

reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

const_reverse_iterator crbegin() const;

Returns: a reverse iterator to the first element of the reversed vector.

rend and crend

reverse_iterator rend();

const_reverse_iterator rend() const;

const_reverse_iterator crend() const;

Returns: a reverse iterator that follows the last element of the reversed vector.

7.2. oneTBB Interfaces 637

oneAPI Specification, Release 1.4-provisional-rev-1

Size and capacity

size

size_type size() const noexcept;

Returns: the number of elements in the vector.

empty

bool empty() const noexcept;

Returns: true if the vector is empty; false, otherwise.

max_size

size_type max_size() const noexcept;

Returns: the maximum number of elements that the vector can hold.

capacity

size_type capacity() const noexcept;

Returns: the maximum number of elements that the vector can hold without allocating more memory.

Concurrently unsafe operations

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Reserving

void reserve(size_type n);

Reserves memory for at least n elements.

Throws: std::length_error if n > max_size().

7.2. oneTBB Interfaces 638

oneAPI Specification, Release 1.4-provisional-rev-1

Resizing

void resize(size_type n);

If n < size(), the vector is reduced to its first n elements.

Otherwise, appends n - size() new elements default-constructed in-place to the end of the vector.

void resize(size_type n, const value_type& value);

If n < size(), the vector is reduced to its first n elements.

Otherwise, appends n - size() copies of value to the end of the vector.

shrink_to_fit

void shrink_to_fit();

Removes the unused capacity of the vector.

Call for this method can also reorganize the internal vector representation in the memory.

clear

void clear();

Removes all elements from the container.

swap

void swap(concurrent_vector& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::propagate_on_container_
→˓swap::value ||

std::allocator_traits<allocator_type>::is_always_equal::value

7.2. oneTBB Interfaces 639

oneAPI Specification, Release 1.4-provisional-rev-1

Parallel iteration

Member types concurrent_vector::range_type and concurrent_vector::const_range_typemeet the Con-
tainerRange requirements.

These types differ only in that the bounds for a concurrent_vector::const_range_type are of type
concurrent_vector::const_iterator, whereas the bounds for a concurrent_vector::range_type are of
type concurrent_vector::iterator.

range member function

range_type range(size_type grainsize = 1);

const_range_type range(size_type grainsize = 1) const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_vector objects.

The exact namespace where these functions are defined is unspecified, as long as they can be used in respective compar-
ison operations. For example, an implementation can define the classes and functions in the same internal namespace
and define oneapi::tbb::concurrent_vector as a type alias, for which the non-member functions are reachable
only via argument-dependent lookup.

template <typename T, typename Allocator>
bool operator==(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator!=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator<(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator<=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator>(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator>=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
(continues on next page)

7.2. oneTBB Interfaces 640

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

void swap(concurrent_vector<T, Allocator>& lhs,
concurrent_vector<T, Allocator>& rhs);

Non-member binary comparisons

Two objects of concurrent_vector are equal if:

• they contains an equal number of elements.

• the elements on the same positions are equal.

template <typename T, typename Allocator>
bool operator==(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is equal to rhs, false otherwise.

template <typename T, typename Allocator>
bool operator!=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is not equal to rhs, false otherwise.

Non-member lexicographical comparisons

template <typename T, typename Allocator>
bool operator<(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically less than rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator<=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically less or equal than rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator>(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically greater than rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator>=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically greater or equal than rhs; false, otherwise.

7.2. oneTBB Interfaces 641

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member swap

template <typename T, typename Allocator>
void swap(concurrent_vector<T, Allocator>& lhs,

concurrent_vector<T, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Other

Deduction guides

If possible, concurrent_vector constructors support class template argument deduction (since C++17). The follow-
ing constructors provide implicitly-generated deduction guides:

• Copy and move constructors, including constructors with explicit allocator_type argument

• Constructors, accepting std::initializer_list as an argument

In addition, the following explicit deduction guide is provided:

template <typename InputIterator,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>>
concurrent_vector(InputIterator, InputIterator,

Allocator = Allocator())
-> concurrent_vector<iterator_value_t<InputIterator>,

Allocator>;

Where type alias iterator_value_t defines as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

This deduction guide only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

Example

#include <oneapi/tbb/concurrent_vector.h>
#include <array>
#include <memory>

int main() {
std::array<int, 100> arr;

// Deduces cv1 as oneapi::tbb::concurrent_vector<int>
oneapi::tbb::concurrent_vector cv1(arr.begin(), arr.end());

std::allocator<int> alloc;
(continues on next page)

7.2. oneTBB Interfaces 642

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// Deduces cv2 as oneapi::tbb::concurrent_vector<int, std::allocator<int>>
oneapi::tbb::concurrent_vector cv2(arr.begin(), arr.end(), alloc);

}

Queues

concurrent_queue

[containers.concurrent_queue]

oneapi::tbb::concurrent_queue is a class template for an unbounded first-in-first-out data structure that permits
multiple threads to concurrently push and pop items.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_queue.h>

namespace oneapi {
namespace tbb {

template <typename T, typename Allocator = cache_aligned_allocator<T>>
class concurrent_queue {
public:

using value_type = T;
using reference = T&;
using const_reference = const T&;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;
using allocator_type = Allocator;

using size_type = <implementation-defined unsigned integer type>;
using difference-type = <implementation-defined signed integer type>;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

// Construction, destruction, copying
concurrent_queue();

explicit concurrent_queue(const allocator_type& alloc);

template <typename InputIterator>
concurrent_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

concurrent_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

(continues on next page)

7.2. oneTBB Interfaces 643

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_queue(const concurrent_queue& other);
concurrent_queue(const concurrent_queue& other, const allocator_type& alloc␣

→˓);

concurrent_queue(concurrent_queue&& other);
concurrent_queue(concurrent_queue&& other, const allocator_type& alloc);

~concurrent_queue();

concurrent_queue& operator=(const concurrent_queue& other);
concurrent_queue& operator=(concurrent_queue&& other);
concurrent_queue& operator=(std::initializer_list<value_type> init);

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

void assign(std::initializer_list<value_type> init);

void swap(concurrent_queue& other);

void push(const value_type& value);
void push(value_type&& value);

template <typename... Args>
void emplace(Args&&... args);

bool try_pop(value_type& result);

allocator_type get_allocator() const;

size_type unsafe_size() const;
bool empty() const;

void clear();

iterator unsafe_begin();
const_iterator unsafe_begin() const;
const_iterator unsafe_cbegin() const;

iterator unsafe_end();
const_iterator unsafe_end() const;
const_iterator unsafe_cend() const;

}; // class concurrent_queue

} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the Erasable requirements from the [container.requirements] ISO C++ Standard section.
Member functions can impose stricter requirements depending on the type of the operation.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-

7.2. oneTBB Interfaces 644

oneAPI Specification, Release 1.4-provisional-rev-1

dard section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_queue();

explicit concurrent_queue(const allocator_type& alloc);

Constructs an empty concurrent_queue. If provided, uses the allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs a concurrent_queue containing all elements from the half-open interval [first, last)
using the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

concurrent_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_queue(init.begin(), init.end(), alloc).

Copying constructors

concurrent_queue(const concurrent_queue& other);

concurrent_queue(const concurrent_queue& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 645

oneAPI Specification, Release 1.4-provisional-rev-1

Moving constructors

concurrent_queue(concurrent_queue&& other);

concurrent_queue(concurrent_queue&& other,
const allocator_type& alloc);

Constructs a concurrent_queue with the content of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by std::move(other.get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_queue();

Destroys the concurrent_queue. Calls destructors of the stored elements and deallocates the used stor-
age.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_queue& operator=(const concurrent_queue& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_queue& operator=(concurrent_queue&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_queue& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

7.2. oneTBB Interfaces 646

oneAPI Specification, Release 1.4-provisional-rev-1

assign

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

Replaces all elements in *this be the elements in the half-open interval [first, last).

The behavior is undefined in case of concurrent operations with *this.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

void assign(std::initializer_list<value_type> init);

Equivalent to assign(init.begin(), init.end()).

Concurrently safe member functions

All member functions in this section can be performed concurrently with each other.

Pushing elements

void push(const value_type& value);

Pushes a copy of value into the container.

Requirements: the type T must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

void push(value_type&& value);

Pushes value into the container using move semantics.

Requirements: the type T must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

value is left in a valid, but unspecified state.

template <typename... Args>
void emplace(Args&&... args);

Pushes a new element constructed from args into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from the [con-
tainer.requirements] ISO C++ Standard section.

7.2. oneTBB Interfaces 647

oneAPI Specification, Release 1.4-provisional-rev-1

Popping elements

bool try_pop(value_type& value);

If the container is empty, does nothing.

Otherwise, copies the last element from the container and assigns it to value. The popped element is
destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

Returns: true if the element was popped; false, otherwise.

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator, associated with *this.

Concurrently unsafe member functions

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

The number of elements

size_type unsafe_size() const;

Returns: the number of elements in the container.

bool empty() const;

Returns: true if the container is empty; false, otherwise.

clear

void clear();

Removes all elements from the container.

7.2. oneTBB Interfaces 648

oneAPI Specification, Release 1.4-provisional-rev-1

swap

void swap(concurrent_queue& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise if get_allocator() != other.get_allocator() the behavior is undefined.

Iterators

The types concurrent_queue::iterator and concurrent_queue::const_iterator meet the requirements of
ForwardIterator from the [forward.iterators] ISO C++ Standard section.

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

unsafe_begin and unsafe_cbegin

iterator unsafe_begin();

const_iterator unsafe_begin() const;

const_iterator unsafe_cbegin() const;

Returns: an iterator to the first element in the container.

unsafe_end and unsafe_cend

iterator unsafe_end();

const_iterator unsafe_end() const;

const_iterator unsafe_cend() const;

Returns: an iterator to the element that follows the last element in the container.

Non-member functions

These functions provides binary comparison and swap operations on oneapi::tbb::concurrent_queue objects.

The exact namespace where this function is defined is unspecified, as long as it may be used in respective opera-
tion. For example, an implementation may define the classes and functions in the same internal namespace and de-
fine oneapi::tbb::concurrent_queue as a type alias for which the non-member functions are reachable only via
argument-dependent lookup.

7.2. oneTBB Interfaces 649

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename T, typename Allocator>
void swap(concurrent_queue<T, Allocator>& lhs,

concurrent_queue<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator==(const concurrent_queue<T, Allocator>& lhs,

const concurrent_queue<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator!=(const concurrent_queue<T, Allocator>& lhs,

const concurrent_queue<T, Allocator>& rhs);

Non-member swap

template <typename T, typename Allocator>
void swap(concurrent_queue<T, Allocator>& lhs,

concurrent_queue<T, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

template <typename T, typename Allocator>
bool operator==(const concurrent_queue<T, Allocator>& lhs,

const concurrent_queue<T, Allocator>& rhs);

Checks if lhs is equal to rhs, that is they have the same number of elements and lhs contains all elements from rhs.

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator!=(const concurrent_queue<T, Allocator>& lhs,

const concurrent_queue<T, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, oneapi::tbb::concurrent_queue constructors support class template argument deduction (since
C++17). Copy and move constructors, including constructors with an explicit allocator_type argument, provide
implicitly-generated deduction guides. In addition, the following explicit deduction guide is provided:

template <typename InputIterator,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>
concurrent_queue(InputIterator, InputIterator,

(continues on next page)

7.2. oneTBB Interfaces 650

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

Allocator = Allocator())
-> concurrent_queue<iterator_value_t<InputIterator>,

Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

This deduction guide only participates in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

Example

#include <oneapi/tbb/concurrent_queue.h>
#include <vector>
#include <memory>

int main() {
std::vector<int> vec;

// Deduces cq1 as oneapi::tbb::concurrent_queue<int>
oneapi::tbb::concurrent_queue cq1(vec.begin(), vec.end());

// Deduces cq2 as oneapi::tbb::concurrent_queue<int, std::allocator<int>>
oneapi::tbb::concurrent_queue cq2(vec.begin(), vec.end(), std::allocator<int>{})

}

concurrent_bounded_queue

[containers.concurrent_bounded_queue]

oneapi::tbb::concurrent_bounded_queue is a class template for a bounded first-in-first-out data structure that
permits multiple threads to concurrently push and pop items.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_queue.h>

namespace oneapi {
namespace tbb {

template <typename T, typename Allocator = cache_aligned_allocator<T>>
class concurrent_bounded_queue {
public:

using value_type = T;
using reference = T&;

(continues on next page)

7.2. oneTBB Interfaces 651

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using const_reference = const T&;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using allocator_type = Allocator;

using size_type = <implementation-defined signed integer type>;
using difference_type = <implementation-defined signed integer type>;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

concurrent_bounded_queue();

explicit concurrent_bounded_queue(const allocator_type& alloc);

template <typename InputIterator>
concurrent_bounded_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

concurrent_bounded_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

concurrent_bounded_queue(const concurrent_bounded_queue& other);
concurrent_bounded_queue(const concurrent_bounded_queue& other,

const allocator_type& alloc);

concurrent_bounded_queue(concurrent_bounded_queue&& other);
concurrent_bounded_queue(concurrent_bounded_queue&& other,

const allocator_type& alloc);

~concurrent_bounded_queue();

concurrent_bounded_queue& operator=(const concurrent_bounded_queue& other);
concurrent_bounded_queue& operator=(concurrent_bounded_queue&& other);
concurrent_bounded_queue& operator=(std::initializer_list<value_type> init␣

→˓);

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

void assign(std::initializer_list<value_type> init);

void swap(concurrent_bounded_queue& other);

allocator_type get_allocator() const;

void push(const value_type& value);
void push(value_type&& value);

bool try_push(const value_type& value);

(continues on next page)

7.2. oneTBB Interfaces 652

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool try_push(value_type&& value);

template <typename... Args>
void emplace(Args&&... args);

template <typename... Args>
bool try_emplace(Args&&... args);

void pop(value_type& result);

bool try_pop(value_type& result);

void abort();

size_type size() const;

bool empty() const;

size_type capacity() const;
void set_capacity(size_type new_capacity);

void clear();

iterator unsafe_begin();
const_iterator unsafe_begin() const;
const_iterator unsafe_cbegin() const;

iterator unsafe_end();
const_iterator unsafe_end() const;
const_iterator unsafe_cend() const;

}; // class concurrent_bounded_queue

} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the Erasable requirements from the [container.requirements] ISO C++ Standard section.
Member functions can impose stricter requirements depending on the type of the operation.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_bounded_queue();

(continues on next page)

7.2. oneTBB Interfaces 653

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

explicit concurrent_bounded_queue(const allocator_type& alloc);

Constructs an empty concurrent_bounded_queue with an unbounded capacity. If provided, uses the
allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_bounded_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs a concurrent_bounded_queuewith an unbounded capacity and containing all elements from
the half-open interval [first, last) using the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

concurrent_bounded_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_bounded_queue(init.begin(), init.end(), alloc).

Copying constructors

concurrent_bounded_queue(const concurrent_bounded_queue& other);

concurrent_bounded_queue(const concurrent_bounded_queue& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_bounded_queue(concurrent_bounded_queue&& other);

concurrent_bounded_queue(concurrent_bounded_queue&& other,
const allocator_type& alloc);

Constructs a concurrent_bounded_queue with the content of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by std::move(other.get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 654

oneAPI Specification, Release 1.4-provisional-rev-1

Destructor

~concurrent_bounded_queue();

Destroys the concurrent_bounded_queue. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_bounded_queue& operator=(const concurrent_bounded_queue& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_bounded_queue& operator=(concurrent_bounded_queue&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_bounded_queue& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

assign

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

Replaces all elements in *this be the elements in the half-open interval [first, last).

The behavior is undefined in case of concurrent operations with *this.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

void assign(std::initializer_list<value_type> init);

Equivalent to assign(init.begin(), init.end()).

7.2. oneTBB Interfaces 655

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently safe member functions

All member functions in this section can be performed concurrently with each other.

Pushing elements

void push(const value_type& value);

Waits until the number of items in the queue is less than the capacity and pushes a copy of value into the
container.

Requirements: the type T must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

bool try_push(const value_type& value);

If the number of items in the queue is less than the capacity, pushes a copy of value into the container.

Requirements: the type T must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Returns: true if the item was pushed; false, otherwise.

void push(value_type&& value);

Waits until the number of items in the queue is less than capacity() and pushes value into the container
using move semantics.

Requirements: the type T must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

value is left in a valid, but unspecified state.

bool try_push(value_type&& value);

If the number of items in the queue is less than the capacity, pushes value into the container using move
semantics.

Requirements: the type T must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

value is left in a valid, but unspecified state.

Returns: true if the item was pushed; false, otherwise.

template <typename... Args>
void emplace(Args&&... args);

Waits until the number of items in the queue is less than capacity() and pushes a new element constructed
from args into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from the [con-
tainer.requirements] ISO C++ Standard section.

7.2. oneTBB Interfaces 656

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename... Args>
bool try_emplace(Args&&... args);

If the number of items in the queue is less than the capacity, pushes a new element constructed from args
into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Returns: true if the item was pushed; false, otherwise.

Popping elements

void pop(value_type& value);

Waits until the item becomes available, copies it from the container, and assigns it to the value. The
popped element is destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

bool try_pop(value_type& value);

If the container is empty, does nothing.

Otherwise, copies the last element from the container and assigns it to the value. The popped element is
destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

Returns: true if the element was popped; false, otherwise.

abort

void abort();

Wakes up any threads that are waiting on the queue via push, pop, or emplace operations and raises the
oneapi::tbb::user_abort exception on those threads.

Capacity of the queue

size_type capacity() const;

Returns: the maximum number of items that the queue can hold.

void set_capacity(size_type new_capacity) const;

Sets the maximum number of items that the queue can hold to new_capacity.

7.2. oneTBB Interfaces 657

oneAPI Specification, Release 1.4-provisional-rev-1

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator, associated with *this.

Concurrently unsafe member functions

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

The number of elements

size_type size() const;

Returns: the number of elements in the container.

bool empty() const;

Returns: true if the container is empty; false, otherwise.

clear

void clear();

Removes all elements from the container.

swap

void swap(concurrent_bounded_queue& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise if get_allocator() != other.get_allocator() the behavior is undefined.

Iterators

The types concurrent_bounded_queue::iterator and concurrent_bounded_queue::const_iterator meet
the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

7.2. oneTBB Interfaces 658

oneAPI Specification, Release 1.4-provisional-rev-1

unsafe_begin and unsafe_cbegin

iterator unsafe_begin();

const_iterator unsafe_begin() const;

const_iterator unsafe_cbegin() const;

Returns: an iterator to the first element in the container.

unsafe_end and unsafe_cend

iterator unsafe_end();

const_iterator unsafe_end() const;

const_iterator unsafe_cend() const;

Returns: an iterator to the element that follows the last element in the container.

Non-member functions

These functions provides binary comparison and swap operations on oneapi::tbb::concurrent_bounded_queue
objects.

The exact namespace where this function is defined is unspecified, as long as it may be used in respective opera-
tion. For example, an implementation may define the classes and functions in the same internal namespace and define
oneapi::tbb::concurrent_bounded_queue as a type alias for which the non-member functions are reachable only
via argument-dependent lookup.

template <typename T, typename Allocator>
void swap(concurrent_bounded_queue<T, Allocator>& lhs,

concurrent_bounded_queue<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator==(const concurrent_bounded_queue<T, Allocator>& lhs,

const concurrent_bounded_queue<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator!=(const concurrent_bounded_queue<T, Allocator>& lhs,

const concurrent_bounded_queue<T, Allocator>& rhs);

7.2. oneTBB Interfaces 659

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member swap

template <typename T, typename Allocator>
void swap(concurrent_bounded_queue<T, Allocator>& lhs,

concurrent_bounded_queue<T, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

template <typename T, typename Allocator>
bool operator==(const concurrent_bounded_queue<T, Allocator>& lhs,

const concurrent_bounded_queue<T, Allocator>& rhs);

Checks if lhs is equal to rhs, that is they have the same number of elements and lhs contains all elements from rhs.

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator!=(const concurrent_bounded_queue<T, Allocator>& lhs,

const concurrent_bounded_queue<T, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, concurrent_bounded_queue constructors support class template argument deduction (since C++17).
Copy and move constructors, including constructors with an explicit allocator_type argument, provide implicitly-
generated deduction guides. In addition, the following explicit deduction guide is provided:

template <typename InputIterator,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>
concurrent_bounded_queue(InputIterator, InputIterator,

Allocator = Allocator())
-> concurrent_bounded_queue<iterator_value_t<InputIterator>,

Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

This deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

7.2. oneTBB Interfaces 660

oneAPI Specification, Release 1.4-provisional-rev-1

Example

#include <oneapi/tbb/concurrent_queue.h>
#include <vector>
#include <memory>

int main() {
std::vector<int> vec;

// Deduces cq1 as oneapi::tbb::concurrent_bounded_queue<int>
oneapi::tbb::concurrent_bounded_queue cq1(vec.begin(), vec.end());

// Deduces cq2 as oneapi::tbb::concurrent_bounded_queue<int, std::allocator<int>>
oneapi::tbb::concurrent_bounded_queue cq2(vec.begin(), vec.end(), std::allocator<int>

→˓{})
}

concurrent_priority_queue

[containers.concurrent_priority_queue]

oneapi::tbb::concurrent_priority_queue is a class template for an unbounded priority queue that permits
multiple threads to concurrently push and pop items. Items are popped in a priority order.

Class Template Synopsis

namespace oneapi {
namespace tbb {

template <typename T, typename Compare = std::less<T>,
typename Allocator = cache_aligned_allocator<T>>

class concurrent_priority_queue {
public:

using value_type = T;
using reference = T&;
using const_reference = const T&;
using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;
using allocator_type = Allocator;

concurrent_priority_queue();
explicit concurrent_priority_queue(const allocator_type& alloc);

explicit concurrent_priority_queue(const Compare& compare,
const allocator_type& alloc = allocator_

→˓type());

explicit concurrent_priority_queue(size_type init_capacity, const allocator_
→˓type& alloc = allocator_type());

explicit concurrent_priority_queue(size_type init_capacity, const Compare&␣
(continues on next page)

7.2. oneTBB Interfaces 661

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

→˓compare,
const allocator_type& alloc = allocator_

→˓type());

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const Compare& compare, const allocator_type&␣
→˓alloc = allocator_type());

concurrent_priority_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

concurrent_priority_queue(std::initializer_list<value_type> init,
const Compare& compare, const allocator_type&␣

→˓alloc = allocator_type());

concurrent_priority_queue(const concurrent_priority_queue& other);
concurrent_priority_queue(const concurrent_priority_queue& other, const␣

→˓allocator_type& alloc);

concurrent_priority_queue(concurrent_priority_queue&& other);
concurrent_priority_queue(concurrent_priority_queue&& other, const␣

→˓allocator_type& alloc);

~concurrent_priority_queue();

concurrent_priority_queue& operator=(const concurrent_priority_queue& other␣
→˓);

concurrent_priority_queue& operator=(concurrent_priority_queue&& other);
concurrent_priority_queue& operator=(std::initializer_list<value_type> init␣

→˓);

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

void assign(std::initializer_list<value_type> init);

void swap(concurrent_priority_queue& other);

allocator_type get_allocator() const;

void clear();

bool empty() const;
size_type size() const;

void push(const value_type& value);
void push(value_type&& value);

(continues on next page)

7.2. oneTBB Interfaces 662

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename... Args>
void emplace(Args&&... args);

bool try_pop(value_type& value);
}; // class concurrent_priority_queue

}; // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the Erasable requirements from [container.requirements] ISO C++ Standard section.
Member functions can impose stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from [allocator.requirements] ISO C++ Standard
section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_priority_queue();

explicit concurrent_priority_queue(const allocator_type& alloc);

explicit concurrent_priority_queue(const Compare& compare, const allocator_
→˓type& alloc);

Constructs an empty concurrent_priority_queue. The initial capacity is unspecified. If provided,
uses the predicate compare for priority comparisons and the allocator alloc to allocate the memory.

concurrent_priority_queue(size_type init_capacity,
const allocator_type& alloc = allocator_type());

concurrent_priority_queue(size_type init_capacity,
const Compare& compare,
const allocator_type& alloc = allocator_type());

Constructs an empty concurrent_priority_queue with the initial capacity init_capacity. If pro-
vided, uses the predicate compare for priority comparisons and the allocator alloc to allocate the mem-
ory.

7.2. oneTBB Interfaces 663

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const Compare& compare,
const allocator_type& alloc = allocator_type());

Constructs a concurrent_priority_queue containing all elements from the half-open interval
[first, last).

If provided, uses the predicate compare for priority comparisons and the allocator alloc to allocate the
memory.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

concurrent_priority_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_priority_queue(init.begin(), init.end(), alloc).

concurrent_priority_queue(std::initializer_list<value_type> init,
const Compare& compare,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_priority_queue(init.begin(), init.end(), compare, alloc).

Copying constructors

concurrent_priority_queue(const concurrent_priority_queue& other);

concurrent_priority_queue(const concurrent_priority_queue& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 664

oneAPI Specification, Release 1.4-provisional-rev-1

Moving constructors

concurrent_priority_queue(concurrent_priority_queue&& other);

concurrent_priority_queue(concurrent_priority_queue&& other,
const allocator_type& alloc);

Constructs a copy of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by std::move(other.get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_priority_queue();

Destroys the concurrent_priority_queue. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_priority_queue& operator=(const concurrent_priority_queue& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_priority_queue& operator=(concurrent_priority_queue&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_priority_queue& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

7.2. oneTBB Interfaces 665

oneAPI Specification, Release 1.4-provisional-rev-1

assign

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

Replaces all elements in *this be the elements in the half-open interval [first, last).

The behavior is undefined in case of concurrent operations with *this.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

void assign(std::initializer_list<value_type> init);

Equivalent to assign(init.begin(), init.end()).

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent push or try_pop
operations.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual number of elements in case of pending concurrent push or try_pop
operations.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other.

Pushing elements

void push(const value_type& value);

Pushes a copy of value into the container.

Requirements: the type T must meet the CopyInsertable requirements from [container.requirements]
and the CopyAssignable requirements from [copyassignable] ISO C++ Standard sections.

void push(value_type&& value);

7.2. oneTBB Interfaces 666

oneAPI Specification, Release 1.4-provisional-rev-1

Pushes value into the container using move semantics.

Requirements: the type T must meet the MoveInsertable requirements from [container.requirements]
and the MoveAssignable requirements from [moveassignable] ISO C++ Standard sections.

value is left in a valid, but unspecified state.

template <typename... Args>
void emplace(Args&&... args);

Pushes a new element constructed from args into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from [con-
tainer.requirements] and the MoveAssignable requirements from [moveassignable] ISO C++ Standard
sections.

Popping elements

bool try_pop(value_type& value)

If the container is empty, does nothing.

Otherwise, copies the highest priority element from the container and assigns it to value. The popped
element is destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

Returns: true if the element was popped; false, otherwise.

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

clear

void clear();

Removes all elements from the container.

swap

void swap(concurrent_priority_queue& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise if get_allocator() != other.get_allocator() the behavior is undefined.

7.2. oneTBB Interfaces 667

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member functions

These functions provides binary comparison and swap operations on oneapi::tbb::concurrent_priority_queue
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_priority_queue as a type alias for which the non-member
functions are reachable only via argument-dependent lookup.

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_priority_queue<T, Compare, Allocator>& lhs,

concurrent_priority_queue<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

Non-member swap

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_priority_queue<T, Compare, Allocator>& lhs,

concurrent_priority_queue<T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

Checks if lhs is equal to rhs, that is they have the same number of elements and lhs contains all elements from rhs
with the same priority.

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

7.2. oneTBB Interfaces 668

oneAPI Specification, Release 1.4-provisional-rev-1

Other

Deduction guides

If possible, oneapi::tbb::concurrent_priority_queue constructors support class template argument deduction
(since C++17). Copy and move constructors, including constructors with an explicit allocator_type argument,
provide implicitly-generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_value_t<InputIterator>>,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>>
concurrent_priority_queue(InputIterator, InputIterator,

Compare = Compare(),
Allocator = Allocator())

-> concurrent_priority_queue<iterator_value_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_priority_queue(InputIterator, InputIterator,
Allocator)

-> concurrent_priority_queue<iterator_value_t<InputIterator>,
std::less<iterator_value_t<InputIterator>>,
Allocator>;

template <typename T,
typename Compare = std::less<T>,
typename Allocator = tbb::cache_aligned_allocator<T>>

concurrent_priority_queue(std::initializer_list<T>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_priority_queue<T,
Compare,
Allocator>;

template <typename T,
typename Allocator>

concurrent_priority_queue(std::initializer_list<T>,
Allocator)

-> concurrent_priority_queue<T,
std::less<T>,
Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

7.2. oneTBB Interfaces 669

oneAPI Specification, Release 1.4-provisional-rev-1

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_priority_queue.h>
#include <vector>
#include <functional>

int main() {
std::vector<int> vec;

// Deduces cpq1 as oneapi::tbb::concurrent_priority_queue<int>
oneapi::tbb::concurrent_priority_queue cpq1(vec.begin(), vec.end());

// Deduces cpq2 as oneapi::tbb::concurrent_priority_queue<int, std::greater>
oneapi::tbb::concurrent_priority_queue cpq2(vec.begin(), vec.end(), std::greater{});

}

Unordered associative containers

concurrent_hash_map

[containers.concurrent_hash_map]

concurrent_hash_map is a class template for an unordered associative container that holds key-value pairs with
unique keys and supports concurrent insertion, lookup, and erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_hash_map.h>

namespace oneapi {
namespace tbb {

template <typename Key, typename T,
typename HashCompare = tbb_hash_compare<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_hash_map {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = typename std::allocator_traits<Allocator>

→˓::pointer;
using const_pointer = typename std::allocator_traits<Allocator>

→˓::const_pointer;
(continues on next page)

7.2. oneTBB Interfaces 670

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using hash_compare_type = HashCompare;
using allocator_type = Allocator;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer␣

→˓type>;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant␣

→˓ContainerRange>;

class accessor;
class const_accessor;

// Construction, destruction, copying
concurrent_hash_map();

explicit concurrent_hash_map(const hash_compare_type& compare,
const allocator_type& alloc =␣

→˓allocator_type());

explicit concurrent_hash_map(const allocator_type& alloc);

concurrent_hash_map(size_type n, const hash_compare_type&␣
→˓compare,

const allocator_type& alloc = allocator_
→˓type());

concurrent_hash_map(size_type n, const allocator_type& alloc =␣
→˓allocator_type());

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const hash_compare_type& compare,
const allocator_type& alloc = allocator_

→˓type());

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_
→˓type());

concurrent_hash_map(std::initializer_list<value_type> init,
const hash_compare_type& compare = hash_

→˓compare_type(),
const allocator_type& alloc = allocator_

→˓type());

(continues on next page)

7.2. oneTBB Interfaces 671

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_hash_map(std::initializer_list<value_type> init,
const allocator_type& alloc);

concurrent_hash_map(const concurrent_hash_map& other);
concurrent_hash_map(const concurrent_hash_map& other,

const allocator_type& alloc);

concurrent_hash_map(concurrent_hash_map&& other);
concurrent_hash_map(concurrent_hash_map&& other,

const allocator_type& alloc);

~concurrent_hash_map();

concurrent_hash_map& operator=(const concurrent_hash_map& other␣
→˓);

concurrent_hash_map& operator=(concurrent_hash_map&& other);
concurrent_hash_map& operator=(std::initializer_list<value_type>␣

→˓init);

allocator_type get_allocator() const;

// Concurrently unsafe modifiers
void clear();

void swap(concurrent_hash_map& other);

// Hash policy
void rehash(size_type sz = 0);
size_type bucket_count() const;

// Size and capacity
size_type size() const;
bool empty() const;
size_type max_size() const;

// Lookup
bool find(const_accessor& result, const key_type& key) const;
bool find(accessor& result, const key_type& key);

template <typename K>
bool find(const_accessor& result, const K& key) const;

template <typename K>
bool find(accessor& result, const K& key);

size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

// Modifiers

(continues on next page)

7.2. oneTBB Interfaces 672

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

bool insert(const_accessor& result, const key_type& key);
bool insert(accessor& result, const key_type& key);

template <typename K>
bool insert(const_accessor& result, const K& key);

template <typename K>
bool insert(accessor& result, const K& key);

bool insert(const_accessor& result, const value_type& value);
bool insert(accessor& result, const value_type& value);
bool insert(const_accessor& result, value_type&& value);
bool insert(accessor& result, value_type&& value);

bool insert(const value_type& value);
bool insert(value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

template <typename... Args>
bool emplace(const_accessor& result, Args&&... args);

template <typename... Args>
bool emplace(accessor& result, Args&&... args);

template <typename... Args>
bool emplace(Args&&... args);

bool erase(const key_type& key);

template <typename K>
bool erase(const K& key);

bool erase(const_accessor& item_accessor);
bool erase(accessor& item_accessor);

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_

→˓type& key) const;

(continues on next page)

7.2. oneTBB Interfaces 673

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K&␣

→˓key) const;

// Parallel iteration
range_type range(std::size_t grainsize = 1);
const_range_type range(std::size_t grainsize = 1) const;

}; // class concurrent_hash_map

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type HashCompare must meet the HashCompare requirements.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member classes

accessor and const_accessor

Member classes concurrent_hash_map::accessor and concurrent_hash_map::const_accessor are called
accessors. Accessors allow multiple threads to concurrently access the key-value pairs in concurrent_hash_map.
An accessor is called empty if it does not point to any item.

accessor member class

Member class concurrent_hash_map::accessor provides read-write access to the key-value pair in
concurrent_hash_map.

namespace oneapi {
namespace tbb {

template <typename Key, typename T, typename HashCompare, typename Allocator>
class concurrent_hash_map<Key, T, HashCompare, Allocator>::accessor {

using value_type = std::pair<const Key, T>;

accessor();
~accessor();

bool empty() const;
value_type& operator*() const;

(continues on next page)

7.2. oneTBB Interfaces 674

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

value_type* operator->() const;

void release();
}; // class accessor

} // namespace tbb
} // namespace oneapi

const_accessor member class

Member class concurrent_hash_map::const_accessor provides read only access to the key-value pair in
concurrent_hash_map.

namespace oneapi {
namespace tbb {

template <typename Key, typename T, typename HashCompare, typename Allocator>
class concurrent_hash_map<Key, T, HashCompare, Allocator>::const_accessor {

using value_type = const std::pair<const Key, T>;

const_accessor();
~const_accessor();

bool empty() const;
value_type& operator*() const;
value_type* operator->() const;

void release();
}; // class const_accessor

} // namespace tbb
} // namespace oneapi

Member functions

Construction and destruction

accessor();

const_accessor();

Constructs an empty accessor.

~accessor();

~const_accessor();

Destroys the accessor. If *this is not empty, releases the ownership of the element.

7.2. oneTBB Interfaces 675

oneAPI Specification, Release 1.4-provisional-rev-1

Emptiness

bool empty() const;

Returns: true if the accessor is empty; false, otherwise.

Key-value pair access

value_type& operator*() const;

Returns: a reference to the key-value pair to which the accessor points.

The behavior is undefined if the accessor is empty.

value_type* operator->() const;

Returns: a pointer to the key-value pair to which the accessor points.

The behavior is undefined if the accessor is empty.

Releasing

void release();

If *this is not empty, releases the ownership of the element. *this becomes empty.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_hash_map();

explicit concurrent_hash_map(const hash_compare_type& compare,
const allocator_type& alloc = allocator_type());

explicit concurrent_hash_map(const allocator_type& alloc);

Constructs an empty concurrent_hash_map. The initial number of buckets is unspecified.

If provided, uses the comparator compare to calculate hash codes and compare key_type objects for
equality and the allocator alloc to allocate the memory.

7.2. oneTBB Interfaces 676

oneAPI Specification, Release 1.4-provisional-rev-1

concurrent_hash_map(size_type n, const hash_compare_type& compare,
const allocator_type& alloc = allocator_type());

concurrent_hash_map(size_type n, const allocator_type& alloc = allocator_
→˓type());

Constructs an empty concurrent_hash_map with n preallocated buckets.

If provided, uses the comparator compare to calculate hash codes and compare key_type objects for
equality and the allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const hash_compare_type& compare,
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_hash_map which contains the elements from the half-open interval [first,
last).

If the range [first, last) contains multiple elements with equal keys, it is unspecified which element
would be inserted.

If provided, uses the comparator compare to calculate hash codes and compare key_type objects for
equality and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_hash_map(std::initializer_list<value_type> init,
const hash_compare_type& compare = hash_compare_type(),
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_hash_map(init.begin(), init.end(), compare, alloc).

concurrent_hash_map(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_hash_map(init.begin(), init.end(), alloc).

7.2. oneTBB Interfaces 677

oneAPI Specification, Release 1.4-provisional-rev-1

Copying constructors

concurrent_hash_map(const concurrent_hash_map& other);

concurrent_hash_map(const concurrent_hash_map& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_hash_map(concurrent_hash_map&& other);

concurrent_hash_map(concurrent_hash_map&& other,
const allocator_type& alloc);

Constructs a concurrent_hash_map with the content of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_hash_map();

Destroys the concurrent_hash_map. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_hash_map& operator=(const concurrent_hash_map& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

7.2. oneTBB Interfaces 678

oneAPI Specification, Release 1.4-provisional-rev-1

concurrent_hash_map& operator=(concurrent_hash_map&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_hash_map& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element is inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

clear

void clear();

Removes all elements from the container.

swap

void swap(concurrent_hash_map& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

7.2. oneTBB Interfaces 679

oneAPI Specification, Release 1.4-provisional-rev-1

Hash policy

Rehashing

void rehash(size_type n = 0);

If n > 0, sets the number of buckets to the value that is not less than n.

bucket_count

size_type bucket_count() const;

Returns: the number of buckets in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ with the actual container state in case of pending concurrent insertions or erasures.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container state in case of pending concurrent insertions or erasures.

max_size

size_type max_size() const;

Returns: The maximum number of elements that container can hold.

Lookup

All methods in this section can be executed concurrently with each other and concurrently-safe modifiers.

7.2. oneTBB Interfaces 680

oneAPI Specification, Release 1.4-provisional-rev-1

find

bool find(const_accessor& result, const key_type& key) const;

bool find(accessor& result, const key_type& key);

If the result accessor is not empty, releases the result.

If an element with the key that is equivalent to key exists, sets the result to provide access to this element.

Returns: true if an element with the key equivalent to key is found; false otherwise.

template <typename K>
bool find(const_accessor& result, const K& key) const;

template <typename K>
bool find(accessor& result, const K& key);

If the result accessor is not empty, releases the result.

If an element with the key that compares equivalent to the value key exists, sets the result to provide
access to this element.

Returns: true if an element with the key that compares equivalent to the value key is found; false
otherwise.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

count

size_type count(const key_type& key) const;

Returns: 1 if an element with the key equivalent to key exists; 0 otherwise.

template <typename K>
size_type count(const K& key) const;

Returns: 1 if an element with the key that compares equivalent to the value key exists; 0 otherwise.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

7.2. oneTBB Interfaces 681

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently safe modifiers

All methods in this section can be executed concurrently with each other and lookup methods.

Inserting values

bool insert(const_accessor& result, const key_type& key);

bool insert(accessor& result, const key_type& key);

If the result accessor is not empty, releases the result and attempts to insert the value constructed from
key, mapped_type() into the container.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

Requirements:

• the value_type type must meet the EmplaceConstructible requirements described in the [con-
tainer.requirements] section of the ISO C++ Standard.

• the mapped_type type must meet the DefaultConstructible requirements described in the [de-
faultconstructible] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

template <typename K>
bool insert(const_accessor& result, const K& key);

template <typename K>
bool insert(accessor& result, const K& key);

If the result accessor is not empty, releases the result and attempts to insert the value constructed from
key, mapped_type() into the container.

Sets the result to provide access to the inserted element or to the element with the key, that compares
equivalent to the value key, which was already presented in the container.

This overload only participates in the overload resolution if:

• qualified-id hash_compare_type::is_transparent is valid and denotes a type

• std::is_constructible<key_type, const K&>::value is true

Requirements: the mapped_type type must meet the DefaultConstructible requirements described
in the [defaultconstructible] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(const_accessor& result, const value_type& value);

bool insert(accessor& result, const value_type& value);

7.2. oneTBB Interfaces 682

oneAPI Specification, Release 1.4-provisional-rev-1

If the result accessor is not empty, releases the result and attempts to insert the value value into the
container.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

Requirements: the value_type type must meet the CopyInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(const value_type& value);

Attempts to insert the value value into the container.

Requirements: the value_type type must meet the CopyInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(const_accessor& result, value_type&& value);

bool insert(accessor& result, value_type&& value);

If the result accessor is not empty, releases the result and attempts to insert the value value into the
container using move semantics.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

value is left in a valid, but unspecified state.

Requirements: the value_type type must meet the MoveInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

Requirements: the value_type type must meet the MoveInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple elements with equal keys, it is unspecified which element
should be inserted.

7.2. oneTBB Interfaces 683

oneAPI Specification, Release 1.4-provisional-rev-1

Requirements: the InputIterator type must meet the requirements of InputIterator described in the
[input.iterators] section of the ISO C++ Standard.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Emplacing elements

template <typename... Args>
bool emplace(const_accessor& result, Args&&... args);

template <typename... Args>
bool emplace(accessor& result, Args&&... args);

If the result accessor is not empty, releases the result and attempts to insert an element constructed
in-place from args into the container.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

Requirements: the type value_type must meet the EmplaceConstructible requirements described
in the [container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise

template <typename... Args>
bool emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Requirements: the type value_type must meet the EmplaceConstructible requirements described
in the [container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise

Erasing elements

bool erase(const key_type& key);

If an element with the key equivalent to key exists, removes it from the container.

Returns: true if an element is removed; false otherwise.

template <typename K>
bool erase(const K& key);

If an element with the key that compares equivalent to the value key exists, removes it from the container.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

Returns: true if an element is removed; false otherwise.

7.2. oneTBB Interfaces 684

oneAPI Specification, Release 1.4-provisional-rev-1

bool erase(const_accessor& item_accessor);
bool erase(accessor& item_accessor);

Removes an element owned by item_accessor from the container.

Requirements: item_accessor should not be empty.

Returns: true if an element is removed by the current thread; false if it is removed by another thread.

Iterators

The types concurrent_hash_map::iterator and concurrent_hash_map::const_iterator meet the require-
ments of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: a range containing an element that is equivalent to key. If there is no such element in the
container, returns {end(), end()} .

7.2. oneTBB Interfaces 685

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

Returns: a range containing an element which compares equivalent to the value key. If there is no such
element in the container, returns {end(), end()}.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

Parallel iteration

Member types concurrent_hash_map::range_type and concurrent_hash_map::const_range_typemeet the
ContainerRange requirements.

These types differ only in that the bounds for a concurrent_hash_map::const_range_type are of type
concurrent_hash_map::const_iterator, whereas the bounds for a concurrent_hash_map::range_type are
of type concurrent_hash_map::iterator.

Traversing the concurrent_hash_map is not thread safe. The behavior is undefined in case of concurrent execution
of any member functions while traversing the range_type or const_range_type.

range member function

range_type range(std::size_t grainsize = 1);

const_range_type range(std::size_t grainsize = 1) const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_hash_map objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_hash_map as a type alias for which the non-member functions
are reachable only via argument-dependent lookup.

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator==(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator!=(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

template <typename Key, typename T, typename HashCompare, typename Allocator>
void swap(concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

7.2. oneTBB Interfaces 686

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member swap

template <typename Key, typename T, typename HashCompare, typename Allocator>
void swap(concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two objects of concurrent_hash_map are equal if the following conditions are true:

• They contain equal number of elements.

• Each element from one container is also available in the other.

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator==(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

Returns: true if lhs is equivalent to rhs; false, otherwise.

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator!=(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, concurrent_hash_map constructors support class template argument deduction (since C++17). Copy and
move constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated
deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename HashCompare = tbb_hash_compare<iterator_key_t<InputIterator>>,
typename Allocator = tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_hash_map(InputIterator, InputIterator,
HashCompare = HashCompare(),
Allocator = Allocator())

-> concurrent_hash_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
HashCompare,
Allocator>;

template <typename InputIterator,
typename Allocator>

(continues on next page)

7.2. oneTBB Interfaces 687

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_hash_map(InputIterator, InputIterator, Allocator)
-> concurrent_hash_map<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>,
tbb_hash_compare<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key, typename T,
typename HashCompare = tbb_hash_compare<std::remove_const_t<Key>>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

concurrent_hash_map(std::initializer_list<std::pair<Key, T>>,
HashCompare = HashCompare(),
Allocator = Allocator())

-> concurrent_hash_map<std::remove_const_t<Key>,
T,
HashCompare,
Allocator>;

template <typename Key, typename T,
typename Allocator>

concurrent_hash_map(std::initializer_list<std::pair<Key, T>>,
Allocator)

-> concurrent_hash_map<std::remove_const_t<Key>,
T,
tbb_hash_compare<std::remove_const_t<Key>>,
Allocator>;

Where the type aliases iterator_key_t, iterator_mapped_t, and iterator_alloc_value_t are defined as fol-
lows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The HashCompare type does not meet the Allocator requirements.

Example

7.2. oneTBB Interfaces 688

oneAPI Specification, Release 1.4-provisional-rev-1

#include <oneapi/tbb/concurrent_hash_map.h>
#include <vector>

int main() {
std::vector<std::pair<const int, float>> v;

// Deduces chmap1 as oneapi::tbb::concurrent_hash_map<int, float>
oneapi::tbb::concurrent_hash_map chmap1(v.begin(), v.end());

std::allocator<std::pair<const int, float>> alloc;
// Deduces chmap2 as oneapi::tbb::concurrent_hash_map<int, float,
// tbb_hash_compare<int>,
// std::allocator<std::pair<const int,␣

→˓float>>>
oneapi::tbb::concurrent_hash_map chmap2(v.begin(), v.end(), alloc);

}

concurrent_unordered_map

[containers.concurrent_unordered_map]

oneapi::tbb::concurrent_unordered_map is a class template that represents an unordered associative container.
It stores key-value pairs with unique keys and supports concurrent insertion, lookup, and traversal, but does not support
concurrent erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_map.h>

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_map {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;
(continues on next page)

7.2. oneTBB Interfaces 689

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_unordered_map();

explicit concurrent_unordered_map(size_type bucket_count, const hasher&␣
→˓hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_map(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_map(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_map(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/
→˓,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,

(continues on next page)

7.2. oneTBB Interfaces 690

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const allocator_type& alloc);

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/

→˓,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_map(const concurrent_unordered_map& other);
concurrent_unordered_map(const concurrent_unordered_map& other,

const allocator_type& alloc);

concurrent_unordered_map(concurrent_unordered_map&& other);
concurrent_unordered_map(concurrent_unordered_map&& other,

const allocator_type& alloc);

~concurrent_unordered_map();

concurrent_unordered_map& operator=(const concurrent_unordered_map& other);
concurrent_unordered_map& operator=(concurrent_unordered_map&& other)␣

→˓noexcept(/*See details*/);

concurrent_unordered_map& operator=(std::initializer_list<value_type> init␣
→˓);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

(continues on next page)

7.2. oneTBB Interfaces 691

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
(continues on next page)

7.2. oneTBB Interfaces 692

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_unordered_map& other);

// Element access
mapped_type& at(const key_type& key);
const mapped_type& at(const key_type& key) const;

mapped_type& operator[](const key_type& key);
mapped_type& operator[](key_type&& key);

// Lookup
size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);
const_local_iterator unsafe_begin(size_type n) const;

(continues on next page)

7.2. oneTBB Interfaces 693

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
void max_load_factor(float ml);

void rehash(size_type count);

void reserve(size_type count);

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_map

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

7.2. oneTBB Interfaces 694

oneAPI Specification, Release 1.4-provisional-rev-1

Description

oneapi::tbb::concurrent_unordered_map is an unordered associative container, which elements are organized
into buckets. The value of the hash function Hash for a Key object determines the number of the bucket in which the
corresponding element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_map::key_equal is defined as the value of this qualified-id. In this case, the pro-
gram is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the member type concurrent_unordered_map::key_equal is defined as the value of the template pa-
rameter KeyEqual.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_map();

explicit concurrent_unordered_map(const allocator_type& alloc);

Constructs an empty concurrent_unordered_map. The initial number of buckets is unspecified.

If provided, uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_map(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_map(size_type bucket_count, const allocator_type& alloc␣
→˓);

concurrent_unordered_map(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_map with bucket_count buckets.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

7.2. oneTBB Interfaces 695

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type& alloc␣
→˓);

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs the concurrent_unordered_map that contains the elements from the half-open interval
[first, last).

If the range [first, last) contains multiple elements with equal keys, it is unspecified which element
would be inserted.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_unordered_map(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type& alloc␣

→˓);

Equivalent to concurrent_unordered_map(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

7.2. oneTBB Interfaces 696

oneAPI Specification, Release 1.4-provisional-rev-1

Equivalent to concurrent_unordered_map(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_map(const concurrent_unordered_map& other);

concurrent_unordered_map(const concurrent_unordered_map& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_unordered_map(concurrent_unordered_map&& other);

concurrent_unordered_map(concurrent_unordered_map&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_map with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_unordered_map();

Destroys the concurrent_unordered_map. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

7.2. oneTBB Interfaces 697

oneAPI Specification, Release 1.4-provisional-rev-1

Assignment operators

concurrent_unordered_map& operator=(const concurrent_unordered_map& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_map& operator=(concurrent_unordered_map&& other)␣
→˓noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_map& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_unordered_map::iterator and concurrent_unordered_map::const_iterator meet
the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

7.2. oneTBB Interfaces 698

oneAPI Specification, Release 1.4-provisional-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

7.2. oneTBB Interfaces 699

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool> where iterator points to the inserted element or to an exist-
ing element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& value);

Attempts to insert value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

7.2. oneTBB Interfaces 700

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename P>
std::pair<iterator, bool> insert(P&& value);

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

template <typename P>
iterator insert(const_iterator hint, P&& value);

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple elements with equal keys, it is unspecified which element
should be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

7.2. oneTBB Interfaces 701

oneAPI Specification, Release 1.4-provisional-rev-1

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an exist-
ing element with key equal to nh.key(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element with key equal to nh.key().

Merging containers

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>& source);

(continues on next page)

7.2. oneTBB Interfaces 702

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>&& source);

Transfers those elements from source which keys do not exist in the container.

In case of merging with the container with multiple elements with equal keys, it is unspecified which
element would be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes the element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

7.2. oneTBB Interfaces 703

oneAPI Specification, Release 1.4-provisional-rev-1

Removes the element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

7.2. oneTBB Interfaces 704

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
node_type unsafe_extract(const K& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

swap

void swap(concurrent_unordered_map& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

Element access

at

value_type& at(const key_type& key);

const value_type& at(const key_type& key) const;

Returns: a reference to item.second, where item is the element with the key equivalent to key.

Throws: std::out_of_range exception if the element with the key equivalent to key is not presented
in the container.

7.2. oneTBB Interfaces 705

oneAPI Specification, Release 1.4-provisional-rev-1

operator[]

value_type& operator[](const key_type& key);

If the element with the key equivalent to key is not presented in the container, inserts a new el-
ement constructed in-place from std::piecewise_construct, std::forward_as_tuple(key),
std::tuple<>().

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Returns: a reference to item.second, where item is the element with the key equivalent to key.

value_type& operator[](key_type&& key);

If the element with the key equivalent to key is not presented in the container,
inserts a new element constructed in-place from std::piecewise_construct,
std::forward_as_tuple(std::move(key)), std::tuple<>().

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Returns: a reference to item.second where item is the element with the key equivalent to key.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key that is equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

7.2. oneTBB Interfaces 706

oneAPI Specification, Release 1.4-provisional-rev-1

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key that is equivalent to key, or end() if no such element
exists.

These overloads only participate in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element with the key equivalent to key exists, a pair of iterators {f, l}, where f is an
iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

7.2. oneTBB Interfaces 707

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element with the key equivalent to key exists, a pair of iterators {f, l}, where f is an
iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

These overloads only participate in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_map::local_iterator and concurrent_unordered_map::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

Use these iterators to traverse a certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

7.2. oneTBB Interfaces 708

oneAPI Specification, Release 1.4-provisional-rev-1

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

Hash policy

Hash policy of concurrent_unordered_map manages the number of buckets in the container and the allowed maxi-
mum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can automat-
ically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

7.2. oneTBB Interfaces 709

oneAPI Specification, Release 1.4-provisional-rev-1

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_map::range_type and concurrent_unordered_map::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_map::const_range_type
are of type concurrent_unordered_map::const_iterator, whereas the bounds for a
concurrent_unordered_map::range_type are of type concurrent_unordered_map::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_unordered_map
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective compar-
ison operations. For example, an implementation may define the classes and functions in the same internal namespace
and define oneapi::tbb::concurrent_unordered_map as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

7.2. oneTBB Interfaces 710

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Non-member swap

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two objects of concurrent_unordered_map are equal if the following conditions are true:

• They contains an equal number of elements.

• Each element from the one container is also available in the other.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

7.2. oneTBB Interfaces 711

oneAPI Specification, Release 1.4-provisional-rev-1

Other

Deduction guides

If possible, concurrent_unordered_map constructors support class template argument deduction (since C++17).
Copy and move constructors, including constructors with an explicit allocator_type argument, provide implicitly-
generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_key_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_key_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_unordered_map(InputIterator, InputIterator,
map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

template <typename InputIterator,
typename Hash,
typename Allocator>

concurrent_unordered_map(InputIterator, InputIterator,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_map(InputIterator, InputIterator,
map_size_type,
Allocator)

-> concurrent_unordered_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::hash<iterator_key_t<InputIterator>>,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key,
typename T,
typename Hash = std::hash<std::remove_const_t<Key>>,
typename KeyEqual = std::equal_to<std::remove_const_t<Key>>,
typename Allocator = tbb::tbb_allocator<std::pair<const Key, T>>>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
(continues on next page)

7.2. oneTBB Interfaces 712

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
Hash,
KeyEqual,
Allocator>;

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Allocator)

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
Allocator)

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

template <typename Key,
typename T,
typename Hash,
typename Allocator>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
Hash,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

Where the map_size_type type refers to the size_typemember type of the deduced concurrent_unordered_map
and the type aliases iterator_key_t, iterator_mapped_t, and iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>

(continues on next page)

7.2. oneTBB Interfaces 713

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_unordered_map.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<std::pair<int, float>> v;

// Deduces m1 as concurrent_unordered_map<int, float>
oneapi::tbb::concurrent_unordered_map m1(v.begin(), v.end());

// Deduces m2 as concurrent_unordered_map<int, float, CustomHasher>;
oneapi::tbb::concurrent_unordered_map m2(v.begin(), v.end(), CustomHasher{});

}

concurrent_unordered_multimap

[containers.concurrent_unordered_multimap]

oneapi::tbb::concurrent_unordered_multimap is a class template that represents an unordered associative con-
tainer. It stores key-value pairs and supports concurrent insertion, lookup, and traversal, but does not support concurrent
erasure. In this container, multiple elements with equal keys can be stored.

7.2. oneTBB Interfaces 714

oneAPI Specification, Release 1.4-provisional-rev-1

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_map.h>

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_multimap {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_unordered_multimap();

explicit concurrent_unordered_multimap(size_type bucket_count, const hasher&
→˓ hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());

(continues on next page)

7.2. oneTBB Interfaces 715

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_unordered_multimap(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multimap(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_multimap(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

template <typename Inputiterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_multimap(const concurrent_unordered_multimap& other);
concurrent_unordered_multimap(const concurrent_unordered_multimap& other,

const allocator_type& alloc);

concurrent_unordered_multimap(concurrent_unordered_multimap&& other);
concurrent_unordered_multimap(concurrent_unordered_multimap&& other,

const allocator_type& alloc);

~concurrent_unordered_multimap();

(continues on next page)

7.2. oneTBB Interfaces 716

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_unordered_multimap& operator=(const concurrent_unordered_
→˓multimap& other);

concurrent_unordered_multimap& operator=(concurrent_unordered_multimap&&␣
→˓other) noexcept(/*See details*/);

concurrent_unordered_multimap& operator=(std::initializer_list<value_type>␣
→˓init);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);
iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

(continues on next page)

7.2. oneTBB Interfaces 717

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_unordered_multimap& other);

// Lookup
size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
(continues on next page)

7.2. oneTBB Interfaces 718

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);
const_local_iterator unsafe_begin(size_type n) const;
const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
void max_load_factor(float ml);

void rehash(size_type count);

void reserve(size_type count);

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_multimap
} // namespace tbb

(continues on next page)

7.2. oneTBB Interfaces 719

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Description

oneapi::tbb::concurrent_unordered_multimap is an unordered associative container, which elements are or-
ganized into buckets. The value of the hash function Hash for a Key object determines the number of the bucket in
which the corresponding element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_multimap::key_equal is defined as the value of this qualified-id. In this case, the
program is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the type concurrent_unordered_multimap::key_equal is defined as the value of the template param-
eter KeyEqual.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_multimap();

explicit concurrent_unordered_multimap(const allocator_type& alloc);

Constructs an empty concurrent_unordered_multimap. The initial number of buckets is unspecified.

If provided uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_multimap(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());
(continues on next page)

7.2. oneTBB Interfaces 720

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_unordered_multimap(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multimap(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_multimap with bucket_count buckets.

If provided uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

template <typename Inputiterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs the concurrent_unordered_multimap that contains all elements from the half-open interval
[first, last)`.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

Equivalent to concurrent_unordered_multimap(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

7.2. oneTBB Interfaces 721

oneAPI Specification, Release 1.4-provisional-rev-1

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

Equivalent to concurrent_unordered_multimap(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Equivalent to concurrent_unordered_multimap(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_multimap(const concurrent_unordered_multimap& other);

concurrent_unordered_multimap(const concurrent_unordered_multimap& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_unordered_multimap(concurrent_unordered_multimap&& other);

concurrent_unordered_multimap(concurrent_unordered_multimap&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_multimap with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 722

oneAPI Specification, Release 1.4-provisional-rev-1

Destructor

~concurrent_unordered_multimap();

Destroys the concurrent_unordered_multimap. Calls destructors of the stored elements and deallo-
cates the used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_unordered_multimap& operator=(const concurrent_unordered_multimap&␣
→˓other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_multimap& operator=(concurrent_unordered_multimap&&␣
→˓other) noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_multimap& operator=(std::initializer_list<value_type>␣
→˓init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

7.2. oneTBB Interfaces 723

oneAPI Specification, Release 1.4-provisional-rev-1

Iterators

The types concurrent_unordered_multimap::iterator and concurrent_unordered_multimap::const_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

7.2. oneTBB Interfaces 724

oneAPI Specification, Release 1.4-provisional-rev-1

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args)

Inserts an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)

Inserts an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

Inserting values

std::pair<iterator, bool> insert(const value_type& value)

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, const value_type& other)

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

7.2. oneTBB Interfaces 725

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename P>
std::pair<iterator, bool> insert(P&& value)

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

template <typename P>
iterator insert(const_iterator hint, P&& value)

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value)

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>where iterator points to the inserted element. Boolean value
is always true.

iterator insert(const_iterator hint, value_type&& other)

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last)

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init)

Equivalent to insert(init.begin(), init.end()).

7.2. oneTBB Interfaces 726

oneAPI Specification, Release 1.4-provisional-rev-1

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

Merging containers

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>&& source);

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

7.2. oneTBB Interfaces 727

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes all elements with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed elements.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes all elements with the key equivalent to key if they exist in the container.

Invalidates all iterators and references to the removed elements.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

7.2. oneTBB Interfaces 728

oneAPI Specification, Release 1.4-provisional-rev-1

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If at least one element with the key equivalent to key exists, transfers ownership of one of these element
from the container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If at least one element with the key equivalent to key exists, transfers ownership of this element from the
container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key equivalent to key exists, it is unspecified which element should
be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

7.2. oneTBB Interfaces 729

oneAPI Specification, Release 1.4-provisional-rev-1

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

swap

void swap(concurrent_unordered_multimap& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

7.2. oneTBB Interfaces 730

oneAPI Specification, Release 1.4-provisional-rev-1

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
found.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
found.

These overloads only participates in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if at least one element with the key equivalent to key exists in the container; false,
otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if at least one element with the key equivalent to key exists in the container; false,
otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where
f is an iterator to the first element with the key equivalent to key, l is an iterator to the element which
follows the last element with the key equivalent to key. Otherwise, {end(), end()}.

7.2. oneTBB Interfaces 731

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element with the key equivalent to key exists - a pair of iterators {f, l}, where f
is an iterator to the first element with the key equivalent to key, l is an iterator to the element that follows
the last element with the key equivalent to key. Otherwise,``{end(), end()}``.

These overloads only participates in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_multimap::local_iterator and concurrent_unordered_multimap::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

These iterators are used to traverse the certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

7.2. oneTBB Interfaces 732

oneAPI Specification, Release 1.4-provisional-rev-1

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

Hash policy

Hash policy of concurrent_unordered_multimap manages the number of buckets in the container and the allowed
maximum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can
automatically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

7.2. oneTBB Interfaces 733

oneAPI Specification, Release 1.4-provisional-rev-1

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_multimap::range_type and concurrent_unordered_multimap::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_multimap::const_range_type
are of type concurrent_unordered_multimap::const_iterator, whereas the bounds for a
concurrent_unordered_multimap::range_type are of type concurrent_unordered_multimap::iterator.

7.2. oneTBB Interfaces 734

oneAPI Specification, Release 1.4-provisional-rev-1

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provides binary comparison and swap operations on oneapi::tbb::concurrent_unordered_multimap
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_unordered_multimap as a type alias for which the non-member
functions are reachable only via argument-dependent lookup.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& rhs);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

Non-member swap

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

7.2. oneTBB Interfaces 735

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member binary comparisons

Two objects of concurrent_unordered_multimap are equal if the following conditions are true:

• They contain an equal number of elements.

• Each group of elements with the same key in one container has the corresponding group of equivalent elements
in the other container (not necessary in the same order).

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, concurrent_unordered_multimap constructors support class template argument deduction (since
C++17). Copy and move constructors, including constructors with an explicit allocator_type argument, provide
implicitly-generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_key_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_key_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_unordered_multimap(InputIterator, InputIterator,
map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

(continues on next page)

7.2. oneTBB Interfaces 736

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename InputIterator,
typename Hash,
typename Allocator>

concurrent_unordered_multimap(InputIterator, InputIterator,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_multimap(InputIterator, InputIterator,
map_size_type,
Allocator)

-> concurrent_unordered_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::hash<iterator_key_t<InputIterator>>,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key,
typename T,
typename Hash = std::hash<std::remove_const_t<Key>>,
typename KeyEqual = std::equal_to<std::remove_const_t<Key>>,
typename Allocator = tbb::tbb_allocator<std::pair<const Key, T>>>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
Hash,
KeyEqual,
Allocator>;

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Allocator)

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

(continues on next page)

7.2. oneTBB Interfaces 737

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
Allocator)

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

template <typename Key,
typename T,
typename Hash,
typename Allocator>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
Hash,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

Where the map_size_type type refers to the size_type member type of the deduced
concurrent_unordered_multimap and the type aliases iterator_key_t, iterator_mapped_t, and
iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

7.2. oneTBB Interfaces 738

oneAPI Specification, Release 1.4-provisional-rev-1

#include <oneapi/tbb/concurrent_unordered_map.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<std::pair<int, float>> v;

// Deduces m1 as concurrent_unordered_multimap<int, float>
oneapi::tbb::concurrent_unordered_multimap m1(v.begin(), v.end());

// Deduces m2 as concurrent_unordered_multimap<int, float, CustomHasher>;
oneapi::tbb::concurrent_unordered_multimap m2(v.begin(), v.end(), CustomHasher{});

}

concurrent_unordered_set

[containers.concurrent_unordered_set]

oneapi::tbb::concurrent_unordered_set is a class template that represents an unordered sequence of unique
elements. It supports concurrent insertion, lookup, and traversal, but does not support concurrent erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_set {
public:

using key_type = Key;
using value_type = Key;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
(continues on next page)

7.2. oneTBB Interfaces 739

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using const_pointer = typename std::allocator_traits<Allocator>::const_
→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_unordered_set();

explicit concurrent_unordered_set(size_type bucket_count, const hasher&␣
→˓hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_set(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_set(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_set(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/
→˓,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/

(continues on next page)

7.2. oneTBB Interfaces 740

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

→˓,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_set(const concurrent_unordered_set& other);
concurrent_unordered_set(const concurrent_unordered_set& other,

const allocator_type& alloc);

concurrent_unordered_set(concurrent_unordered_set&& other);
concurrent_unordered_set(concurrent_unordered_set&& other,

const allocator_type& alloc);

~concurrent_unordered_set();

concurrent_unordered_set& operator=(const concurrent_unordered_set& other);
concurrent_unordered_set& operator=(concurrent_unordered_set&& other)␣

→˓noexcept(/*See details*/);

concurrent_unordered_set& operator=(std::initializer_list<value_type> init␣
→˓);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);
iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

(continues on next page)

7.2. oneTBB Interfaces 741

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

(continues on next page)

7.2. oneTBB Interfaces 742

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

void swap(concurrent_unordered_set& other);

// Lookup
size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);
const_local_iterator unsafe_begin(size_type n) const;
const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
(continues on next page)

7.2. oneTBB Interfaces 743

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

void max_load_factor(float ml);

void rehash(size_type count);

void reserve(size_type count);

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_set
} // namespace tbb

} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Description

oneapi::tbb::concurrent_unordered_set is an unordered sequence, which elements are organized into buckets.
The value of the hash function Hash for Key object determines the number of the bucket in which the corresponding
element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_set::key_equal is defined as the value of this qualified-id. In this case, the pro-
gram is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the member type concurrent_unordered_set::key_equal is defined as the value of the template pa-
rameter KeyEqual.

7.2. oneTBB Interfaces 744

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_set();

explicit concurrent_unordered_set(const allocator_type& alloc);

Constructs an empty concurrent_unordered_set. The initial number of buckets is unspecified.

If provided, uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_set(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_set(size_type bucket_count, const allocator_type& alloc␣
→˓);

concurrent_unordered_set(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_set with bucket_count buckets.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type& alloc␣
→˓);

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

7.2. oneTBB Interfaces 745

oneAPI Specification, Release 1.4-provisional-rev-1

Constructs the concurrent_unordered_set that contains the elements from the half-open interval
[first, last).

If the range [first, last) contains multiple equal elements, it is unspecified which element would be
inserted.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_unordered_set(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type& alloc␣

→˓);

Equivalent to concurrent_unordered_set(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Equivalent to concurrent_unordered_set(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_set(const concurrent_unordered_set& other);

concurrent_unordered_set(const concurrent_unordered_set& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 746

oneAPI Specification, Release 1.4-provisional-rev-1

Moving constructors

concurrent_unordered_set(concurrent_unordered_set&& other);

concurrent_unordered_set(concurrent_unordered_set&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_set with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_unordered_set();

Destroys the concurrent_unordered_set. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_unordered_set& operator=(const concurrent_unordered_set& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_set& operator=(concurrent_unordered_set&& other)␣
→˓noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

7.2. oneTBB Interfaces 747

oneAPI Specification, Release 1.4-provisional-rev-1

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_set& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple equal elements, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_unordered_set::iterator and concurrent_unordered_set::const_iterator meet
the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

7.2. oneTBB Interfaces 748

oneAPI Specification, Release 1.4-provisional-rev-1

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert the value value into the container.

Returns: std::pair<iterator, bool> where iterator points to the inserted element or to an exist-
ing equal element. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Attempts to insert the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing equal element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting equal element. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

7.2. oneTBB Interfaces 749

oneAPI Specification, Release 1.4-provisional-rev-1

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing equal element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple equal elements, it is unspecified which element should
be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting element equal to nh.value(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

7.2. oneTBB Interfaces 750

oneAPI Specification, Release 1.4-provisional-rev-1

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element equal to nh.value().

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting equal element. Boolean value is true if insertion took place, false otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing equal element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Merging containers

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

(continues on next page)

7.2. oneTBB Interfaces 751

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source);

Transfers those elements from source that do not exist in the container.

In case of merging with the container with multiple equal elements, it is unspecified which element would
be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable, and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

7.2. oneTBB Interfaces 752

oneAPI Specification, Release 1.4-provisional-rev-1

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable, and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

7.2. oneTBB Interfaces 753

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
node_type unsafe_extract(const K& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload participates in overload resolution only if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_unordered_set& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

7.2. oneTBB Interfaces 754

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
size_type count(const K& key);

Returns: the number of elements that is equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element that is equivalent to key, or end() if no such element exists.

These overloads only participates in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

7.2. oneTBB Interfaces 755

oneAPI Specification, Release 1.4-provisional-rev-1

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

These overloads participate in overload resolution only if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_set::local_iterator and concurrent_unordered_set::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

Use these iterators to traverse the certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

7.2. oneTBB Interfaces 756

oneAPI Specification, Release 1.4-provisional-rev-1

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

Hash policy

Hash policy of concurrent_unordered_set manages the number of buckets in the container and the allowed maxi-
mum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can automat-
ically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

7.2. oneTBB Interfaces 757

oneAPI Specification, Release 1.4-provisional-rev-1

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_set::range_type and concurrent_unordered_set::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_set::const_range_type
are of type concurrent_unordered_set::const_iterator, whereas the bounds for a
concurrent_unordered_set::range_type are of type concurrent_unordered_set::iterator.

7.2. oneTBB Interfaces 758

oneAPI Specification, Release 1.4-provisional-rev-1

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_unordered_set
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective compar-
ison operations. For example, an implementation may define the classes and functions in the same internal namespace
and define oneapi::tbb::concurrent_unordered_set as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

Non-member swap

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

7.2. oneTBB Interfaces 759

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member binary comparisons

Two objects of concurrent_unordered_set are equal if the following conditions are true:

• They contain an equal number of elements.

• Each element from one container is also available in the other.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

Returns: true if lhs is equal to rhs, false otherwise.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, concurrent_unordered_set constructors support class template argument deduction (since C++17).
Copy and move constructors, including constructors with an explicit allocator_type argument, provide implicitly-
generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_value_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_unordered_set(InputIterator, InputIterator,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_set<iterator_value_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_set(InputIterator, InputIterator,
set_size_type,
Allocator)

-> concurrent_unordered_set<iterator_value_t<InputIterator>,
(continues on next page)

7.2. oneTBB Interfaces 760

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::hash<iterator_value_t<InputIterator>>,
std::equal_to<iterator_value_t<InputIterator>>,
Allocator>;

template <typename T,
typename Hash = std::hash<T>,
typename KeyEqual = std::equal_to<T>,
typename Allocator = tbb::tbb_allocator<T>>

concurrent_unordered_set(std::initializer_list<T>,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_set<T,
Hash,
KeyEqual,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_set(std::initializer_list<T>,
set_size_type,
Allocator)

-> concurrent_unordered_set<T,
std::hash<T>,
std::equal_to<T>,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_set(std::initializer_list<T>,
Allocator)

-> concurrent_unordered_set<T,
std::hash<T>,
std::equal_to<T>,
Allocator>;

template <typename T,
typename Hash,
typename Allocator>

concurrent_unordered_set(std::initializer_list<T>,
set_size_type,
Hash,
Allocator)

-> concurrent_unordered_set<T,
Hash,
std::equal_to<T>,
Allocator>;

Where the set_size_type type refers to the size_typemember type of the deduced concurrent_unordered_set
and the type alias iterator_value_t is defined as follows:

7.2. oneTBB Interfaces 761

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_unordered_set.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<int> v;

// Deduces s1 as concurrent_unordered_set<int>
oneapi::tbb::concurrent_unordered_set s1(v.begin(), v.end());

// Deduces s2 as concurrent_unordered_set<int, CustomHasher>;
oneapi::tbb::concurrent_unordered_set s2(v.begin(), v.end(), CustomHasher{});

}

concurrent_unordered_multiset

[containers.concurrent_unordered_multiset]

oneapi::tbb::concurrent_unordered_multiset is a class template that represents an unordered sequence of
elements, It supports concurrent insertion, lookup, and traversal, but does not support concurrent erasure. In this
container, multiple equivalent elements can be stored.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_multiset {
public:

(continues on next page)

7.2. oneTBB Interfaces 762

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using key_type = Key;
using value_type = Key;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_unordered_multiset();

explicit concurrent_unordered_multiset(size_type bucket_count, const hasher&
→˓ hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());

concurrent_unordered_multiset(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multiset(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_multiset(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),

(continues on next page)

7.2. oneTBB Interfaces 763

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

template <typename Inputiterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_multiset(const concurrent_unordered_multiset& other);
concurrent_unordered_multiset(const concurrent_unordered_multiset& other,

const allocator_type& alloc);

concurrent_unordered_multiset(concurrent_unordered_multiset&& other);
concurrent_unordered_multiset(concurrent_unordered_multiset&& other,

const allocator_type& alloc);

~concurrent_unordered_multiset();

concurrent_unordered_multiset& operator=(const concurrent_unordered_
→˓multiset& other);

concurrent_unordered_multiset& operator=(concurrent_unordered_multiset&&␣
→˓other) noexcept(/*See details*/);

concurrent_unordered_multiset& operator=(std::initializer_list<value_type>␣
→˓init);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;

(continues on next page)

7.2. oneTBB Interfaces 764

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);
iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

(continues on next page)

7.2. oneTBB Interfaces 765

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_unordered_multiset& other);

// Lookup
size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);

(continues on next page)

7.2. oneTBB Interfaces 766

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const_local_iterator unsafe_begin(size_type n) const;
const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
void max_load_factor(float ml);

void rehash(size_type count);

void reserve(size_type count);

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_multiset
} // namespace tbb

} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

7.2. oneTBB Interfaces 767

oneAPI Specification, Release 1.4-provisional-rev-1

Description

oneapi::tbb::concurrent_unordered_multiset is an unordered sequence, which elements are organized into
buckets. The value of the hash function Hash for Key object determines the number of the bucket in which the corre-
sponding element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_multiset::key_equal is defined as the value of this qualified-id. In this case, the
program is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the member type concurrent_unordered_multiset::key_equal is defined as the value of the template
parameter KeyEqual.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_multiset();

explicit concurrent_unordered_multiset(const allocator_type& alloc);

Constructs an empty concurrent_unordered_multiset. The initial number of buckets is unspecified.

If provided, uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_multiset(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());

concurrent_unordered_multiset(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multiset(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_multiset with bucket_count buckets.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

7.2. oneTBB Interfaces 768

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

template <typename Inputiterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs the concurrent_unordered_multiset, which contains the elements from the half-open in-
terval [first, last)`.

If provided uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

Equivalent to concurrent_unordered_multiset(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

Equivalent to concurrent_unordered_multiset(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

7.2. oneTBB Interfaces 769

oneAPI Specification, Release 1.4-provisional-rev-1

Equivalent to concurrent_unordered_multiset(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_multiset(const concurrent_unordered_multiset& other);

concurrent_unordered_multiset(const concurrent_unordered_multiset& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_unordered_multiset(concurrent_unordered_multiset&& other);

concurrent_unordered_multiset(concurrent_unordered_multiset&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_multiset with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_unordered_multiset();

Destroys the concurrent_unordered_multiset. Calls destructors of the stored elements and deallo-
cates the used storage.

The behavior is undefined in case of concurrent operations with *this.

7.2. oneTBB Interfaces 770

oneAPI Specification, Release 1.4-provisional-rev-1

Assignment operators

concurrent_unordered_multiset& operator=(const concurrent_unordered_multiset&␣
→˓other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_multiset& operator=(concurrent_unordered_multiset&&␣
→˓other) noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_multiset& operator=(std::initializer_list<value_type>␣
→˓init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_unordered_multiset::iterator and concurrent_unordered_multiset::const_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

7.2. oneTBB Interfaces 771

oneAPI Specification, Release 1.4-provisional-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ with the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

7.2. oneTBB Interfaces 772

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value)

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, const value_type& other)

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

std::pair<iterator, bool> insert(value_type&& value)

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, value_type&& other)

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last)

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

7.2. oneTBB Interfaces 773

oneAPI Specification, Release 1.4-provisional-rev-1

void insert(std::initializer_list<value_type> init)

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise - inserts the node, owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>where iterator points to the inserted element. Boolean value
is always true.

iterator insert(const_iterator hint, node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise - inserts the node, owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args)

Inserts an element ,constructed in-place from args into the container.

Returns: std::pair<iterator, bool>where iterator points to the inserted element. Boolean value
is always true.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)

Inserts an element ,constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

7.2. oneTBB Interfaces 774

oneAPI Specification, Release 1.4-provisional-rev-1

Merging containers

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source)

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣
→˓source)

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source)

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source)

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

7.2. oneTBB Interfaces 775

oneAPI Specification, Release 1.4-provisional-rev-1

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes the element that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

7.2. oneTBB Interfaces 776

oneAPI Specification, Release 1.4-provisional-rev-1

If there are multiple elements equivalent to key, it is unspecified which element should be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

If there are multiple elements which are equivalent to key, it is unspecified which element should be
transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_unordered_multiset& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

7.2. oneTBB Interfaces 777

oneAPI Specification, Release 1.4-provisional-rev-1

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements that are equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

If there are multiple elements equivalent to key, it is unspecified which element should be found.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

If there are multiple elements equivalent to key, it is unspecified which element should be found.

These overloads only participate in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

7.2. oneTBB Interfaces 778

oneAPI Specification, Release 1.4-provisional-rev-1

contains

bool contains(const key_type& key) const;

Returns: true if at least one element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if at least one element equal to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where
f is an iterator to the first element equivalent to key, l is an iterator to the element that follows the last
element equivalent to key. Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where
f is an iterator to the first element equivalent to key, l is an iterator to the element that follows the last
element equivalent to key. Otherwise, {end(), end()}.

These overloads participate in overload resolution only if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_multiset::local_iterator and concurrent_unordered_multiset::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

These iterators are used to traverse the certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

7.2. oneTBB Interfaces 779

oneAPI Specification, Release 1.4-provisional-rev-1

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

7.2. oneTBB Interfaces 780

oneAPI Specification, Release 1.4-provisional-rev-1

Hash policy

Hash policy of concurrent_unordered_multiset manages the number of buckets in the container and the allowed
maximum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can
automatically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

7.2. oneTBB Interfaces 781

oneAPI Specification, Release 1.4-provisional-rev-1

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_multiset::range_type and concurrent_unordered_multiset::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_multiset::const_range_type
are of type concurrent_unordered_multiset::const_iterator, whereas the bounds for a
concurrent_unordered_multiset::range_type are of type concurrent_unordered_multiset::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_unordered_multiset
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_unordered_multiset as a type alias for which the non-member
functions are reachable only via argument-dependent lookup.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs);

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);
(continues on next page)

7.2. oneTBB Interfaces 782

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Non-member swap

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two objects of concurrent_unordered_multiset are equal if the following conditions are true:

• They contain an equal number of elements.

• Each group of elements with the same key in one container has the corresponding group of equivalent elements
in the other container (not necessarily in the same order).

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs, false otherwise.

7.2. oneTBB Interfaces 783

oneAPI Specification, Release 1.4-provisional-rev-1

Other

Deduction guides

If possible, concurrent_unordered_multiset constructors support class template argument deduction (since
C++17). Copy and move constructors, including constructors with an explicit allocator_type argument, provide
implicitly-generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_value_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_unordered_multiset(InputIterator, InputIterator,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multiset<iterator_value_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_multiset(InputIterator, InputIterator,
set_size_type,
Allocator)

-> concurrent_unordered_multiset<iterator_value_t<InputIterator>,
std::hash<iterator_value_t<InputIterator>>,
std::equal_to<iterator_value_t<InputIterator>>,
Allocator>;

template <typename T,
typename Hash = std::hash<T>,
typename KeyEqual = std::equal_to<T>,
typename Allocator = tbb::tbb_allocator<T>>

concurrent_unordered_multiset(std::initializer_list<T>,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multiset<T,
Hash,
KeyEqual,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_multiset(std::initializer_list<T>,
set_size_type,
Allocator)

-> concurrent_unordered_multiset<T,
std::hash<T>,

(continues on next page)

7.2. oneTBB Interfaces 784

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::equal_to<T>,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_multiset(std::initializer_list<T>,
Allocator)

-> concurrent_unordered_multiset<T,
std::hash<T>,
std::equal_to<T>,
Allocator>;

template <typename T,
typename Hash,
typename Allocator>

concurrent_unordered_multiset(std::initializer_list<T>,
set_size_type,
Hash,
Allocator)

-> concurrent_unordered_multiset<T,
Hash,
std::equal_to<T>,
Allocator>;

Where the set_size_type type refers to the size_type member type of the deduced
concurrent_unordered_multiset and the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_unordered_set.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<int> v;

// Deduces s1 as concurrent_unordered_multiset<int>
oneapi::tbb::concurrent_unordered_multiset s1(v.begin(), v.end());

(continues on next page)

7.2. oneTBB Interfaces 785

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// Deduces s2 as concurrent_unordered_multiset<int, CustomHasher>;
oneapi::tbb::concurrent_unordered_multiset s2(v.begin(), v.end(), CustomHasher{});

}

Ordered associative containers

concurrent_map

[containers.concurrent_map]

oneapi::tbb::concurrent_map is a class template that represents a sorted associative container. It stores unique
elements and supports concurrent insertion, lookup, and traversal, but does not support concurrent erasure.

Class Template Synopsis

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Compare = std::less<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>

class concurrent_map {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

class value_compare;

(continues on next page)

7.2. oneTBB Interfaces 786

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// Construction, destruction, copying
concurrent_map();
explicit concurrent_map(const key_compare& comp,

const allocator_type& alloc = allocator_type());

explicit concurrent_map(const allocator_type& alloc);

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const allocator_type& alloc);

concurrent_map(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_map(std::initializer_list<value_type> init, const allocator_type&
→˓ alloc);

concurrent_map(const concurrent_map& other);
concurrent_map(const concurrent_map& other,

const allocator_type& alloc);

concurrent_map(concurrent_map&& other);
concurrent_map(concurrent_map&& other,

const allocator_type& alloc);

~concurrent_map();

concurrent_map& operator=(const concurrent_map& other);
concurrent_map& operator=(concurrent_map&& other);
concurrent_map& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Element access
value_type& at(const key_type& key);
const value_type& at(const key_type& key) const;

value_type& operator[](const key_type& key);
value_type& operator[](key_type&& key);

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();

(continues on next page)

7.2. oneTBB Interfaces 787

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);

iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

(continues on next page)

7.2. oneTBB Interfaces 788

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_map& other);

// Lookup
size_type count(const key_type& key);

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
(continues on next page)

7.2. oneTBB Interfaces 789

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_map

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member classes

value_compare

concurrent_map::value_compare is a function object that is used to compare concurrent_map::value_type
objects by comparing their first components.

7.2. oneTBB Interfaces 790

oneAPI Specification, Release 1.4-provisional-rev-1

Class Synopsis

namespace oneapi {
namespace tbb {

template <typename Key, typename T,
typename Compare, typename Allocator>

class concurrent_map<Key, T, Compare, Allocator>::value_compare {
protected:

key_compare comp;

value_compare(key_compare c);

public:
bool operator()(const value_type& lhs, const value_type& rhs)␣

→˓const;
}; // class value_compare

} // namespace tbb
} // namespace oneapi

Member objects

key_compare comp;

The key comparison function object.

Member functions

value_compare(key_compare c);

Constructs a value_compare with the stored key comparison function object c.

bool operator()(const value_type& lhs, const value_type& rhs) const;

Compares lhs.first and rhs.first by calling the stored key comparison function comp.

Returns: true if first components of lhs and rhs are equal; false, otherwise.

Member functions

Construction, destruction, copying

Empty container constructors

7.2. oneTBB Interfaces 791

oneAPI Specification, Release 1.4-provisional-rev-1

concurrent_map();

explicit concurrent_map(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_map(const allocator_type& alloc);

Constructs an empty concurrent_map.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_map, which contains the elements from the half-open interval [first,
last).

If the range [first, last) contains multiple elements with equal keys, it is unspecified which element
would be inserted.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

concurrent_map(std::initializer_list<value_type> init, const key_compare&␣
→˓comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_map(init.begin(), init.end(), comp, alloc).

concurrent_map(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_map(init.begin(), init.end(), alloc).

7.2. oneTBB Interfaces 792

oneAPI Specification, Release 1.4-provisional-rev-1

Copying constructors

concurrent_map(const concurrent_map& other);

concurrent_map(const concurrent_map& other, const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_map(concurrent_map&& other);

concurrent_map(concurrent_map&& other, const allocator_type& alloc);

Constructs a concurrent_map with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_map();

Destroys the concurrent_map. Calls destructors of the stored elements and deallocates the used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_map& operator=(const concurrent_map& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_map& operator=(concurrent_map&& other);

7.2. oneTBB Interfaces 793

oneAPI Specification, Release 1.4-provisional-rev-1

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_map& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Element access

at

value_type& at(const key_type& key);

const value_type& at(const key_type& key) const;

Returns: a reference to item.second, where item is the element with the key equivalent to key.

Throws: std::out_of_range exception if the element with the key equivalent to key is not present in
the container.

operator[]

value_type& operator[](const key_type& key);

If the element with the key equivalent to key is not present in the container, inserts a new el-
ement constructed in-place from std::piecewise_construct, std::forward_as_tuple(key),
std::tuple<>().

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Returns: a reference to item.second, where item is the element with the key equivalent to key.

value_type& operator[](key_type&& key);

If the element with the key equivalent to key is not present in the container, in-
serts a new element, constructed in-place from std::piecewise_construct,
std::forward_as_tuple(std::move(key)), std::tuple<>().

7.2. oneTBB Interfaces 794

oneAPI Specification, Release 1.4-provisional-rev-1

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Returns: a reference to item.second, where item is the element with the key equivalent to key.

Iterators

The types concurrent_map::iterator and concurrent_map::const_iterator meet the requirements of
ForwardIterator from the [forward.iterators] ISO C++ standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ with the actual container state in case of pending concurrent insertions.

7.2. oneTBB Interfaces 795

oneAPI Specification, Release 1.4-provisional-rev-1

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert the value value into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Attempts to insert the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

template <typename P>
std::pair<iterator, bool> insert(P&& value);

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

7.2. oneTBB Interfaces 796

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename P>
iterator insert(const_iterator hint, P&& value);

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple elements with equal keys, it is unspecified which element
should be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

7.2. oneTBB Interfaces 797

oneAPI Specification, Release 1.4-provisional-rev-1

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with key equivalent to nh.key(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise - nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element with key equivalent to
nh.key().

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element ,constructed in-place from args into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

7.2. oneTBB Interfaces 798

oneAPI Specification, Release 1.4-provisional-rev-1

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Merging containers

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

Transfers those elements from source which keys do not exist in the container.

In case of merging with the container with multiple elements with equal keys, it is unspecified which
element would be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator which follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

7.2. oneTBB Interfaces 799

oneAPI Specification, Release 1.4-provisional-rev-1

size_type unsafe_erase(const key_type& key);

Removes the element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

Removes the element with the key that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

7.2. oneTBB Interfaces 800

oneAPI Specification, Release 1.4-provisional-rev-1

node_type unsafe_extract(const key_type& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

swap

void swap(concurrent_map& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers, and while travers-
ing the container.

7.2. oneTBB Interfaces 801

oneAPI Specification, Release 1.4-provisional-rev-1

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key that is equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element with the key that is equivalent to key exists in the container; false, other-
wise.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

7.2. oneTBB Interfaces 802

oneAPI Specification, Release 1.4-provisional-rev-1

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container with the key that is not less than key.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element with the key equivalent to key exists, a pair of iterators {f, l}, where f is an
iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

7.2. oneTBB Interfaces 803

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element with the key that is equivalent to key exists, a pair of iterators {f, l}, where f is
an iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_map::range_type and concurrent_map::const_range_type meet the Contain-
erRange requirements.

These types differ only in that the bounds for a concurrent_map::const_range_type are of type
concurrent_map::const_iterator, whereas the bounds for a concurrent_map::range_type are of type
concurrent_map::iterator.

7.2. oneTBB Interfaces 804

oneAPI Specification, Release 1.4-provisional-rev-1

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_map objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_map as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_map<Key, T, Compare, Allocator>& lhs,

concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

7.2. oneTBB Interfaces 805

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member swap

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_map<Key, T, Compare, Allocator>& lhs,

concurrent_map<Key, T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_map objects are equal if they have the same number of elements and each element
in one container is equal to the element in other container on the same position.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

Non-member lexicographical comparisons

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

7.2. oneTBB Interfaces 806

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_map constructors support class template argument deduction (since C++17). Copy and move
constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated deduc-
tion guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_key_t<InputIterator>>,
typename Allocator = tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_map(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_map(InputIterator, InputIterator,
Allocator)

-> concurrent_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::less<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key, typename T,
typename Compare = std::less<std::remove_const_t<Key>>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

concurrent_map(std::initializer_list<std::pair<Key, T>>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_map<std::remove_const_t<Key>,
T,
Compare,
Allocator>;

template <typename Key, typename T,
typename Allocator>

concurrent_map(std::initializer_list<std::pair<Key, T>>, Allocator)
-> concurrent_map<std::remove_const_t<Key>,

T,
std::less<std::remove_const_t<Key>>,
Allocator>;

7.2. oneTBB Interfaces 807

oneAPI Specification, Release 1.4-provisional-rev-1

where the type aliases iterator_key_t, iterator_mapped_t, iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>>,

iterator_mapped_t<InputIterator>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_map.h>
#include <vector>

int main() {
std::vector<std::pair<int, float>> v;

// Deduces cm1 as concurrent_map<int, float>
oneapi::tbb::concurrent_map cm1(v.begin(), v.end());

// Deduces cm2 as concurrent_map<int, float>
oneapi::tbb::concurrent_map cm2({std::pair(1, 2f), std::pair(2, 3f)});

}

concurrent_multimap

[containers.concurrent_multimap]

oneapi::tbb::concurrent_multimap is a class template that represents a sorted associative container. It supports
concurrent insertion, lookup, and traversal, but does not support concurrent erasure. In this container, multiple elements
with equal keys can be stored.

7.2. oneTBB Interfaces 808

oneAPI Specification, Release 1.4-provisional-rev-1

Class Template Synopsis

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Compare = std::less<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>

class concurrent_multimap {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

class value_compare;

// Construction, destruction, copying
concurrent_multimap();
explicit concurrent_multimap(const key_compare& comp,

const allocator_type& alloc = allocator_type()␣
→˓);

explicit concurrent_multimap(const allocator_type& alloc);

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const allocator_type& alloc);

(continues on next page)

7.2. oneTBB Interfaces 809

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

concurrent_multimap(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_multimap(std::initializer_list<value_type> init, const allocator_
→˓type& alloc);

concurrent_multimap(const concurrent_multimap& other);
concurrent_multimap(const concurrent_multimap& other,

const allocator_type& alloc);

concurrent_multimap(concurrent_multimap&& other);
concurrent_multimap(concurrent_multimap&& other,

const allocator_type& alloc);

~concurrent_multimap();

concurrent_multimap& operator=(const concurrent_multimap& other);
concurrent_multimap& operator=(concurrent_multimap&& other);
concurrent_multimap& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);

iterator insert(const_iterator hint, value_type&& value);

(continues on next page)

7.2. oneTBB Interfaces 810

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_multimap& other);

// Lookup
size_type count(const key_type& key);

(continues on next page)

7.2. oneTBB Interfaces 811

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_multimap

(continues on next page)

7.2. oneTBB Interfaces 812

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member classes

value_compare

concurrent_multimap::value_compare is a function object that is used to compare
concurrent_multimap::value_type objects by comparing their first components.

Class Synopsis

namespace oneapi {
namespace tbb {

template <typename Key, typename T,
typename Compare, typename Allocator>

class concurrent_multimap<Key, T, Compare, Allocator>::value_compare {
protected:

key_compare comp;

value_compare(key_compare c);

public:
bool operator()(const value_type& lhs, const value_type& rhs)␣

→˓const;
}; // class value_compare

} // namespace tbb
} // namespace oneapi

7.2. oneTBB Interfaces 813

oneAPI Specification, Release 1.4-provisional-rev-1

Member objects

key_compare comp;

The key comparison function object.

Member functions

value_compare(key_compare c);

Constructs a value_compare with the stored key comparison function object c.

bool operator()(const value_type& lhs, const value_type& rhs) const;

Compares lhs.first and rhs.first by calling the stored key comparison function comp.

Returns: true if first components of lhs and rhs are equal; false, otherwise.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_multimap();

explicit concurrent_multimap(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_multimap(const allocator_type& alloc);

Constructs an empty concurrent_multimap.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

7.2. oneTBB Interfaces 814

oneAPI Specification, Release 1.4-provisional-rev-1

Constructs the concurrent_multimap, which contains all elements from the half-open interval [first,
last).

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from [input.
iterators] ISO C++ Standard section.

concurrent_multimap(std::initializer_list<value_type> init, const key_compare&
→˓ comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_multimap(init.begin(), init.end(), comp, alloc).

concurrent_multimap(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_multimap(init.begin(), init.end(), alloc).

Copying constructors

concurrent_multimap(const concurrent_multimap& other);

concurrent_multimap(const concurrent_multimap& other, const allocator_type&␣
→˓alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_multimap(concurrent_multimap&& other);

concurrent_multimap(concurrent_multimap&& other, const allocator_type& alloc␣
→˓);

Constructs a concurrent_multimap with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 815

oneAPI Specification, Release 1.4-provisional-rev-1

Destructor

~concurrent_multimap();

Destroys the concurrent_multimap. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_multimap& operator=(const concurrent_multimap& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multimap& operator=(concurrent_multimap&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multimap& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_multimap::iterator and concurrent_multimap::const_iterator meet the require-
ments of ForwardIterator from the [forward.iterators] ISO C++ standard section.

7.2. oneTBB Interfaces 816

oneAPI Specification, Release 1.4-provisional-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty, false otherwise.

The result may differ with the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

7.2. oneTBB Interfaces 817

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Inserts an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the EmplaceConstructible requirements from [con-
tainer.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

7.2. oneTBB Interfaces 818

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename P>
std::pair<iterator, bool> insert(P&& value);

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

template <typename P>
iterator insert(const_iterator hint, P&& value);

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value);

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from [input.
iterators] the ISO C++ Standard section.

7.2. oneTBB Interfaces 819

oneAPI Specification, Release 1.4-provisional-rev-1

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

Merging containers

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

7.2. oneTBB Interfaces 820

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator which follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes all element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed elements.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes all elements with the key that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed elements.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

7.2. oneTBB Interfaces 821

oneAPI Specification, Release 1.4-provisional-rev-1

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If at least one element with the key equivalent to key exists, transfers ownership of this element from the
container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If at least one element with the key that is equivalent to key exists, transfers ownership of this element
from the container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key that is equivalent to key, it is unspecified which element should
be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

7.2. oneTBB Interfaces 822

oneAPI Specification, Release 1.4-provisional-rev-1

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key that is equivalent to key was not found.

swap

void swap(concurrent_multimap& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
found.

7.2. oneTBB Interfaces 823

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key that is equivalent to key, or end() if no such element
exists.

If there are multiple elements with the key that is equivalent to key, it is unspecified which element should
be found.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container with the key that is not less than key.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

7.2. oneTBB Interfaces 824

oneAPI Specification, Release 1.4-provisional-rev-1

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where f
is an iterator to the first element with the key equivalent to key, l is an iterator to the element that follows
the last element with the key equivalent to key. Otherwise - {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where f
is an iterator to the first element with the key that is equivalent to key, l is an iterator to the element that
follows the last element with the key that is equivalent to key. Otherwise, {end(), end()}.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

7.2. oneTBB Interfaces 825

oneAPI Specification, Release 1.4-provisional-rev-1

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_multimap::range_type and concurrent_multimap::const_range_typemeet the
ContainerRange requirements.

These types differ only in that the bounds for a concurrent_multimap::const_range_type are of type
concurrent_multimap::const_iterator, whereas the bounds for a concurrent_multimap::range_type are
of type concurrent_multimap::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_multimap objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_multimap as a type alias for which the non-member functions
are reachable only via argument-dependent lookup.

7.2. oneTBB Interfaces 826

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_multimap<Key, T, Compare, Allocator>& lhs,

concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_mutlimap<Key, T, Compare, Allocator>& rhs);

Non-member swap

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_multimap<Key, T, Compare, Allocator>& lhs,

concurrent_multimap<Key, T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_multimap objects are equal if they have the same number of elements and each
element in one container is equal to the element in other container on the same position.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

7.2. oneTBB Interfaces 827

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

Non-member lexicographical comparisons

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_multimap constructors support class template argument deduction (since C++17). Copy and
move constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated
deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_key_t<InputIterator>>,
typename Allocator = tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_multimap(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

(continues on next page)

7.2. oneTBB Interfaces 828

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

-> concurrent_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_multimap(InputIterator, InputIterator,
Allocator)

-> concurrent_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::less<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key, typename T,
typename Compare = std::less<std::remove_const_t<Key>>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

concurrent_multimap(std::initializer_list<std::pair<Key, T>>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_multimap<std::remove_const_t<Key>,
T,
Compare,
Allocator>;

template <typename Key, typename T,
typename Allocator>

concurrent_multimap(std::initializer_list<std::pair<Key, T>>, Allocator)
-> concurrent_multimap<std::remove_const_t<Key>,

T,
std::less<std::remove_const_t<Key>>,
Allocator>;

where the type aliases iterator_key_t, iterator_mapped_t, iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>>,

iterator_mapped_t<InputIterator>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

7.2. oneTBB Interfaces 829

oneAPI Specification, Release 1.4-provisional-rev-1

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_map.h>
#include <vector>

int main() {
std::vector<std::pair<int, float>> v;

// Deduces cm1 as concurrent_multimap<int, float>
oneapi::tbb::concurrent_multimap cm1(v.begin(), v.end());

// Deduces cm2 as concurrent_multimap<int, float>
oneapi::tbb::concurrent_multimap cm2({std::pair(1, 2f), std::pair(2, 3f)});

}

concurrent_set

[containers.concurrent_set]

oneapi::tbb::concurrent_set is a class template that represents a sorted sequence of unique elements. It supports
concurrent insertion, lookup and traversal, but does not support concurrent erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Compare = std::less<T>,
typename Allocator = tbb_allocator<T>>

class concurrent_set {
public:

using key_type = T;
using value_type = T;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using value_compare = Compare;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

(continues on next page)

7.2. oneTBB Interfaces 830

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

// Construction, destruction, copying
concurrent_set();
explicit concurrent_set(const key_compare& comp,

const allocator_type& alloc = allocator_type());

explicit concurrent_set(const allocator_type& alloc);

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const allocator_type& alloc);

concurrent_set(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_set(std::initializer_list<value_type> init, const allocator_type&
→˓ alloc);

concurrent_set(const concurrent_set& other);
concurrent_set(const concurrent_set& other,

const allocator_type& alloc);

concurrent_set(concurrent_set&& other);
concurrent_set(concurrent_set&& other,

const allocator_type& alloc);

~concurrent_set();

concurrent_set& operator=(const concurrent_set& other);
concurrent_set& operator=(concurrent_set&& other);
concurrent_set& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

(continues on next page)

7.2. oneTBB Interfaces 831

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

iterator end();
const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);

iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

(continues on next page)

7.2. oneTBB Interfaces 832

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_set& other);

// Lookup
size_type count(const key_type& key);

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

(continues on next page)

7.2. oneTBB Interfaces 833

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_set

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_set();

explicit concurrent_set(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_set(const allocator_type& alloc);

Constructs an empty concurrent_set.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

7.2. oneTBB Interfaces 834

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_set that contains the elements from the half-open interval [first, last).

If the range [first, last) contains multiple equal elements, it is unspecified which element would be
inserted.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

concurrent_set(std::initializer_list<value_type> init, const key_compare&␣
→˓comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_set(init.begin(), init.end(), comp, alloc).

concurrent_set(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_set(init.begin(), init.end(), alloc).

Copying constructors

concurrent_set(const concurrent_set& other);

concurrent_set(const concurrent_set& other, const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 835

oneAPI Specification, Release 1.4-provisional-rev-1

Moving constructors

concurrent_set(concurrent_set&& other);

concurrent_set(concurrent_set&& other, const allocator_type& alloc);

Constructs a concurrent_set with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_set();

Destroys the concurrent_set. Calls destructors of the stored elements and deallocates the used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_set& operator=(const concurrent_set& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_set& operator=(concurrent_set&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_set& operator=(std::initializer_list<value_type> init);

7.2. oneTBB Interfaces 836

oneAPI Specification, Release 1.4-provisional-rev-1

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_set::iterator and concurrent_set::const_iterator meet the requirements of
ForwardIterator from the [forward.iterators] ISO C++ standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

7.2. oneTBB Interfaces 837

oneAPI Specification, Release 1.4-provisional-rev-1

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert the value value into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Attempts to insert the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

7.2. oneTBB Interfaces 838

oneAPI Specification, Release 1.4-provisional-rev-1

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple equal elements, it is unspecified which element should
be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element equal to nh.value(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

7.2. oneTBB Interfaces 839

oneAPI Specification, Release 1.4-provisional-rev-1

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh remains ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element equal to nh.value().

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Merging containers

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

7.2. oneTBB Interfaces 840

oneAPI Specification, Release 1.4-provisional-rev-1

Transfers those elements from source which keys do not exist in the container.

In case of merging with the container with multiple equal elements, it is unspecified which element would
be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

Removes the element that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

7.2. oneTBB Interfaces 841

oneAPI Specification, Release 1.4-provisional-rev-1

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following statements are true:

7.2. oneTBB Interfaces 842

oneAPI Specification, Release 1.4-provisional-rev-1

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_set& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements that are equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

7.2. oneTBB Interfaces 843

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element that is equivalent to key, or end() if no such element exists.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container that is not less than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

7.2. oneTBB Interfaces 844

oneAPI Specification, Release 1.4-provisional-rev-1

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

7.2. oneTBB Interfaces 845

oneAPI Specification, Release 1.4-provisional-rev-1

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_set::range_type and concurrent_set::const_range_type meet the Contain-
erRange requirements.

These types differ only in that the bounds for a concurrent_set::const_range_type are of type
concurrent_set::const_iterator, whereas the bounds for a concurrent_set::range_type are of type
concurrent_set::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_set objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_set as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_set<T, Compare, Allocator>& lhs,

concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_set<T, Compare, Allocator>& lhs,

(continues on next page)

7.2. oneTBB Interfaces 846

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

Non-member swap

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_set<T, Compare, Allocator>& lhs,

concurrent_set<T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_set objects are equal if they have the same number of elements and each element
in one container is equal to the element in other container on the same position.

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

7.2. oneTBB Interfaces 847

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member lexicographical comparisons

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_set constructors support class template argument deduction (since C++17). Copy and move
constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated deduc-
tion guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_set(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_set<iterator_value_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_set(InputIterator, InputIterator,
(continues on next page)

7.2. oneTBB Interfaces 848

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

Allocator)
-> concurrent_set<iterator_value_t<InputIterator>,

std::less<iterator_value_t<InputIterator>>,
Allocator>;

template <typename Key,
typename Compare = std::less<Key>,
typename Allocator = tbb::tbb_allocator<Key>>

concurrent_set(std::initializer_list<Key>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_set<Key,
Compare,
Allocator>;

template <typename Key,
typename Allocator>

concurrent_set(std::initializer_list<Key>,
Allocator)

-> concurrent_set<Key,
std::less<Key>,
Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_set.h>
#include <vector>

int main() {
std::vector<int> v;

// Deduces cs1 as concurrent_set<int>
oneapi::tbb::concurrent_set cs1(v.begin(), v.end());

// Deduces cs2 as concurrent_set<int>
oneapi::tbb::concurrent_set cs2({1, 2, 3});

}

7.2. oneTBB Interfaces 849

oneAPI Specification, Release 1.4-provisional-rev-1

concurrent_multiset

[containers.concurrent_multiset]

oneapi::tbb::concurrent_multiset is a class template that represents a sorted sequence of elements. It sup-
ports concurrent insertion, lookup, and traversal, but does not support concurrent erasure. In this container, multiple
equivalent elements can be stored.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Compare = std::less<T>,
typename Allocator = tbb_allocator<T>>

class concurrent_multiset {
public:

using key_type = T;
using value_type = T;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using value_compare = Compare;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

// Construction, destruction, copying
concurrent_multiset();
explicit concurrent_multiset(const key_compare& comp,

const allocator_type& alloc = allocator_type()␣
→˓);

explicit concurrent_multiset(const allocator_type& alloc);

(continues on next page)

7.2. oneTBB Interfaces 850

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const allocator_type& alloc);

concurrent_multiset(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_multiset(std::initializer_list<value_type> init, const allocator_
→˓type& alloc);

concurrent_multiset(const concurrent_multiset& other);
concurrent_multiset(const concurrent_multiset& other,

const allocator_type& alloc);

concurrent_multiset(concurrent_multiset&& other);
concurrent_multiset(concurrent_multiset&& other,

const allocator_type& alloc);

~concurrent_multiset();

concurrent_multiset& operator=(const concurrent_multiset& other);
concurrent_multiset& operator=(concurrent_multiset&& other);
concurrent_multiset& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);

(continues on next page)

7.2. oneTBB Interfaces 851

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_multiset& other);

(continues on next page)

7.2. oneTBB Interfaces 852

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// Lookup
size_type count(const key_type& key);

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration

(continues on next page)

7.2. oneTBB Interfaces 853

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

range_type range();
const_range_type range() const;

}; // class concurrent_multiset

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, should be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_multiset();

explicit concurrent_multiset(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_multiset(const allocator_type& alloc);

Constructs an empty concurrent_multiset.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_multiset, which contains all elements from the half-open interval [first,
last).

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

7.2. oneTBB Interfaces 854

oneAPI Specification, Release 1.4-provisional-rev-1

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

concurrent_multiset(std::initializer_list<value_type> init, const key_compare&
→˓ comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_multiset(init.begin(), init.end(), comp, alloc).

concurrent_multiset(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_multiset(init.begin(), init.end(), alloc).

Copying constructors

concurrent_multiset(const concurrent_multiset& other);

concurrent_multiset(const concurrent_multiset& other, const allocator_type&␣
→˓alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_multiset(concurrent_multiset&& other);

concurrent_multiset(concurrent_multiset&& other, const allocator_type& alloc␣
→˓);

Constructs a concurrent_multiset with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

7.2. oneTBB Interfaces 855

oneAPI Specification, Release 1.4-provisional-rev-1

Destructor

~concurrent_multiset();

Destroys the concurrent_multiset. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_multiset& operator=(const concurrent_multiset& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multiset& operator=(concurrent_multiset&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multiset& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_multiset::iterator and concurrent_multiset::const_iterator meet the require-
ments of ForwardIterator from the [forward.iterators] ISO C++ standard section.

7.2. oneTBB Interfaces 856

oneAPI Specification, Release 1.4-provisional-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

7.2. oneTBB Interfaces 857

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

std::pair<iterator, bool> insert(value_type&& value);

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

7.2. oneTBB Interfaces 858

oneAPI Specification, Release 1.4-provisional-rev-1

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

7.2. oneTBB Interfaces 859

oneAPI Specification, Release 1.4-provisional-rev-1

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Inserts an element, constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Merging containers

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

7.2. oneTBB Interfaces 860

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes all elements equivalent to key if they exist in the container.

Invalidates all iterators and references to the removed element.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes all elements that are equivalent to key if they exist in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

7.2. oneTBB Interfaces 861

oneAPI Specification, Release 1.4-provisional-rev-1

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

If there are multiple elements equivalent to key, it is unspecified which element should be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element that is equivalent to key exists, transfers ownership of this element from the container to the
node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements equivalent to key, it is unspecified which element should be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following statements are true:

7.2. oneTBB Interfaces 862

oneAPI Specification, Release 1.4-provisional-rev-1

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_multiset& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements that are equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key or end() if no such element exists.

If there are multiple elements equivalent to key, it is unspecified which element should be found.

7.2. oneTBB Interfaces 863

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element that is equivalent to key, or end() if no such element exists.

If there are multiple elements that are equivalent to key, it is unspecified which element should be found.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if at least one element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if at least one element that is equivalent to key exists in the container; false, otherwise.

This overload participates in overload resolution only if qualified-id key_compare::is_transparent is
valid and denotes a type.

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container that is not less than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

7.2. oneTBB Interfaces 864

oneAPI Specification, Release 1.4-provisional-rev-1

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

These overloads participate in overload resolution only if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator
to the first element equivalent to key, l is an iterator to the element that follows the last element equivalent
to key. Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element that is equivalent to key exists, a pair of iterators {f, l},
where f is an iterator to the first element that is equivalent to key, l is an iterator to the element that
follows the last element that is equivalent to key. Otherwise, {end(), end()}.

These overloads participate in overload resolution only if qualified-id key_compare::is_transparent
is valid and denotes a type.

7.2. oneTBB Interfaces 865

oneAPI Specification, Release 1.4-provisional-rev-1

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_multiset::range_type and concurrent_multiset::const_range_typemeet the
ContainerRange requirements.

These types differ only in that the bounds for a concurrent_multiset::const_range_type are of type
concurrent_multiset::const_iterator, whereas the bounds for a concurrent_multiset::range_type are
of type concurrent_multiset::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provides binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_multiset objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_multiset as a type alias for which the non-member functions
are reachable only via argument dependent lookup.

7.2. oneTBB Interfaces 866

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_multiset<T, Compare, Allocator>& lhs,

concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

Non-member swap

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_multiset<T, Compare, Allocator>& lhs,

concurrent_multiset<T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_multiset objects are equal if they have the same number of elements and each
element in one container is equal to the element in other container on the same position.

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

7.2. oneTBB Interfaces 867

oneAPI Specification, Release 1.4-provisional-rev-1

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

Non-member lexicographical comparisons

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_multiset constructors support class template argument deduction (since C++17). Copy and
move constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated
deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_multiset(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

(continues on next page)

7.2. oneTBB Interfaces 868

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

-> concurrent_multiset<iterator_value_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_multiset(InputIterator, InputIterator,
Allocator)

-> concurrent_multiset<iterator_value_t<InputIterator>,
std::less<iterator_value_t<InputIterator>>,
Allocator>;

template <typename Key,
typename Compare = std::less<Key>,
typename Allocator = tbb::tbb_allocator<Key>>

concurrent_multiset(std::initializer_list<Key>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_multiset<Key,
Compare,
Allocator>;

template <typename Key,
typename Allocator>

concurrent_multiset(std::initializer_list<Key>,
Allocator)

-> concurrent_multiset<Key,
std::less<Key>,
Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_set.h>
#include <vector>

int main() {
std::vector<int> v;

// Deduces cs1 as concurrent_multiset<int>
(continues on next page)

7.2. oneTBB Interfaces 869

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::tbb::concurrent_multiset cs1(v.begin(), v.end());

// Deduces cs2 as concurrent_multiset<int>
oneapi::tbb::concurrent_multiset cs2({1, 2, 3});

}

Auxiliary classes

tbb_hash_compare

[containers.tbb_hash_compare]

oneapi::tbb::tbb_hash_compare is a class template for hash support. Use it with the
oneapi::tbb::concurrent_hash_map associative container to calculate hash codes and compare keys for
equality.

tbb_hash_compare meets the HashCompare requirements.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_hash_map.h>

namespace oneapi {
namespace tbb {

template <typename Key>
class tbb_hash_compare {

static std::size_t hash(const Key& k);
static bool equal(const Key& k1, const Key& k2);

}; // class tbb_hash_compare

} // namespace tbb
} // namespace oneapi

Member functions

static std::size_t hash(const Key& k);

Returns: a hash code for a key k.

static bool equal(const Key& k1, const Key& k2);

Equivalent to k1 == k2.

Returns: true if the keys are equal; false, otherwise.

7.2. oneTBB Interfaces 870

oneAPI Specification, Release 1.4-provisional-rev-1

Node handles

[containers.node_handles]

Concurrent associative containers (concurrent_map, concurrent_multimap, concurrent_set,
concurrent_multiset, concurrent_unordered_map, concurrent_unordered_multimap,
concurrent_unordered_set, and concurrent_unordered_multiset) store elements in individually allo-
cated, connected nodes. These containers support data transfer between containers with compatible node types by
changing the connections without copying or moving the actual data.

Class synopsis

class node-handle { // Exposition-only name
public:

using key_type = <container-specific>; // Only for maps
using mapped_type = <container-specific>; // Only for maps
using value_type = <container-specific>; // Only for sets
using allocator_type = <container-specific>;

node-handle();
node-handle(node-handle&& other);

~node-handle();

node-handle& operator=(node-handle&& other);

void swap(node-handle& nh);

bool empty() const;
explicit operator bool() const;

key_type& key() const; // Only for maps
mapped_type& mapped() const; // Only for maps
value_type& value() const; // Only for sets

allocator_type get_allocator() const;
};

A node handle is a container-specific move-only nested type (exposed as container::node_type) that represents a
node outside of any container instance. It allows reading and modifying the data stored in the node, and inserting the
node into a compatible container instance. The following containers have compatible node types and may exchange
nodes:

• concurrent_map and concurrent_multimap with the same key_type, mapped_type and
allocator_type.

• concurrent_set and concurrent_multiset with the same value_type and allocator_type.

• concurrent_unordered_map and concurrent_unordered_multimap with the same key_type,
mapped_type and allocator_type.

• concurrent_unordered_set and concurrent_unordered_multiset with the same value_type and
allocator_type.

7.2. oneTBB Interfaces 871

oneAPI Specification, Release 1.4-provisional-rev-1

Default or moved-from node handles are empty and do not represent a valid node. A non-empty node handle is typically
created when a node is extracted out of a container, for example, with the unsafe_extract method. It stores the node
along with a copy of the container’s allocator. Upon assignment or destruction a non-empty node handle destroys the
stored data and deallocates the node.

Member functions

Constructors

node-handle();

Constructs an empty node handle.

node-handle(node-handle&& other);

Constructs a node handle that takes ownership of the node from other.

other is left in an empty state.

Assignment

node-handle& operator=(node-handle&& other);

Transfers ownership of the node from other to *this. If *this was not empty before transferring,
destroys and deallocates the stored node.

Move assigns the stored allocator if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

other is left in an empty state.

Destructor

~node-handle();

Destroys the node handle. If it is not empty, destroys and deallocates the owned node.

Swap

void swap(node-handle& other)

Exchanges the nodes owned by *this and other.

Swaps the stored allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

7.2. oneTBB Interfaces 872

oneAPI Specification, Release 1.4-provisional-rev-1

State

bool empty() const;

Returns: true if the node handle is empty, false otherwise.

explicit operator bool() const;

Equivalent to !empty().

Access to the stored element

key_type& key() const;

Available only for map node handles.

Returns: a reference to the key of the element stored in the owned node.

The behavior is undefined if the node handle is empty.

mapped_type& mapped() const;

Available only for map node handles.

Returns: a reference to the value of the element stored in the owned node.

The behavior is undefined if the node handle is empty.

value_type& value() const;

Available only for set node handles.

Returns: a reference to the element stored in the owned node.

The behavior is undefined if the node handle is empty.

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator stored in the node handle.

The behavior is undefined if the node handle is empty.

7.2. oneTBB Interfaces 873

oneAPI Specification, Release 1.4-provisional-rev-1

7.2.6 Thread Local Storage

[thread_local_storage]

oneAPI Threading Building Blocks provides class templates for thread local storage (TLS). Each provides a thread-local
element per thread and lazily creates elements on demand.

combinable

[tls.combinable]

A class template for holding thread-local values during a parallel computation that will be merged into a final value.

A combinable provides each thread with its own instance of type T.

// Defined in header <oneapi/tbb/combinable.h>

namespace oneapi {
namespace tbb {

template <typename T>
class combinable {
public:

combinable();

combinable(const combinable& other);
combinable(combinable&& other);

template <typename FInit>
explicit combinable(FInit finit);

~combinable();

combinable& operator=(const combinable& other);
combinable& operator=(combinable&& other);

void clear();

T& local();
T& local(bool & exists);

template<typename BinaryFunc> T combine(BinaryFunc f);
template<typename UnaryFunc> void combine_each(UnaryFunc f);

};
} // namespace tbb
} // namespace oneapi

7.2. oneTBB Interfaces 874

oneAPI Specification, Release 1.4-provisional-rev-1

Member functions

combinable()

Constructs combinable such that thread-local instances of T will be default-constructed.

template<typename FInit>
explicit combinable(FInit finit)

Constructs combinable such that thread-local elements will be created by copying the result of finit().

Caution: The expression finit() must be safe to evaluate concurrently by multiple threads. It is evaluated
each time a new thread-local element is created.

combinable(const combinable &other)
Constructs a copy of other, so that it has copies of each element in other with the same thread mapping.

combinable(combinable &&other)
Constructs combinable by moving the content of other intact. other is left in an unspecified state but can be
safely destroyed.

~combinable()

Destroys all elements in *this.

combinable &operator=(const combinable &other)
Sets *this to be a copy of other. Returns a reference to *this.

combinable &operator=(combinable &&other)
Moves the content of other to *this intact. other is left in an unspecified state but can be safely destroyed.
Returns a reference to *this.

void clear()
Removes all elements from *this.

T &local()
If an element does not exist for the current thread, creates it.

Returns: Reference to thread-local element.

T &local(bool &exists)
Similar to local(), except that exists is set to true if an element was already present for the current thread; false,
otherwise.

Returns: Reference to thread-local element.

template<typename BinaryFunc>
T combine(BinaryFunc f)

Requires: A BinaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an associative binary functor with the signature T
BinaryFunc(T,T) or T BinaryFunc(const T&,const T&). A T type must be the same as a corresponding
template parameter for the combinable object.

Effects: Computes a reduction over all elements using binary functor f. All evaluations of f are done sequentially
in the calling thread. If there are no elements, creates the result using the same rules as for creating a new element.

Returns: Result of the reduction.

template<typename UnaryFunc>

7.2. oneTBB Interfaces 875

oneAPI Specification, Release 1.4-provisional-rev-1

void combine_each(UnaryFunc f)
Requires: An UnaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an unary functor with the one of the signatures:
void UnaryFunc(T), void UnaryFunc(T&), or void UnaryFunc(const T&) A T type must be the same
as a corresponding template parameter for the enumerable_thread_specific object.

Effects: Evaluates f(x) for each thread-local element x in *this. All evaluations are done sequentially in the
calling thread.

Note: Methods of class combinable are not thread-safe, except for local.

enumerable_thread_specific

[tls.enumerable_thread_specific]

A class template for thread local storage (TLS).

// Defined in header <oneapi/tbb/enumerable_thread_specific.h>

namespace oneapi {
namespace tbb {

enum ets_key_usage_type {
ets_key_per_instance,
ets_no_key,
ets_suspend_aware

};

template <typename T,
typename Allocator=cache_aligned_allocator<T>,
ets_key_usage_type ETS_key_type=ets_no_key >

class enumerable_thread_specific {
public:

// Basic types
using value_type = T;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using size_type = /* implementation-defined */;
using difference_type = /* implementation-defined */;
using allocator_type = Allocator;

// Iterator types
using iterator = /* implementation-defined */;
using const_iterator = /* implementation-defined */;

// Parallel range types
using range_type = /* implementation-defined */;
using const_range_type = /* implementation-defined */;

// Construction
enumerable_thread_specific();

(continues on next page)

7.2. oneTBB Interfaces 876

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

template <typename Finit>
explicit enumerable_thread_specific(Finit finit);
explicit enumerable_thread_specific(const T& exemplar);
explicit enumerable_thread_specific(T&& exemplar);
template <typename... Args>
enumerable_thread_specific(Args&&... args);

// Destruction
~enumerable_thread_specific();

// Copy constructors
enumerable_thread_specific(const enumerable_thread_specific& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific(const enumerable_thread_specific<T, Alloc, Cachetype>

→˓& other);
// Copy assignments
enumerable_thread_specific& operator=(const enumerable_thread_specific& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(const enumerable_thread_specific<T, Alloc,

→˓ Cachetype>& other);

// Move constructors
enumerable_thread_specific(enumerable_thread_specific&& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific(enumerable_thread_specific<T, Alloc, Cachetype>&&␣

→˓other);
// Move assignments
enumerable_thread_specific& operator=(enumerable_thread_specific&& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(enumerable_thread_specific<T, Alloc,␣

→˓Cachetype>&& other);

// Other whole container operations
void clear();

// Concurrent operations
reference local();
reference local(bool& exists);
size_type size() const;
bool empty() const;

// Combining
template<typename BinaryFunc> T combine(BinaryFunc f);
template<typename UnaryFunc> void combine_each(UnaryFunc f);

// Parallel iteration
range_type range(size_t grainsize=1);
const_range_type range(size_t grainsize=1) const;

// Iterators
iterator begin();
iterator end();

(continues on next page)

7.2. oneTBB Interfaces 877

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const_iterator begin() const;
const_iterator end() const;

};

} // namespace tbb
} // namespace oneapi

A class template enumerable_thread_specific provides TLS for elements of type T. A class template
enumerable_thread_specific acts as a container by providing iterators and ranges across all of the thread-local
elements.

The thread-local elements are created lazily. A freshly constructed enumerable_thread_specific has no ele-
ments. When a thread requests access to an enumerable_thread_specific, it creates an element correspond-
ing to that thread. The number of elements is equal to the number of distinct threads that have accessed the
enumerable_thread_specific and not necessarily the number of threads in use by the application. Clearing an
enumerable_thread_specific removes all its elements.

Use the ETS_key_usage_type parameter type to select an underlying implementation.

Caution: enumerable_thread_specific uses the OS-specific value returned by
std::this_thread::get_id() to identify threads. This value is not guaranteed to be unique except for
the life of the thread. A newly created thread may get an OS-specific ID equal to that of an already destroyed
thread. The number of elements of the enumerable_thread_specific may therefore be less than the number
of actual distinct threads that have called local(), and the element returned by the first reference by a thread to
the enumerable_thread_specific may not be newly-constructed.

Member functions

Construction, destruction, copying

Empty container constructors

enumerable_thread_specific();

Constructs an enumerable_thread_specific where each thread-local element will be default-constructed.

template<typename Finit> explicit enumerable_thread_specific(Finit finit);

Constructs an enumerable_thread_specific such that any thread-local element will be created by copying the
result of finit().

Note: The expression finit() must be safe to evaluate concurrently by multiple threads. It is evaluated each time a
thread-local element is created.

explicit enumerable_thread_specific(const T& exemplar);

Constructs an enumerable_thread_specific where each thread-local element will be copy-constructed from
exemplar.

7.2. oneTBB Interfaces 878

oneAPI Specification, Release 1.4-provisional-rev-1

explicit enumerable_thread_specific(T&& exemplar);

Constructs an enumerable_thread_specific object, move constructor of T can be used to store exemplar inter-
nally; however, thread-local elements are always copy-constructed.

template <typename... Args> enumerable_thread_specific(Args&&... args);

Constructs enumerable_thread_specific such that any thread-local element will be constructed by invoking
T(args...).

Note: This constructor does not participate in overload resolution if the type of the first argument in args... is T, or
enumerable_thread_specific<T>, or foo() is a valid expression for a value foo of that type.

Copying constructors

enumerable_thread_specific (const enumerable_thread_specific& other);

template<typename Alloc, ets_key_usage_type Cachetype> enumerable_thread_specific(const␣
→˓enumerable_thread_specific <T, Alloc, Cachetype>& other);

Constructs an enumerable_thread_specific as a copy of other. The values are copy-constructed from the values
in other and have same thread correspondence.

Moving constructors

enumerable_thread_specific (enumerable_thread_specific&& other)

Constructs an enumerable_thread_specific by moving the content of other intact. other is left in an unspecified
state, but can be safely destroyed.

template<typename Alloc, ets_key_usage_type Cachetype> enumerable_thread_specific(␣
→˓enumerable_thread_specific <T, Alloc, Cachetype>&& other)

Constructs an enumerable_thread_specific using per-element move construction from the values in other, and
keeping their thread correspondence. other is left in an unspecified state, but can be safely destroyed.

Destructor

~enumerable_thread_specific()

Destroys all elements in *this. Destroys any native TLS keys that were created for this instance.

7.2. oneTBB Interfaces 879

oneAPI Specification, Release 1.4-provisional-rev-1

Assignment operators

enumerable_thread_specific& operator=(const enumerable_thread_specific& other);

Copies the content of other to *this. Returns a reference to this*.

template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(const enumerable_thread_specific<T, Alloc,␣
→˓Cachetype>& other);

Copies the content of other to *this. Returns a reference to this*.

Note: The allocator and key usage specialization is unchanged by this call.

enumerable_thread_specific& operator=(enumerable_thread_specific&& other);

Moves the content of other to *this intact. An other is left in an unspecified state, but can be safely destroyed.
Returns a reference to this*.

template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(enumerable_thread_specific<T, Alloc, Cachetype>&&␣
→˓other);

Moves the content of other to *this using per-element move construction and keeping thread correspondence. An
other is left in an unspecified state, but can be safely destroyed. Returns a reference to this*.

Note: The allocator and key usage specialization is unchanged by this call.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other.

reference local()
If there is no current element corresponding to the current thread, this method constructs a new element. A new
element is copy-constructed if an exemplar was provided to the constructor for *this; otherwise, a new element
is default-constructed.

Returns: A reference to the element of *this that corresponds to the current thread.

reference local(bool &exists)
Similar to local(), except that exists is set to true if an element was already present for the current thread;
false, otherwise.

Returns: Reference to the thread-local element.

7.2. oneTBB Interfaces 880

oneAPI Specification, Release 1.4-provisional-rev-1

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

clear

void clear();

Destroys all elements in *this.

Size and capacity

size_type size() const
Returns the number of elements in *this. The value is equal to the number of distinct threads that have called
local() after *this was constructed or most recently cleared.

bool empty() const
Returns true if the container is empty; false, otherwise.

Iteration

Class template enumerable_thread_specific supports random access iterators, which enable iteration over the set
of all elements in the container.

iterator begin()
Returns iterator pointing to the beginning of the set of elements.

iterator end()
Returns iterator pointing to the end of the set of elements.

const_iterator begin() const
Returns const_iterator pointing to the beginning of the set of elements.

const_iterator end() const
Returns const_iterator pointing to the end of the set of elements.

Class template enumerable_thread_specific supports const_range_type and range_type types, which model
the ContainerRange requirement. The types differ only in that the bounds for a const_range_type are of type
const_iterator, whereas the bounds for a range_type are of type iterator.

const_range_type range(size_t grainsize = 1) const
Returns: A const_range_type representing all elements in *this. The parameter grainsize is in units of
elements.

range_type range(size_t grainsize = 1)
Returns: A range_type representing all elements in *this. The parameter grainsize is in units of elements.

7.2. oneTBB Interfaces 881

oneAPI Specification, Release 1.4-provisional-rev-1

Combining

The member functions in this section iterate across the entire container sequentially in the calling thread.

template<typename BinaryFunc>
T combine(BinaryFunc f)

Requires: A BinaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an associative binary functor with the signature T
BinaryFunc(T,T) or T BinaryFunc(const T&,const T&). A T type must be the same as a corresponding
template parameter for enumerable_thread_specific object.

Effects: Computes reduction over all elements using binary functor f. If there are no elements, creates the result
using the same rules as for creating a thread-local element.

Returns: Result of the reduction.

template<typename UnaryFunc>
void combine_each(UnaryFunc f)

Requires: An UnaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an unary functor with one of signatures: void
UnaryFunc(T), void UnaryFunc(T&), or void UnaryFunc(const T&) A T type must be the same as a
corresponding template parameter for the enumerable_thread_specific object.

Effects: Evaluates f(x) for each instance x of T in *this.

Non-member types and constants

enum ets_key_usage_type::ets_key_per_instance

Enumeration parameter type used to select an implementation that consumes 1 native TLS key per
enumerable_thread_specific instance. The number of native TLS keys may be limited and can be fairly
small.

enum ets_key_usage_type::ets_no_key

Enumeration parameter type used to select an implementation that consumes no native TLS keys. If no
ETS_key_usage_type parameter type is provided, ets_no_key is used by default.

enum ets_key_usage_type::ets_suspend_aware

The oneapi::tbb::task::suspend function can change the value of the enumerable_thread_specific object.
To avoid this problem, use the ets_suspend_aware enumeration parameter type. The local() value can be the same
for different threads, but no two distinct threads can access the same value simultaneously.

This section also describes class template flatten2d, which assists a common idiom where an
enumerable_thread_specific represents a container partitioner across threads.

7.2. oneTBB Interfaces 882

oneAPI Specification, Release 1.4-provisional-rev-1

flattened2d

[tls.flattened2d]

The class template flattened2d is an adaptor that provides a flattened view of a container of containers.

// Defined in header <oneapi/tbb/enumerable_thread_specific.h>

namespace oneapi {
namespace tbb {

template<typename Container>
class flattened2d {
public:

// Basic types
using size_type = /* implementation-defined */;
using difference_type = /* implementation-defined */;
using allocator_type = /* implementation-defined */;
using value_type = /* implementation-defined */;
using reference = /* implementation-defined */;
using const_reference = /* implementation-defined */;
using pointer = /* implementation-defined */;
using const_pointer = /* implementation-defined */;

using iterator = /* implementation-defined */;
using const_iterator = /* implementation-defined */;

explicit flattened2d(const Container& c);

flattened2d(const Container& c,
typename Container::const_iterator first,
typename Container::const_iterator last);

iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

size_type size() const;
};

template <typename Container>
flattened2d<Container> flatten2d(const Container &c);

template <typename Container>
flattened2d<Container> flatten2d(

const Container &c,
const typename Container::const_iterator first,
const typename Container::const_iterator last);

} // namespace tbb
} // namespace oneapi

Requirements:

7.2. oneTBB Interfaces 883

oneAPI Specification, Release 1.4-provisional-rev-1

• A Container type must meet the container requirements from the [container.requirements.general] ISO C++
section.

Iterating from begin() to end() visits all of the elements in the inner containers. The class template supports forward
iterators only.

The utility function flatten2d creates a flattened2d object from a specified container.

Member functions

explicit flattened2d(const Container &c)
Constructs a flattened2d representing the sequence of elements in the inner containers contained by outer
container c.

Safety: these operations must not be invoked concurrently on the same flattened2d.

flattened2d(const Container &c, typename Container::const_iterator first, typename Container::const_iterator
last)

Constructs a flattened2d representing the sequence of elements in the inner containers in the half-open interval
[first, last) of a container c.

Safety: these operations must not be invoked concurrently on the same flattened2d.

size_type size() const
Returns the sum of the sizes of the inner containers that are viewable in the flattened2d.

Safety: These operations may be invoked concurrently on the same flattened2d.

iterator begin()
Returns iterator pointing to the beginning of the set of local copies.

iterator end()
Returns iterator pointing to the end of the set of local copies.

const_iterator begin() const
Returns const_iterator pointing to the beginning of the set of local copies.

const_iterator end() const
Returns const_iterator pointing to the end of the set of local copies.

Non-member functions

template<typename Container>
flattened2d<Container> flatten2d(const Container &c, const typename Container::const_iterator b, const

typename Container::const_iterator e)
Constructs and returns a flattened2d object that provides iterators that traverse the elements in the containers
within the half-open range [b, e) of a container c.

template<typename Container>
flattened2d(const Container &c)

Constructs and returns a flattened2d that provides iterators that traverse the elements in all of the containers
within a container c.

7.2. oneTBB Interfaces 884

oneAPI Specification, Release 1.4-provisional-rev-1

7.3 oneTBB Auxiliary Interfaces

7.3.1 Memory Allocation

[memory_allocation]

This section describes classes and functions related to memory allocation.

Allocators

The oneAPI Threading Building Blocks (oneTBB) library implements several classes that meet the allocator require-
ments from the [allocator.requirements] ISO C++ Standard section.

tbb_allocator

[memory_allocation.tbb_allocator]

A tbb_allocator is a class template that models the allocator requirements from the [allocator.requirements] ISO
C++ section.

The tbb_allocator allocates and frees memory via the oneTBB malloc library if it is available, otherwise, it reverts
to using std::malloc and std::free.

// Defined in header <oneapi/tbb/tbb_allocator.h>

namespace oneapi {
namespace tbb {

template<typename T> class tbb_allocator {
public:

using value_type = T;
using size_type = std::size_t;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

enum malloc_type {
scalable,
standard

};

tbb_allocator() = default;
template<typename U>
tbb_allocator(const tbb_allocator<U>&) noexcept;

T* allocate(size_type);
void deallocate(T*, size_type);

static malloc_type allocator_type();
};

} // namespace tbb
} // namespace oneapi

7.3. oneTBB Auxiliary Interfaces 885

oneAPI Specification, Release 1.4-provisional-rev-1

Member Functions

T *allocate(size_type n)
Allocates n * sizeof(T) bytes. Returns a pointer to the allocated memory.

void deallocate(T *p, size_type n)
Deallocates memory pointed to by p. The behavior is undefined if the pointer p is not the result of the
allocate(n) method. The behavior is undefined if the memory has been already deallocated.

static malloc_type allocator_type()
Returns the enumeration type malloc_type::scalable if the oneTBB malloc library is available, and
malloc_type::standard, otherwise.

Non-member Functions

These functions provide comparison operations between two tbb_allocator instances.

template<typename T, typename U>
bool operator==(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept;

template<typename T, typename U>
bool operator!=(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept;

The namespace where these functions are defined is unspecified, as long as they may be used in respective binary op-
eration expressions on tbb_allocator objects. For example, an implementation may define the classes and functions
in the same unspecified internal namespace and define oneapi::tbb::tbb_allocator as a type alias for which the
non-member functions are reachable only via argument-dependent lookup.

template<typename T, typename U>
bool operator==(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept

Returns true.

template<typename T, typename U>
bool operator!=(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept

Returns false.

scalable_allocator

[memory_allocation.scalable_allocator]

A scalable_allocator is a class template that models the allocator requirements from the [allocator.requirements]
ISO C++ section.

The scalable_allocator allocates and frees memory in a way that scales with the number of processors. Memory
allocated by a scalable_allocator should be freed by a scalable_allocator, not by a std::allocator.

// Defined in header <oneapi/tbb/scalable_allocator.h>

namespace oneapi {
namespace tbb {

template<typename T> class scalable_allocator {
public:

using value_type = T;
(continues on next page)

7.3. oneTBB Auxiliary Interfaces 886

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using size_type = std::size_t;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

scalable_allocator() = default;
template<typename U>
scalable_allocator(const scalable_allocator<U>&) noexcept;

T* allocate(size_type);
void deallocate(T*, size_type);

};
} // namespace tbb
} // namespace oneapi

Caution: The scalable_allocator requires the memory allocator library. If the library is missing, calls to
the scalable allocator fail. In contrast to scalable_allocator, if the memory allocator library is not available,
tbb_allocator falls back on std::malloc and std::free.

Member Functions

value_type *allocate(size_type n)
Allocates n * sizeof(T) bytes of memory. Returns a pointer to the allocated memory.

void deallocate(value_type *p, size_type n)
Deallocates memory pointed to by p. The behavior is undefined if the pointer p is not the result of the
allocate(n) method. The behavior is undefined if the memory has been already deallocated.

Non-member Functions

These functions provide comparison operations between two scalable_allocator instances.

namespace oneapi {
namespace tbb {

template<typename T, typename U>
bool operator==(const scalable_allocator<T>&,

const scalable_allocator<U>&) noexcept;

template<typename T, typename U>
bool operator!=(const scalable_allocator<T>&,

const scalable_allocator<U>&) noexcept;
} // namespace tbb
} // namespace oneapi

The namespace where these functions are defined is unspecified, as long as they may be used in respective binary
operation expressions on scalable_allocator objects. For example, an implementation may define the classes and
functions in the same unspecified internal namespace, and define oneapi::tbb::scalable_allocator as a type
alias for which the non-member functions are reachable only via argument-dependent lookup.

template<typename T, typename U>

7.3. oneTBB Auxiliary Interfaces 887

oneAPI Specification, Release 1.4-provisional-rev-1

bool operator==(const scalable_allocator<T>&, const scalable_allocator<U>&) noexcept
Returns true.

template<typename T, typename U>
bool operator!=(const scalable_allocator<T>&, const scalable_allocator<U>&) noexcept

Returns false.

cache_aligned_allocator

[memory_allocation.cache_aligned_allocator]

A cache_aligned_allocator is a class template that models the allocator requirements from the [alloca-
tor.requirements] ISO C++ section.

The cache_aligned_allocator allocates memory on cache line boundaries, in order to avoid false sharing and
potentially improve performance. False sharing is a situation when logically distinct items occupy the same cache line,
which can hurt performance if multiple threads attempt to access the different items simultaneously. Even though the
items are logically separate, the processor hardware may have to transfer the cache line between the processors as if
they were sharing a location. The net result can be much more memory traffic than if the logically distinct items were
on different cache lines.

However, this class is sometimes an inappropriate replacement for default allocator, because the benefit of allocating
on a cache line comes at the price that cache_aligned_allocator implicitly adds pad memory. Therefore allocating
many small objects with cache_aligned_allocator may increase memory usage.

// Defined in header <oneapi/tbb/cache_aligned_allocator.h>

namespace oneapi {
namespace tbb {

template<typename T> class cache_aligned_allocator {
public:

using value_type = T;
using size_type = std::size_t;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

cache_aligned_allocator() = default;
template<typename U>
cache_aligned_allocator(const cache_aligned_allocator<U>&) noexcept;

T* allocate(size_type);
void deallocate(T*, size_type);
size_type max_size() const noexcept;

};
} // namespace tbb
} // namespace oneapi

7.3. oneTBB Auxiliary Interfaces 888

oneAPI Specification, Release 1.4-provisional-rev-1

Member Functions

T *allocate(size_type n)
Returns a pointer to the allocated n * sizeof(T) bytes of memory, aligned on a cache-line boundary. The
allocation may include extra hidden padding.

void deallocate(T *p, size_type n)
Deallocates memory pointed to by p. Deallocation also deallocates any extra hidden padding. The behavior is
undefined if the pointer p is not the result of the allocate(n) method. The behavior is undefined if the memory
has been already deallocated.

size_type max_size() const noexcept
Returns the largest value n for which the call allocate(n) might succeed with cache alignment constraints.

Non-member Functions

These functions provide comparison operations between two cache_aligned_allocator instances.

template<typename T, typename U>
bool operator==(const cache_aligned_allocator<T>&,

const cache_aligned_allocator<U>&) noexcept;

template<typename T, typename U>
bool operator!=(const cache_aligned_allocator<T>&,

const cache_aligned_allocator<U>&) noexcept;

The namespace where these functions are defined is unspecified, as long as they may be used in respective binary op-
eration expressions on cache_aligned_allocator objects. For example, an implementation may define the classes
and functions in the same unspecified internal namespace, and define oneapi::tbb::cache_aligned_allocator
as a type alias for which the non-member functions are reachable only via argument-dependent lookup.

template<typename T, typename U>
bool operator==(const cache_aligned_allocator<T>&, const cache_aligned_allocator<U>&) noexcept

Returns true.

template<typename T, typename U>
bool operator!=(const cache_aligned_allocator<T>&, const cache_aligned_allocator<U>&) noexcept

Returns false.

Memory Resources

Starting from C++17, the standard library provides a std::pmr::polymorphic_allocator class that allocates
memory from a supplied memory resource (see the [mem.poly.allocator.class] ISO/IEC 14882:2017 section). Class
std::pmr::memory_resource is an abstract interface for user-side implementation of different allocation strategies.
For details, see the [mem.res.class] ISO/IEC 14882:2017 standard section.

oneTBB provides a set of std::pmr::memory_resource implementations.

7.3. oneTBB Auxiliary Interfaces 889

oneAPI Specification, Release 1.4-provisional-rev-1

cache_aligned_resource

[memory_allocation.cache_aligned_resource]

A cache_aligned_resource is a general-purpose memory resource class, which acts as a wrapper to another memory
resource to ensure that all allocations are aligned on cache line boundaries to avoid false sharing.

See the cache_aligned_allocator template class section for more information about false sharing avoidance.

// Defined in header <oneapi/tbb/cache_aligned_allocator.h>

namespace oneapi {
namespace tbb {

class cache_aligned_resource {
public:

cache_aligned_resource();
explicit cache_aligned_resource(std::pmr::memory_resource*);

std::pmr::memory_resource* upstream_resource() const;

private:
void* do_allocate(size_t n, size_t alignment) override;
void do_deallocate(void* p, size_t n, size_t alignment) override;
bool do_is_equal(const std::pmr::memory_resource& other) const noexcept override;

};
} // namespace tbb
} // namespace oneapi

Member Functions

cache_aligned_resource()

Constructs a cache_aligned_resource over std::pmr::get_default_resource().

explicit cache_aligned_resource(std::pmr::memory_resource *r)
Constructs a cache_aligned_resource over the memory resource r.

std::pmr::memory_resource *upstream_resource() const
Returns the pointer to the underlying memory resource.

void *do_allocate(size_t n, size_t alignment) override
Allocates n bytes of memory on a cache-line boundary, with alignment not less than requested. The allocation
may include extra memory for padding. Returns pointer to the allocated memory.

void do_deallocate(void *p, size_t n, size_t alignment) override
Deallocates memory pointed to by p and any extra padding. Pointer p must be obtained with do_allocate(n,
alignment). The memory must not be deallocated beforehand.

bool do_is_equal(const std::pmr::memory_resource &other) const noexcept override
Compares upstream memory resources of *this and other. If other is not a cache_aligned_resource,
returns false.

7.3. oneTBB Auxiliary Interfaces 890

oneAPI Specification, Release 1.4-provisional-rev-1

scalable_memory_resource

[memory_allocation.scalable_memory_resource]

A oneapi::tbb::scalable_memory_resource() is a function that returns a memory resource for scalable memory
allocation.

The scalable_memory_resource() function returns the pointer to the memory resource managed by the
oneTBB scalable memory allocator. In particular, its allocate method uses scalable_aligned_malloc(), and
deallocate uses scalable_free(). The memory resources returned by this function compare equal.

std::pmr::polymorphic_allocator instantiated with oneapi::tbb::scalable_memory_resource() behaves
like oneapi::tbb::scalable_allocator.

// Defined in header <oneapi/tbb/scalable_allocator.h>

std::pmr::memory_resource* scalable_memory_resource();

Library Functions

C Interface to Scalable Allocator

[memory_allocation.scalable_alloc_c_interface]

Low-level interface for scalable memory allocation.

// Defined in header <oneapi/tbb/scalable_allocator.h>

extern "C" {
// Scalable analogs of C memory allocator
void* scalable_malloc(size_t size);
void scalable_free(void* ptr);
void* scalable_calloc(size_t nobj, size_t size);
void* scalable_realloc(void* ptr, size_t size);

// Analog of _msize/malloc_size/malloc_usable_size.
size_t scalable_msize(void* ptr);

// Scalable analog of posix_memalign
int scalable_posix_memalign(void** memptr, size_t alignment, size_t size);

// Aligned allocation
void* scalable_aligned_malloc(size_t size, size_t alignment);
void scalable_aligned_free(void* ptr);
void* scalable_aligned_realloc(void* ptr, size_t size, size_t alignment);

// Return values for scalable_allocation_* functions
typedef enum {

TBBMALLOC_OK,
TBBMALLOC_INVALID_PARAM,
TBBMALLOC_UNSUPPORTED,
TBBMALLOC_NO_MEMORY,
TBBMALLOC_NO_EFFECT

} ScalableAllocationResult;
(continues on next page)

7.3. oneTBB Auxiliary Interfaces 891

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

typedef enum {
// To turn on/off the use of huge memory pages
TBBMALLOC_USE_HUGE_PAGES,
// To set a threshold for the allocator memory usage.
// Exceeding it will forcefully clean internal memory buffers
TBBMALLOC_SET_SOFT_HEAP_LIMIT,
// Lower bound for the size (Bytes), that is interpreted as huge
// and not released during regular cleanup operations
TBBMALLOC_SET_HUGE_SIZE_THRESHOLD

} AllocationModeParam;

// Set allocator-specific allocation modes.
int scalable_allocation_mode(int param, intptr_t value);

typedef enum {
// Clean internal allocator buffers for all threads.
TBBMALLOC_CLEAN_ALL_BUFFERS,
// Clean internal allocator buffer for current thread only.
TBBMALLOC_CLEAN_THREAD_BUFFERS

} ScalableAllocationCmd;

// Call allocator-specific commands.
int scalable_allocation_command(int cmd, void *param);

}

These functions provide a C-level interface to the scalable allocator. With the exception of
scalable_allocation_mode and scalable_allocation_command, each routine scalable_x behaves analo-
gously to the library function x. The routines form the two families shown in the table below, “C Interface to Scalable
Allocator”. Storage allocated by a scalable_x function in one family must be freed or resized by the scalable_x
function in the same family, not by a C standard library function. Likewise, storage allocated by a C standard library
function should not be freed or resized by a scalable_x function.

Table 5: C Interface to Scalable Allocator

Allocation Routine Deallocation Routine Analogous Library
scalable_malloc scalable_free C standard library
scalable_calloc
scalable_realloc
scalable_posix_memalign POSIX*
scalable_aligned_malloc scalable_aligned_free Microsoft* C run-time library
scalable_aligned_realloc

The following functions do not allocate or free memory but allow obtaining useful information or influencing behavior
of the memory allocator.

size_t scalable_msize(void *ptr)
Returns: The usable size of the memory block pointed to by ptr if it was allocated by the scalable allocator.
Returns zero if ptr does not point to such a block.

int scalable_allocation_mode(int mode, intptr_t value)
Use this function to adjust behavior of the scalable memory allocator.

7.3. oneTBB Auxiliary Interfaces 892

oneAPI Specification, Release 1.4-provisional-rev-1

Returns: TBBMALLOC_OK if the operation succeeded, TBBMALLOC_INVALID_PARAM if mode is not
one of the described below, or if value is not valid for the given mode. Other return values are possible, as
described below.

scalable_allocation_mode Parameters: Parameter, Description

TBBMALLOC_USE_HUGE_PAGES

scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES, 1) tells the allocator to use huge pages
if enabled by the operating system. scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES,
0) disables it. Setting TBB_MALLOC_USE_HUGE_PAGES environment variable to 1 has the same ef-
fect as scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES, 1). The mode set with
scalable_allocation_mode() takes priority over the environment variable.

May return: TBBMALLOC_NO_EFFECT if huge pages are not supported on the platform.

For now, this allocation mode is only supported for Linux* OS. It works with both explicitly configured and
transparent huge pages. For information about enabling and configuring huge pages, refer to OS documentation
or ask your system administrator.

TBBMALLOC_SET_SOFT_HEAP_LIMIT

scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, size) sets a threshold of size bytes
on the amount of memory the allocator takes from OS. Exceeding the threshold urges the allocator to release
memory from its internal buffers; however it does not prevent from requesting more memory if needed.

TBBMALLOC_SET_HUGE_SIZE_THRESHOLD

scalable_allocation_mode(TBBMALLOC_SET_HUGE_SIZE_THRESHOLD, size) sets a lower bound thresh-
old (with no upper limit) of size bytes. Any object bigger than this threshold becomes huge and
does not participate in internal periodic cleanup logic. However, it does not affect the logic of the
TBBMALLOC_SET_SOFT_HEAP_LIMIT mode as well as the TBBMALLOC_CLEAN_ALL_BUFFERS operation.

Setting TBB_MALLOC_SET_HUGE_SIZE_THRESHOLD environment variable to the size value has the same effect,
but is limited to the LONG_MAX value. The mode set with scalable_allocation_mode takes priority over the
environment variable.

int scalable_allocation_command(int cmd, void *reserved)
This function may be used to command the scalable memory allocator to perform an action specified by the first
parameter. The second parameter is reserved and must be set to 0.

Returns: TBBMALLOC_OK if the operation succeeded, TBBMALLOC_INVALID_PARAM if cmd is not one of the
described below, or if reserved is not equal to 0.

scalable_allocation_command Parameters: Parameter, Description

TBBMALLOC_CLEAN_ALL_BUFFERS

scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, 0) cleans internal memory buffers of
the allocator, and possibly reduces memory footprint. It may result in increased time for subsequent memory
allocation requests. The command is not designed for frequent use, and careful evaluation of the performance
impact is recommended.

May return: TBBMALLOC_NO_EFFECT if no buffers were released.

Note: It is not guaranteed that the call will release all unused memory.

7.3. oneTBB Auxiliary Interfaces 893

oneAPI Specification, Release 1.4-provisional-rev-1

TBBMALLOC_CLEAN_THREAD_BUFFERS

scalable_allocation_command(TBBMALLOC_CLEAN_THREAD_BUFFERS, 0) cleans internal memory
buffers, but only for the calling thread.

May return: TBBMALLOC_NO_EFFECT if no buffers were released.

7.3.2 Mutual Exclusion

[mutex]

The library provides a set of mutual exclusion primitives to simplify writing race-free code. A mutex object facilitates
protection against data races and provides safe synchronization of data between threads.

Mutex Classes

mutex

[mutex.mutex]

A mutex is a class that models Mutex requirement using an adaptive approach, it guarantees that the thread that can-
not acquire the lock spins before blocking. The mutex class satisfies all of the mutex requirements described in the
[thread.mutex.requirements] section of the ISO C++ standard. The mutex class is not fair or recursive.

// Defined in header <oneapi/tbb/mutex.h>

namespace oneapi {
namespace tbb {

class mutex {
public:

mutex() noexcept;
~mutex();

mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;

class scoped_lock;

void lock();
bool try_lock();
void unlock();

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
}

}

7.3. oneTBB Auxiliary Interfaces 894

oneAPI Specification, Release 1.4-provisional-rev-1

Member classes

class scoped_lock
The corresponding scoped_lock class. See Mutex requirement.

Member functions

mutex()

Constructs a mutex with the unlocked state.

~mutex()

Destroys an unlocked mutex.

void lock()
Acquires a lock. It uses an adaptive logic for waiting, thus it is blocked after a certain time of busy waiting.

bool try_lock()
Tries to acquire a lock (non-blocking). Returns true if succeeded; false otherwise.

void unlock()
Releases the lock held by a current thread.

rw_mutex

[mutex.rw_mutex]

A rw_mutex is a class that models ReaderWriterMutex requirement using an adaptive approach, it guarantees that
the thread that cannot acquire the lock spins before blocking. The rw_mutex class satisfies all of the shared mutex
requirements described in the [thread.sharedmutex.requirements] section of the ISO C++ standard. The rw_mutex
class is an unfair reader-writer lock with a writer preference.

// Defined in header <oneapi/tbb/rw_mutex.h>

namespace oneapi {
namespace tbb {

class rw_mutex {
public:

rw_mutex() noexcept;
~rw_mutex();

rw_mutex(const rw_mutex&) = delete;
rw_mutex& operator=(const rw_mutex&) = delete;

class scoped_lock;

(continues on next page)

7.3. oneTBB Auxiliary Interfaces 895

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// exclusive ownership
void lock();
bool try_lock();
void unlock();

// shared ownership
void lock_shared();
bool try_lock_shared();
void unlock_shared();

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
}

}

Member classes

class scoped_lock
The corresponding scoped-lock class. See ReaderWriterMutex requirement.

Member functions

rw_mutex()

Constructs an unlocked rw_mutex.

~rw_mutex()

Destroys an unlocked rw_mutex.

void lock()
Acquires a lock. It uses an adaptive logic for waiting, thus it is blocked after a certain time of busy waiting.

bool try_lock()
Tries to acquire a lock (non-blocking) on write. Returns true if succeeded; false otherwise.

void unlock()
Releases the write lock held by the current thread.

7.3. oneTBB Auxiliary Interfaces 896

oneAPI Specification, Release 1.4-provisional-rev-1

void lock_shared()
Acquires a lock on read. It uses an adaptive logic for waiting, thus it is blocked after a certain time of busy
waiting.

bool try_lock_shared()
Tries to acquire the lock (non-blocking) on read. Returns true if succeeded; false otherwise.

void unlock_shared()
Releases the read lock held by the current thread.

spin_mutex

[mutex.spin_mutex]

A spin_mutex is a class that models the Mutex requirement using a spin lock. The spin_mutex class satisfies all
requirements of mutex type from the [thread.mutex.requirements] ISO C++ section. The spin_mutex class is not fair
or recursive.

// Defined in header <oneapi/tbb/spin_mutex.h>

namespace oneapi {
namespace tbb {

class spin_mutex {
public:

spin_mutex() noexcept;
~spin_mutex();

spin_mutex(const spin_mutex&) = delete;
spin_mutex& operator=(const spin_mutex&) = delete;

class scoped_lock;

void lock();
bool try_lock();
void unlock();

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
} // namespace tbb
} // namespace oneapi

7.3. oneTBB Auxiliary Interfaces 897

oneAPI Specification, Release 1.4-provisional-rev-1

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

Member functions

spin_mutex()

Constructs spin_mutex with unlocked state.

~spin_mutex()

Destroys an unlocked spin_mutex.

void lock()
Acquires a lock. Spins if the lock is taken.

bool try_lock()
Attempts to acquire a lock (non-blocking). Returns true if lock is acquired; false, otherwise.

void unlock()
Releases a lock held by a current thread.

spin_rw_mutex

[mutex.spin_rw_mutex]

A spin_rw_mutex is a class that models the ReaderWriterMutex requirement and satisfies all requirements of shared
mutex type from the [thread.sharedmutex.requirements] ISO C++ section.

The spin_rw_mutex class is unfair spinning reader-writer lock with backoff and writer-preference.

// Defined in header <oneapi/tbb/spin_rw_mutex.h>

namespace oneapi {
namespace tbb {

class spin_rw_mutex {
public:

spin_rw_mutex() noexcept;
~spin_rw_mutex();

spin_rw_mutex(const spin_rw_mutex&) = delete;
spin_rw_mutex& operator=(const spin_rw_mutex&) = delete;

class scoped_lock;

// exclusive ownership
void lock();
bool try_lock();
void unlock();

// shared ownership
void lock_shared();
bool try_lock_shared();

(continues on next page)

7.3. oneTBB Auxiliary Interfaces 898

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

void unlock_shared();

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped-lock class. See the ReaderWriterMutex requirement.

Member functions

spin_rw_mutex()

Constructs unlocked spin_rw_mutex.

~spin_rw_mutex()

Destroys unlocked spin_rw_mutex.

void lock()
Acquires a lock. Spins if the lock is taken.

bool try_lock()
Attempts to acquire a lock (non-blocking) on write. Returns true if the lock is acquired on write; false otherwise.

void unlock()
Releases a write lock, held by the current thread.

void lock_shared()
Acquires a lock on read. Spins if the lock is taken on write already.

bool try_lock_shared()
Attempts to acquire the lock (non-blocking) on read. Returns true if the lock is acquired on read; false, otherwise.

void unlock_shared()
Releases a read lock held by the current thread.

speculative_spin_mutex

[mutex.speculative_spin_mutex]

A speculative_spin_mutex is a class that models the Mutex requirement using a spin lock, and for processors that
support hardware transactional memory (such as Intel® Transactional Synchronization Extensions (Intel® TSX)) may
be implemented in a way that allows non-contending changes to the protected data to proceed in parallel.

The speculative_spin_mutex is not fair and not recursive. The speculative_spin_mutex is like a spin_mutex,
but it may provide better throughput than non-speculative mutexes when the following conditions are met:

• Running on a processor that supports hardware transactional memory.

7.3. oneTBB Auxiliary Interfaces 899

oneAPI Specification, Release 1.4-provisional-rev-1

• Multiple threads can concurrently execute the critical section(s) protected by the mutex, mostly without conflict-
ing.

Otherwise, it performs like a spin_mutex, possibly with worse throughput.

// Defined in header <oneapi/tbb/spin_mutex.h>

namespace oneapi {
namespace tbb {

class speculative_spin_mutex {
public:

speculative_spin_mutex() noexcept;
~speculative_spin_mutex();

speculative_spin_mutex(const speculative_spin_mutex&) = delete;
speculative_spin_mutex& operator=(const speculative_spin_mutex&) = delete;

class scoped_lock;

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

Member functions

speculative_spin_mutex()

Constructs speculative_spin_mutex with unlocked state.

~speculative_spin_mutex()

Destroys an unlocked speculative_spin_mutex.

speculative_spin_rw_mutex

[mutex.speculative_spin_rw_mutex]

A speculative_spin_rw_mutex is a class that models the ReaderWriterMutex requirement, and for processors that
support hardware transactional memory (such as Intel® Transactional Synchronization Extensions (Intel® TSX)) may
be implemented in a way that allows non-contending changes to the protected data to proceed in parallel.

The speculative_spin_rw_mutex class is not fair and not recursive. The speculative_spin_rw_mutex class
is like a spin_rw_mutex, but it may provide better throughput than non-speculative mutexes when the following
conditions are met:

• Running on a processor that supports hardware transactional memory.

7.3. oneTBB Auxiliary Interfaces 900

oneAPI Specification, Release 1.4-provisional-rev-1

• Multiple threads can concurrently execute the critical section(s) protected by the mutex, mostly without conflict-
ing.

Otherwise, it performs like a spin_rw_mutex, possibly with worse throughput.

For processors that support hardware transactional memory, speculative_spin_rw_mutex may be implemented in
a way that

• speculative readers and writers do not block each other

• a non-speculative reader blocks writers but allows speculative readers

• a non-speculative writer blocks all readers and writers

// Defined in header <oneapi/tbb/spin_rw_mutex.h>

namespace oneapi {
namespace tbb {

class speculative_spin_rw_mutex {
public:

speculative_spin_rw_mutex() noexcept;
~speculative_spin_rw_mutex();

speculative_spin_rw_mutex(const speculative_spin_rw_mutex&) = delete;
speculative_spin_rw_mutex& operator=(const speculative_spin_rw_mutex&) = delete;

class scoped_lock;

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the ReaderWriterMutex requirement.

Member functions

speculative_spin_rw_mutex()

Constructs speculative_spin_rw_mutex with unlocked state.

~speculative_spin_rw_mutex()

Destroys an unlocked speculative_spin_rw_mutex.

7.3. oneTBB Auxiliary Interfaces 901

oneAPI Specification, Release 1.4-provisional-rev-1

queuing_mutex

[mutex.queuing_mutex]

A queuing_mutex is a class that models the Mutex requirement. The queuing_mutex is not recursive. The
queuing_mutex is fair, threads acquire a lock on a mutex in the order that they request it.

// Defined in header <oneapi/tbb/queuing_mutex.h>

namespace oneapi {
namespace tbb {

class queuing_mutex {
public:

queuing_mutex() noexcept;
~queuing_mutex();

queuing_mutex(const queuing_mutex&) = delete;
queuing_mutex& operator=(const queuing_mutex&) = delete;

class scoped_lock;

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = true;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

Member functions

queuing_mutex()

Constructs unlocked queuing_mutex.

~queuing_mutex()

Destroys unlocked queuing_mutex.

queuing_rw_mutex

[mutex.queuing_rw_mutex]

A queuing_rw_mutex is a class that models the ReaderWriterMutex requirement concept. The queuing_rw_mutex
is not recursive. The queuing_rw_mutex is fair, threads acquire a lock on a mutex in the order that they request it.

// Defined in header <oneapi/tbb/queuing_rw_mutex.h>

namespace oneapi {
(continues on next page)

7.3. oneTBB Auxiliary Interfaces 902

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

namespace tbb {
class queuing_rw_mutex {
public:

queuing_rw_mutex() noexcept;
~queuing_rw_mutex();

queuing_rw_mutex(const queuing_rw_mutex&) = delete;
queuing_rw_mutex& operator=(const queuing_rw_mutex&) = delete;

class scoped_lock;

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = true;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the ReaderWriterMutex requirement.

Member functions

queuing_rw_mutex()

Constructs unlocked queuing_rw_mutex.

~queuing_rw_mutex()

Destroys unlocked queuing_rw_mutex.

null_mutex

[mutex.null_mutex]

A null_mutex is a class that models the Mutex requirement concept syntactically, but does nothing. It is useful for
instantiating a template that expects a Mutex, but no mutual exclusion is actually needed for that instance.

// Defined in header <oneapi/tbb/null_mutex.h>

namespace oneapi {
namespace tbb {

class null_mutex {
public:

constexpr null_mutex() noexcept;
~null_mutex();

null_mutex(const null_mutex&) = delete;
null_mutex& operator=(const null_mutex&) = delete;

(continues on next page)

7.3. oneTBB Auxiliary Interfaces 903

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

class scoped_lock;

void lock();
bool try_lock();
void unlock();

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = true;
static constexpr bool is_fair_mutex = true;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

Member functions

null_mutex()

Constructs unlocked mutex.

~null_mutex()

Destroys unlocked mutex.

void lock()
Acquires lock.

bool try_lock()
Tries acquiring lock (non-blocking).

void unlock()
Releases the lock.

null_rw_mutex

[mutex.null_rw_mutex]

A null_rw_mutex is a class that models the ReaderWriterMutex requirement syntactically, but does noth-
ing. The null_rw_mutex class also satisfies all syntactic requirements of shared mutex type from the
[thread.sharedmutex.requirements] ISO C++ section, but does nothing. It is useful for instantiating a template that
expects a ReaderWriterMutex, but no mutual exclusion is actually needed for that instance.

// Defined in header <oneapi/tbb/null_rw_mutex.h>

namespace oneapi {
namespace tbb {

class null_rw_mutex {
(continues on next page)

7.3. oneTBB Auxiliary Interfaces 904

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

public:
constexpr null_rw_mutex() noexcept;
~null_rw_mutex();

null_rw_mutex(const null_rw_mutex&) = delete;
null_rw_mutex& operator=(const null_rw_mutex&) = delete;

class scoped_lock;

void lock();
bool try_lock();
void unlock();

void lock_shared();
bool try_lock_shared();
void unlock_shared();

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = true;
static constexpr bool is_fair_mutex = true;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the ReaderWriterMutex requirement.

Member functions

null_rw_mutex()

Constructs unlocked mutex.

~null_rw_mutex()

Destroys unlocked mutex.

void lock()
Acquires a lock.

bool try_lock()
Attempts to acquire a lock (non-blocking) on write. Returns true.

void unlock()
Releases a write lock held by the current thread.

void lock_shared()
Acquires a lock on read.

bool try_lock_shared()
Attempts to acquire the lock (non-blocking) on read. Returns true.

7.3. oneTBB Auxiliary Interfaces 905

oneAPI Specification, Release 1.4-provisional-rev-1

void unlock_shared()
Releases a read lock held by the current thread.

7.3.3 Timing

[timing]

Parallel programming is about speeding up wall clock time, which is the real time that it takes a program or function
to run. The library provides API to simplify timing within an application.

Syntax

// Declared in tick_count.h

class tick_count;

class tick_count::interval_t;

Classes

tick_count class

[timing.tick_count]

A tick_count is an absolute wall clock timestamp. Two tick_count objects can be subtracted to compute wall clock
duration tick_count::interval_t, which can be converted to seconds.

namespace oneapi {
namespace tbb {

class tick_count {
public:

class interval_t;
tick_count();
tick_count(const tick_count&);
~tick_count();
tick_count& operator=(const tick_count&);
static tick_count now();
static double resolution();

};

} // namespace tbb
} // namespace oneapi

tick_count()
Constructs tick_count with an unspecified wall clock timestamp.

tick_count(const tick_count&)
Constructs tick_count with the timestamp of the given tick_count.

~tick_count()
Destructor.

7.3. oneTBB Auxiliary Interfaces 906

oneAPI Specification, Release 1.4-provisional-rev-1

tick_count& operator=(const tick_count&)
Assigns the timestamp of one tick_count to another.

static tick_count now()
Returns a tick_count object that represents the current wall clock timestamp.

static double resolution()
Returns the resolution of the clock used by tick_count, in seconds.

tick_count::interval_t class

[timing.tick_count.interval_t]

A tick_count::interval_t represents wall clock duration.

namespace oneapi {
namespace tbb {

class tick_count::interval_t {
public:

interval_t();
explicit interval_t(double);
~interval_t();
interval_t& operator=(const interval_t&);
interval_t& operator+=(const interval_t&);
interval_t& operator-=(const interval_t&);
double seconds() const;

};

} // namespace tbb
} // namespace oneapi

interval_t()
Constructs interval_t representing zero time duration.

explicit interval_t(double)
Constructs interval_t representing the specified number of seconds.

~interval_t()
Destructor.

interval_t& operator=(const interval_t&)
Assigns the wall clock duration of one interval_t to another.

interval_t& operator+=(const interval_t&)
Increases the duration to the given interval_t, and returns *this.

interval_t& operator-=(const interval_t&)
Decreases the duration to the given interval_t, and returns *this.

double seconds() const
Returns the duration measured in seconds.

7.3. oneTBB Auxiliary Interfaces 907

oneAPI Specification, Release 1.4-provisional-rev-1

Non-member functions

[timing.tick_count.nonmember]

These functions provide arithmetic binary operations with wall clock timestamps and durations.

oneapi::tbb::tick_count::interval_t operator-(const oneapi::tbb::tick_count&, const␣
→˓oneapi::tbb::tick_count&);
oneapi::tbb::tick_count::interval_t operator+(const oneapi::tbb::tick_count::interval_t&
→˓, const oneapi::tbb::tick_count::interval_t&);
oneapi::tbb::tick_count::interval_t operator-(const oneapi::tbb::tick_count::interval_t&
→˓, const oneapi::tbb::tick_count::interval_t&);

The namespace where these functions are defined is unspecified as long as they may be used in respective binary
operation expressions on tick_count and tick_count::interval_t objects. For example, an implementation may
define the classes and functions in the same unspecified internal namespace, and define oneapi::tbb::tick_count
as a type alias for which the non-member functions are reachable only via argument-dependent lookup.

oneapi::tbb::tick_count::interval_t operator-(const oneapi::tbb::tick_count&, const
oneapi::tbb::tick_count&)

Returns interval_t representing the duration between two given wall clock timestamps.

oneapi::tbb::tick_count::interval_t operator+(const
oneapi::tbb::tick_count::interval_t&, const oneapi::tbb::tick_count::interval_t&)

Returns interval_t representing the sum of two given intervals.

oneapi::tbb::tick_count::interval_t operator-(const
oneapi::tbb::tick_count::interval_t&, const oneapi::tbb::tick_count::interval_t&)

Returns interval_t representing the difference of two given intervals.

7.3.4 info Namespace

[info_namespace]

Interfaces to query information about execution environment.

// Declared in header <oneapi/tbb/info.h>

namespace oneapi {
namespace tbb {

using numa_node_id = /*implementation-defined*/;
using core_type_id = /*implementation-defined*/;

namespace info {
std::vector<numa_node_id> numa_nodes();
std::vector<core_type_id> core_types();

int default_concurrency(task_arena::constraints c);
int default_concurrency(numa_node_id id = oneapi::tbb::task_arena::automatic);

}
} // namespace tbb
} // namespace oneapi

7.3. oneTBB Auxiliary Interfaces 908

oneAPI Specification, Release 1.4-provisional-rev-1

Types

numa_node_id - Represents NUMA node identifier.

Functions

std::vector<numa_node_id> numa_nodes()
Returns the vector of integral indexes that indicate available NUMA nodes.

Note: If error occurs during system topology parsing, returns vector containing single element that equals to
task_arena::automatic.

std::vector<core_type_id> core_types()
Returns the vector of integral indexes that indicate available core types. The indexes are sorted from the least
performant to the most performant core type.

Note: If error occurs during system topology parsing, returns vector containing single element that equals to
task_arena::automatic.

int default_concurrency(task_arena::constraints c)
Returns concurrency level for the given constraints.

int default_concurrency(numa_node_id id = oneapi::tbb::task_arena::automatic)
Returns concurrency level of the given NUMA node. If argument is not specified, returns default concurrency
level for current library configuration.

7.4 oneTBB Deprecated Interfaces

7.4.1 task_arena::attach

[deprecated.task_arena_attach_tag]

Caution: Deprecated in oneTBB Specification 1.1.

A set of methods for constructing a task_arena with attach.

// Defined in header <oneapi/tbb/task_arena.h>

namespace oneapi {
namespace tbb {

class task_arena {
public:

// ...
struct attach {};

explicit task_arena(task_arena::attach);
(continues on next page)

7.4. oneTBB Deprecated Interfaces 909

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

void initialize(task_arena::attach);
// ...

};

} // namespace tbb
} // namespace oneapi

Member types and constants

struct attach
A tag for constructing a task_arena with attach.

Member functions

explicit task_arena(task_arena::attach)
Creates an instance of task_arena that is connected to the internal task arena representation currently used by
the calling thread. If no such arena exists yet, creates a task_arena with default parameters.

Note: Unlike other task_arena constructors, this one automatically initializes the new task_arena when
connecting to an already existing arena.

void initialize(task_arena::attach)
If an internal task arena representation currently used by the calling thread, the method ignores arena parameters
and connects task_arena to that internal task arena representation. The method has no effect when called for
an already initialized task_arena.

See also:

• attach

7.4. oneTBB Deprecated Interfaces 910

CHAPTER

EIGHT

ONEMKL

The oneAPI Math Kernel Library (oneMKL) defines a set of fundamental mathematical routines for use in high-
performance computing and other applications. As part of oneAPI, oneMKL is designed to allow execution on a wide
variety of computational devices: CPUs, GPUs, FPGAs, and other accelerators. The functionality is subdivided into
several domains: dense linear algebra, sparse linear algebra, discrete Fourier transforms, random number generators
and vector math.

The general assumptions, design features and requirements for the oneMKL library and host-to-device computational
routines will be described in oneMKL Architecture. The individual domains and their APIs are described in oneMKL
Domains. Other design considerations that are not necessarily part of the oneMKL specification but that are worth
mentioning will be discussed in oneMKL Appendix.

8.1 oneMKL Architecture

The oneMKL element of oneAPI has several general assumptions, requirements and recommendations for all domains
contained therein. These will be addressed in this architecture section. In particular, DPC++ allows for a great control
over the execution of kernels on the various devices. We discuss the supported execution models of oneMKL APIs in
Execution Model. A discussion of how data is stored and passed in and out of the APIs is addressed in Memory Model.
The general structure and design of oneMKL APIs including namespaces and common data types are expressed in
API Design. The exceptions and error handling are described in Exceptions and Error Handling. Finally all the other
necessary aspects related to oneMKL architecture can be found in Other Features including versioning and discussion
of pre and post conditions. Other nonessential, but useful aspects of the oneMKL architecture and design may also be
found in the oneMKL Appendix.

911

oneAPI Specification, Release 1.4-provisional-rev-1

8.1.1 Execution Model

This section describes the execution environment common to all oneMKL functionality. The execution environment
includes how data is provided to computational routines in Use of Queues, support for several devices in Device Usage,
synchronous and asynchronous execution models in Asynchronous Execution and Host Thread Safety.

Use of Queues

The sycl::queue defined in the oneAPI DPC++ specification is used to specify the device and features enabled on
that device on which a task will be enqueued. There are two forms of computational routines in oneMKL: class based
Member Functions and standalone Non-Member Functions. As these may interact with the sycl::queue in different
ways, we provide a section for each one to describe assumptions.

Non-Member Functions

Each oneMKL non-member computational routine takes a sycl::queue reference as its first parameter:

mkl::domain::routine(sycl::queue &q, ...);

All computation performed by the routine shall be done on the hardware device(s) associated with this queue, with
possible aid from the host, unless otherwise specified. In the case of an ordered queue, all computation shall also be
ordered with respect to other kernels as if enqueued on that queue.

A particular oneMKL implementation may not support the execution of a given oneMKL routine on the specified
device(s). In this case, the implementation may either perform the computation on the host or throw an exception. See
Exceptions and Error Handling for the possible exceptions.

Member Functions

oneMKL class-based APIs, such as those in the RNG and DFT domains, require a sycl::queue as an argument to the
constructor or another setup routine. The execution requirements for computational routines from the previous section
also apply to computational class methods.

Device Usage

oneMKL itself does not currently provide any interfaces for controlling device usage: for instance, controlling the
number of cores used on the CPU, or the number of execution units on a GPU. However, such functionality may be
available by partitioning a sycl::device instance into subdevices, when supported by the device.

When given a queue associated with such a subdevice, a oneMKL implementation shall only perform computation on
that subdevice.

8.1. oneMKL Architecture 912

oneAPI Specification, Release 1.4-provisional-rev-1

Asynchronous Execution

The oneMKL API is designed to allow asynchronous execution of computational routines, to facilitate concurrent usage
of multiple devices in the system. Each computational routine enqueues work to be performed on the selected device,
and may (but is not required to) return before execution completes.

Hence, it is the calling application’s responsibility to ensure that any inputs are valid until computation is complete, and
likewise to wait for computation completion before reading any outputs. This can be done automatically when using
DPC++ buffers, or manually when using Unified Shared Memory (USM) pointers, as described in the sections below.

Unless otherwise specified, asynchronous execution is allowed, but not guaranteed, by any oneMKL computational
routine, and may vary between implementations and/or versions. oneMKL implementations must clearly document
whether execution is guaranteed to be asynchronous for each supported routine. Regardless, calling applications shall
not launch any oneMKL computational routine with a dependency on a future oneMKL API call, even if this computa-
tional routine executes asynchronously (i.e. a oneMKL implementation may assume no antidependencies are present).
This guarantee allows oneMKL implementations to reserve resources for execution without risking deadlock.

Synchronization When Using Buffers

sycl::buffer objects automatically manage synchronization between kernel launches linked by a data dependency
(either read-after-write, write-after-write, or write-after-read).

oneMKL routines are not required to perform any additional synchronization of sycl::buffer arguments.

Synchronization When Using USM APIs

When USM pointers are used as input to, or output from, a oneMKL routine, it becomes the calling application’s
responsibility to manage possible asynchronicity.

To help the calling application, all oneMKL routines with at least one USM pointer argument also take an optional
reference to a list of input events, of type std::vector<sycl::event>, and have a return value of type sycl::event
representing computation completion:

sycl::event mkl::domain::routine(..., std::vector<sycl::event> &in_events = {});

The routine shall ensure that all input events (if the list is present and non-empty) have occurred before any USM pointers
are accessed. Likewise, the routine’s output event shall not be complete until the routine has finished accessing all USM
pointer arguments.

For class methods, “argument” includes any USM pointers previously provided to the object via the class constructor
or other class methods.

Host Thread Safety

All oneMKL member and non-member functions shall be host thread safe. That is, they may be safely called simul-
taneously from concurrent host threads. However, oneMKL objects in class-based APIs may not be shared between
concurrent host threads unless otherwise specified.

8.1. oneMKL Architecture 913

oneAPI Specification, Release 1.4-provisional-rev-1

8.1.2 Memory Model

The oneMKL memory model shall follow directly from the oneAPI memory model. Mainly, oneMKL shall support
two modes of encapsulating data for consumption on the device: the buffer memory abstraction model and the pointer-
based memory model using Unified Shared Memory (USM). These two paradigms shall also support both synchronous
and asynchronous execution models as described in Asynchronous Execution.

The Buffer Memory Model

The SYCL 1.2.1 specification defines the buffer container templated on the provided data type which encapsulates the
data in a SYCL application across both host and devices. It provides the concept of accessors as the mechanism to
access the buffer data with different modes to read and or write into that data. These accessors allow SYCL to create
and manage the data dependencies in the SYCL graph that order the kernel executions. With the buffer model, all data
movement is handled by the SYCL runtime supporting both synchronous and asynchronous execution.

oneMKL provides APIs where buffers (in particular 1D buffers, sycl::buffer<T,1>) contain the memory for all non
scalar input and output data arguments. See Synchronization When Using Buffers for details on how oneMKL routines
manage any data dependencies with buffer arguments. Any higher dimensional buffer must be converted to a 1D buffer
prior to use in oneMKL APIs, e.g., via buffer::reinterpret.

Unified Shared Memory Model

While the buffer model is powerful and elegantly expresses data dependencies, it can be a burden for programmers to
replace all pointers and arrays by buffers in their C++ applications. DPC++ also provides pointer-based addressing for
device-accessible data, using the Unified Shared Memory (USM) model. Correspondingly, oneMKL provides USM
APIs in which non-scalar input and output data arguments are passed by USM pointer.

USM devices and system configurations vary in their ability to share data between devices and between a device and
the host. oneMKL implementations may only assume that user-provided USM pointers are accessible by the device
associated with the user-provided queue. In particular, an implementation must not assume that USM pointers can be
accessed by any other device, or by the host, without querying the DPC++ runtime. An implementation must accept
any device-accessible USM pointer regardless of how it was created (sycl::malloc_device, sycl::malloc_shared, etc.).

Unlike buffers, USM pointers cannot automatically manage data dependencies between kernels. Users may use in-
order queues to ensure ordered execution, or explicitly manage dependencies with sycl::event objects. To support
the second use case, oneMKL USM APIs accept input events (prerequisites before computation can begin) and return
an output event (indicating computation is complete). See Synchronization When Using USM APIs for details.

8.1.3 API Design

This section discusses the general features of oneMKL API design. In particular, it covers the use of namespaces and
data types from C++, from DPC++ and new ones introduced for oneMKL APIs.

8.1. oneMKL Architecture 914

oneAPI Specification, Release 1.4-provisional-rev-1

oneMKL namespaces

The oneMKL library uses C++ namespaces to organize routines by mathematical domain. All oneMKL objects and
routines shall be contained within the oneapi::mkl base namespace. The individual oneMKL domains use a sec-
ondary namespace layer as follows:

names-
pace

oneMKL domain or content

oneapi::mkloneMKL base namespace, contains general oneMKL data types, objects, exceptions and routines
oneapi::mkl::blasDense linear algebra routines from BLAS and BLAS like extensions. The oneapi::mkl::blas names-

pace should contain two namespaces column_major and row_major to support both matrix layouts.
See BLAS Routines

oneapi::mkl::lapackDense linear algebra routines from LAPACK and LAPACK like extensions. See LAPACK Routines
oneapi::mkl::sparseSparse linear algebra routines from Sparse BLAS and Sparse Solvers. See Sparse Linear Algebra
oneapi::mkl::dftDiscrete Fourier Transforms. See Discrete Fourier Transform Functions
oneapi::mkl::rngRandom number generator routines. See Random Number Generators
oneapi::mkl::vmVector mathematics routines, e.g. trigonometric, exponential functions acting on elements of a vector.

See Vector Math

Note: Inside each oneMKL domain, there are many routines, classes, enums and objects defined which constitute the
breadth and scope of that oneMKL domain. It is permitted for a library implementation of the oneMKL specification to
implement either all, one or more than one of the domains in oneMKL. However, within an implementation of a specific
domain, all relevant routines, classes, enums and objects (including those relevant enums and objects which live outside
a particular domain in the general oneapi::mkl namespace must be both declared and defined in the library so that
an application that uses that domain could build and link against that library implementation successfully.

It is however acceptable to throw the runtime exception oneapi::mkl::unimplemented inside of the routines or class
member functions in that domain that have not been fully implemented. For instance, a library may choose to implement
the oneMKL BLAS functionality and in particular may choose to implement only the gemm api for their library, in
which case they must also include all the other blas namespaced routines and throw the oneapi::mkl::unimplemented
exception inside all the others.

In such a case, the implemented routines in such a library should be communicated clearly and easily understood by
users of that library.

Standard C++ datatype usage

oneMKL uses C++ STL data types for scalars where applicable:

• Integer scalars are C++ fixed-size integer types (std::intN_t, std::uintN_t).

• Complex numbers are represented by C++ std::complex types.

In general, scalar integer arguments to oneMKL routines are 64-bit integers (std::int64_t or std::uint64_t).
Integer vectors and matrices may have varying bit widths, defined on a per-routine basis.

8.1. oneMKL Architecture 915

oneAPI Specification, Release 1.4-provisional-rev-1

DPC++ datatype usage

oneMKL uses the following DPC++ data types:

• SYCL queue sycl::queue for scheduling kernels on a SYCL device. See Use of Queues for more details.

• SYCL buffer sycl::buffer for buffer-based memory access. See The Buffer Memory Model for more details.

• Unified Shared Memory (USM) for pointer-based memory access. See Unified Shared Memory Model for more
details.

• SYCL event sycl::event for output event synchronization in oneMKL routines with USM pointers. See Syn-
chronization When Using USM APIs for more details.

• Vector of SYCL events std::vector<sycl::event> for input events synchronization in oneMKL routines
with USM pointers. See Synchronization When Using USM APIs for more details.

Note: The class sycl::vector_class has been removed from SYCL 2020 and the standard class std::vector
should be used instead for vector of SYCL events in oneMKL routines with USM pointers

oneMKL defined datatypes

oneMKL dense and sparse linear algebra routines use scoped enum types as type-safe replacements for the tradi-
tional character arguments used in C/Fortran implementations of BLAS and LAPACK. These types all belong to the
oneapi::mkl namespace.

Each enumeration value comes with two names: A single-character name (the traditional BLAS/LAPACK character)
and a longer, more descriptive name. The two names are exactly equivalent and may be used interchangeably.

transpose

The transpose type specifies whether an input matrix should be transposed and/or conjugated. It can
take the following values:

Short
Name

Long Name Description

transpose::Ntranspose::nontransDo not transpose or conjugate the matrix.
transpose::Ttranspose::transTranspose the matrix (without complex conjugation).
transpose::Ctranspose::conjtransPerform Hermitian transpose (transpose and conjugate). Is the same

as transpose::trans for real matrices.

uplo

The uplo type specifies whether the lower or upper triangle of a triangular, symmetric, or Hermitian matrix
should be accessed. It can take the following values:

Short Name Long Name Description
uplo::U uplo::upper Access the upper triangle of the matrix.
uplo::L uplo::lower Access the lower triangle of the matrix.

8.1. oneMKL Architecture 916

oneAPI Specification, Release 1.4-provisional-rev-1

In both cases, elements that are not in the selected triangle are not accessed or updated.

diag

The diag type specifies the values on the diagonal of a triangular matrix. It can take the following values:

Short
Name

Long
Name

Description

diag::N diag::nonunitThe matrix is not unit triangular. The diagonal entries are stored with the
matrix data.

diag::U diag::unit The matrix is unit triangular (the diagonal entries are all 1’s). The diagonal
entries in the matrix data are not accessed.

side

The side type specifies the order of matrix multiplication when one matrix has a special form (triangular,
symmetric, or Hermitian):

Short Name Long Name Description
side::L side::left The special form matrix is on the left in the multiplication.
side::R side::right The special form matrix is on the right in the multiplication.

offset

The offset type specifies whether the offset to apply to an output matrix is a fix offset, column offset or
row offset. It can take the following values

Short
Name

Long
Name

Description

offset::Foffset::fixThe offset to apply to the output matrix is fix, all the inputs in the C_offsetmatrix
has the same value given by the first element in the co array.

offset::Coffset::columnThe offset to apply to the output matrix is a column offset, that is to say all the
columns in the C_offset matrix are the same and given by the elements in the
co array.

offset::Roffset::rowThe offset to apply to the output matrix is a row offset, that is to say all the rows
in the C_offset matrix are the same and given by the elements in the co array.

8.1. oneMKL Architecture 917

oneAPI Specification, Release 1.4-provisional-rev-1

index_base

The index_base type specifies how values in index arrays are interpreted. For instance, a sparse matrix
stores nonzero values and the indices that they correspond to. The indices are traditionally provided in
one of two forms: C/C++-style using zero-based indices, or Fortran-style using one-based indices. The
index_base type can take the following values:

Name Description
index_base::zeroIndex arrays for an input matrix are provided using zero-based (C/C++ style) index

values. That is, indices start at 0.
index_base::oneIndex arrays for an input matrix are provided using one-based (Fortran style) index

values. That is, indices start at 1.

layout

The layout type specifies how a dense matrix A with leading dimension lda is stored as one dimen-
sional array in memory. The layouts are traditionally provided in one of two forms: C/C++-style using
row_major layout, or Fortran-style using column_major layout. The layout type can take the following
values:

Short
Name

Long
Name

Description

layout::Rlayout::row_majorFor row major layout, the elements of each row of a dense matrix A are contiguous
in memory while the elements of each column are at distance lda from the element
in the same column and the previous row.

layout::Clayout::col_majorFor column major layout, the elements of each column a dense matrix A are con-
tiguous in memory while the elements of each row are at distance lda from the
element in the same row and the previous column.

Note: oneMKL Appendix may contain other API design decisions or recommendations that may be of use to the
general developer of oneMKL, but which may not necessarily be part of the oneMKL specification.

8.1. oneMKL Architecture 918

oneAPI Specification, Release 1.4-provisional-rev-1

8.1.4 Exceptions and Error Handling

oneMKL error handling relies on the mechanism of C++ exceptions. Should error occur, it will be propagated at the
point of a function call where it is caught using standard C++ error handling mechanism.

Exception classification

Exception classification in oneMKL is aligned with C++ Standard Library classification. oneMKL introduces class that
defines the base class in the hierarchy of oneMKL exception classes. All oneMKL routines throw exceptions inherited
from this base class. In the hierarchy of oneMKL exceptions, oneapi::mkl::exception is the base class inherited
from std::exception class. All other oneMKL exception classes are derived from this base class.

This specification does not require implementations to perform error-checking. However, if an implementation does
provide error-checking, it shall use the following exception classes. Additional implementation-specific exception
classes can be used for exceptional conditions not fitting any of these classes.

Common exceptions

Exception class Description

oneapi::mkl::exception
Reports general unspecified problem

oneapi::mkl::unsupported_device
Reports a problem when the routine is not supported on a specific
device

oneapi::mkl::host_bad_alloc
Reports a problem that occurred during memory allocation on the
host

oneapi::mkl::device_bad_alloc
Reports a problem that occurred during memory allocation on a spe-
cific device

oneapi::mkl::unimplemented
Reports a problem when a specific routine has not been implemented
for the specified parameters

oneapi::mkl::invalid_argument
Reports problem when arguments to the routine were rejected

oneapi::mkl::uninitialized
Reports problem when a handle (descriptor) has not been initialized

oneapi::mkl::computation_error
Reports any computation errors that have occurred inside a oneMKL
routine

oneapi::mkl::batch_error
Reports errors that have occurred inside a batch oneMKL routine

8.1. oneMKL Architecture 919

oneAPI Specification, Release 1.4-provisional-rev-1

LAPACK specific exceptions

Exception class Description

oneapi::mkl::lapack::exception
Base class for all LAPACK exceptions providing access to info code
familiar to users of conventional LAPACK API. All LAPACK related
exceptions can be handled with catch block for this class.

oneapi::mkl::lapack::invalid_argument
Reports errors when arguments provided to the LAPACK subroutine
are inconsistent or do not match expected values. Class extends base
oneapi::mkl::invalid_argumentwith ability to access conven-
tional status info code.

oneapi::mkl::lapack::computation_error
Reports computation errors that have occurred dur-
ing call to LAPACK subroutine. Class extends base
oneapi::mkl::computation_error with ability to access
conventional status info code familiar to LAPACK users.

oneapi::mkl::lapack::batch_error
Reports errors that have occurred during batch LAPACK computa-
tions. Class extends base oneapi::mkl::batch_error with abil-
ity to access individual exception objects for each of the issues ob-
served in a batch and an info code. The info code contains the num-
ber of errors that occurred in a batch. Positions of problems in a
supplied batch that experienced issues during computations can be
retrieved with ids() method, and list of particular exceptions can be
obtained with exceptions() method of the exception object. Possible
exceptions for a batch are documented for corresponding non-batch
API.

8.1.5 Other Features

This section covers all other features in the design of oneMKL architecture.

Current Version of this oneMKL Specification

This is the oneMKL specification which is part of the oneAPI specification version 1.0.0.

Pre/Post Condition Checking

The individual oneMKL computational routines will define any preconditions and postconditions and will define in
this specification any specific checks or verifications that should be enabled for all implementations.

8.2 oneMKL Domains

This section describes the Data Parallel C++ (DPC++) interface.

8.2. oneMKL Domains 920

oneAPI Specification, Release 1.4-provisional-rev-1

8.2.1 Dense Linear Algebra

This section contains information about dense linear algebra routines:

Matrix Storage provides information about dense matrix and vector storage formats that are used by oneMKL BLAS
Routines and LAPACK Routines.

BLAS Routines provides vector, matrix-vector, and matrix-matrix routines for dense matrices and vector operations.

Scalar Arguments in BLAS describes some details of how scalar parameters (such as alpha and beta) are handled so
that users may pass either values or pointers for these parameters.

LAPACK Routines provides more complex dense linear algebra routines, e.g., matrix factorization, solving dense sys-
tems of linear equations, least square problems, eigenvalue and singular value problems, and performing a number of
related computational tasks.

Matrix Storage

The oneMKL BLAS and LAPACK routines for DPC++ use several matrix and vector storage formats. These are the
same formats used in traditional Fortran BLAS/LAPACK. LAPACK routines require column major layout.

General Matrix

A general matrix A of m rows and n columns with leading dimension lda is represented as a one dimensional array a of
size of at least lda * n if column major layout is used and at least lda * m if row major layout is used. Before entry in
any BLAS function using a general matrix, the leading m by n part of the array a must contain the matrix A. For column
(respectively row) major layout, the elements of each column (respectively row) are contiguous in memory while the
elements of each row (respectively column) are at distance lda from the element in the same row (respectively column)
and the previous column (respectively row).

Visually, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 . . . 𝐴1𝑛

𝐴21 𝐴22 𝐴23 . . . 𝐴2𝑛

𝐴31 𝐴32 𝐴33 . . . 𝐴3𝑛

...
...

...
. . .

...
𝐴𝑚1 𝐴𝑚2 𝐴𝑚3 . . . 𝐴𝑚𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored in memory as an array

• For column major layout,

𝑎=[𝐴11, 𝐴21, 𝐴31, ..., 𝐴𝑚1, *, ..., *⏟ ⏞
lda

, 𝐴12, 𝐴22, 𝐴32, ..., 𝐴𝑚2, *, ..., *⏟ ⏞
lda

, ..., 𝐴1𝑛, 𝐴2𝑛, 𝐴3𝑛, ..., 𝐴𝑚𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

• For row major layout,

𝑎=[𝐴11, 𝐴12, 𝐴13, ..., 𝐴1𝑛, *, ..., *⏟ ⏞
lda

, 𝐴21, 𝐴22, 𝐴23, ..., 𝐴2𝑛, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑚1, 𝐴𝑚2, 𝐴𝑚3, ..., 𝐴𝑚𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

m x lda

]

8.2. oneMKL Domains 921

oneAPI Specification, Release 1.4-provisional-rev-1

Triangular Matrix

A triangular matrix A of n rows and n columns with leading dimension lda is represented as a one dimensional array
a, of a size of at least lda * n. When column (respectively row) major layout is used, the elements of each column
(respectively row) are contiguous in memory while the elements of each row (respectively column) are at distance lda
from the element in the same row (respectively column) and the previous column (respectively row).

Before entry in any BLAS function using a triangular matrix,

• If upper_lower = uplo::upper, the leading n by n upper triangular part of the array amust contain the upper
triangular part of the matrix A. The strictly lower triangular part of the array a is not referenced. In other words,
the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 . . . 𝐴1𝑛

* 𝐴22 𝐴23 . . . 𝐴2𝑛

* * 𝐴33 . . . 𝐴3𝑛

...
...

...
. . .

...
* * * . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored in memory as the array

– For column major layout,

𝑎=[𝐴11, *, ..., *⏟ ⏞
lda

, 𝐴12, 𝐴22, *, ..., *⏟ ⏞
lda

, ..., 𝐴1𝑛, 𝐴2𝑛, 𝐴3𝑛, ..., 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

– For row major layout,

𝑎=[𝐴11, 𝐴12, 𝐴13, ..., 𝐴1𝑛, *, ..., *⏟ ⏞
lda

, *, 𝐴22, 𝐴23, ..., 𝐴2𝑛, *, ..., *⏟ ⏞
lda

, ..., *, ..., *, 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

• If upper_lower = uplo::lower, the leading n by n lower triangular part of the array a must contain the lower
triangular part of the matrix A. The strictly upper triangular part of the array a is not referenced. That is, the
matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 * * . . . *
𝐴21 𝐴22 * . . . *
𝐴31 𝐴32 𝐴33 . . . *

...
...

...
. . .

...
𝐴𝑛1 𝐴𝑛2 𝐴𝑛3 . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored in memory as the array

– For column major layout,

𝑎=[𝐴11, 𝐴21, 𝐴31, .., 𝐴𝑛1, *, ..., *⏟ ⏞
lda

, *, 𝐴22, 𝐴32, ..., 𝐴𝑛2, *, ..., *⏟ ⏞
lda

, ..., *, ..., *, 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

– For row major layout,

𝑎=[𝐴11, *, ..., *⏟ ⏞
lda

, 𝐴21, 𝐴22, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑛1, 𝐴𝑛2, 𝐴𝑛3, ..., 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

8.2. oneMKL Domains 922

oneAPI Specification, Release 1.4-provisional-rev-1

Band Matrix

A general band matrix A of m rows and n columns with kl sub-diagonals, ku super-diagonals, and leading dimension
lda is represented as a one dimensional array a of a size of at least lda * n (respectively lda * m) if column (respectively
row) major layout is used.

Before entry in any BLAS function using a general band matrix, the leading (kl + ku + 1) by n (respectively m) part of
the array a must contain the matrix A. This matrix must be supplied column-by-column (respectively row-by-row), with
the main diagonal of the matrix in row ku (respectively kl) of the array (0-based indexing), the first super-diagonal
starting at position 1 (respectively 0) in row (ku - 1) (respectively column (kl + 1)), the first sub-diagonal starting at
position 0 (respectively 1) in row (ku + 1) (respectively column (kl - 1)), and so on. Elements in the array a that do
not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced.

Visually, the matrix A

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 𝐴12 𝐴13 ... 𝐴1,𝑘𝑢+1 * *
𝐴21 𝐴22 𝐴23 𝐴24 ... 𝐴2,𝑘𝑢+2 * *
𝐴31 𝐴32 𝐴33 𝐴34 𝐴35 ... 𝐴3,𝑘𝑢+3 * *
... 𝐴42 𝐴43

. *
...

𝐴𝑘𝑙+1,1

... 𝐴53

. * ...
...

* 𝐴𝑘𝑙+2,2

...
. .

...
... * 𝐴𝑘𝑙+3,3

. *
...

... *
. 𝐴𝑛−𝑘𝑢,𝑛

...
...

... *
. .

...
...

...
...

... *
. 𝐴𝑚−2,𝑛

...
...

...
...

...
. 𝐴𝑚−1,𝑛

* * * * 𝐴𝑚,𝑚−𝑘𝑙 ... 𝐴𝑚,𝑛−2 𝐴𝑚,𝑛−1 𝐴𝑚,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is stored in memory as an array

• For column major layout,

𝑎=[*, ..., *⏟ ⏞
ku

, 𝐴11, 𝐴12, ..., 𝐴𝑚𝑖𝑛(𝑘𝑙+1,𝑚),1, *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
ku-1

, 𝐴𝑚𝑎𝑥(1,2−𝑘𝑢),2, ..., 𝐴𝑚𝑖𝑛(𝑘𝑙+2,𝑚),2, *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,ku-n+1)

, 𝐴𝑚𝑎𝑥(1,𝑛−𝑘𝑢),𝑛, ..., 𝐴𝑚𝑖𝑛(𝑘𝑙+𝑛,𝑚),𝑛, *, ...*

⏟ ⏞
lda⏟ ⏞

lda x n

]

• For row major layout,

𝑎=[*, ..., *⏟ ⏞
kl

, 𝐴11, 𝐴12, ..., 𝐴1,𝑚𝑖𝑛(𝑘𝑢+1,𝑛), *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
kl-1

, 𝐴2,𝑚𝑎𝑥(1,2−𝑘𝑙), ..., 𝐴2,𝑚𝑖𝑛(𝑘𝑢+2,𝑛), *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,kl-m+1)

, 𝐴𝑚,𝑚𝑎𝑥(1,𝑚−𝑘𝑙), ..., 𝐴𝑚,𝑚𝑖𝑛(𝑘𝑢+𝑚,𝑛), *, ...*

⏟ ⏞
lda⏟ ⏞

lda x m

]

The following program segment transfers a band matrix from conventional full matrix storage (variable matrix, with
leading dimension ldm) to band storage (variable a, with leading dimension lda):

• Using matrices stored with column major layout,

for (j = 0; j < n; j++) {
k = ku – j;
for (i = max(0, j – ku); i < min(m, j + kl + 1); i++) {

a[(k + i) + j * lda] = matrix[i + j * ldm];
}

}

8.2. oneMKL Domains 923

oneAPI Specification, Release 1.4-provisional-rev-1

• Using matrices stored with row major layout,

for (i = 0; i < m; i++) {
k = kl – i;
for (j = max(0, i – kl); j < min(n, i + ku + 1); j++) {

a[(k + j) + i * lda] = matrix[j + i * ldm];
}

}

Triangular Band Matrix

A triangular band matrix A of n rows and n columns with k sub/super-diagonals and leading dimension lda is repre-
sented as a one dimensional array a of size at least lda * n.

Before entry in any BLAS function using a triangular band matrix,

• If upper_lower = uplo::upper, the leading (k + 1) by n part of the array a must contain the upper triangular
band part of the matrix A. When using column major layout, this matrix must be supplied column-by-column
(respectively row-by-row) with the main diagonal of the matrix in row (k) (respectively column 0) of the array,
the first super-diagonal starting at position 1 (respectively 0) in row (k - 1) (respectively column 1), and so on.
Elements in the array a that do not correspond to elements in the triangular band matrix (such as the top left k
by k triangle) are not referenced.

Visually, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 𝐴12 𝐴13 ... 𝐴1,𝑘+1 * *
* 𝐴22 𝐴23 𝐴24 ... 𝐴2,𝑘+2 * *
... * 𝐴33 𝐴34 𝐴35 ... 𝐴3,𝑘+3 * *
...

... *
. *

...
...

...
...

. * ...
...

...
...

...
...

. .
...

...
...

...
...

...
. *

...
...

...
...

...
...

. 𝐴𝑛−𝑘,𝑛

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
...

...
. 𝐴𝑛−2,𝑛

...
...

...
...

...
...

...
...

...
. 𝐴𝑛−1,𝑛

* * * * 𝐴𝑛,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is stored as an array

• For column major layout,

𝑎=[*, ..., *⏟ ⏞
ku

, 𝐴11, *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
ku-1

, 𝐴𝑚𝑎𝑥(1,2−𝑘),2, ..., 𝐴2,2, *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,k-n+1)

, 𝐴𝑚𝑎𝑥(1,𝑛−𝑘),𝑛, ..., 𝐴𝑛,𝑛, *, ...*

⏟ ⏞
lda⏟ ⏞

lda x n

]

• For row major layout,

8.2. oneMKL Domains 924

oneAPI Specification, Release 1.4-provisional-rev-1

𝑎=[𝐴11, 𝐴21, ..., 𝐴𝑚𝑖𝑛(𝑘+1,𝑛),1, *, ..., *⏟ ⏞
lda

, 𝐴2,2, ..., 𝐴𝑚𝑖𝑛(𝑘+2,𝑛),2, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑛,𝑛, *, ...*⏟ ⏞
lda⏟ ⏞

lda x n

]

The following program segment transfers a band matrix from conventional full matrix storage (variable matrix, with
leading dimension ldm) to band storage (variable a, with leading dimension lda):

• Using matrices stored with column major layout,

for (j = 0; j < n; j++) {
m = k – j;
for (i = max(0, j – k); i <= j; i++) {

a[(m + i) + j * lda] = matrix[i + j * ldm];
}

}

• Using matrices stored with row major layout,

for (i = 0; i < n; i++) {
m = –i;
for (j = i; j < min(n, i + k + 1); j++) {

a[(m + j) + i * lda] = matrix[j + i * ldm];
}

}

• If upper_lower = uplo::lower, the leading (k + 1) by n part of the array a must contain the upper triangular
band part of the matrix A. This matrix must be supplied column-by-column with the main diagonal of the matrix
in row 0 of the array, the first sub-diagonal starting at position 0 in row 1, and so on. Elements in the array a that
do not correspond to elements in the triangular band matrix (such as the bottom right k by k triangle) are not
referenced.

That is, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 * *
𝐴21 𝐴22 * *
𝐴31 𝐴32 𝐴33 * *
... 𝐴42 𝐴43

.
...

𝐴𝑘+1,1

... 𝐴53

.
...

* 𝐴𝑘+2,2

...
.

...
... * 𝐴𝑘+3,3

.
...

...
... *

.
...

...
...

... *
.

...
...

...
...

... *
.

...
...

...
...

...
...

. *
* * * * 𝐴𝑛,𝑛−𝑘 ... 𝐴𝑛,𝑛−2 𝐴𝑛,𝑛−1 𝐴𝑛,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is stored as the array

• For column major layout,

𝑎=[𝐴11, 𝐴21, ..., 𝐴𝑚𝑖𝑛(𝑘+1,𝑛),1, *, ..., *⏟ ⏞
lda

, 𝐴2,2, ..., 𝐴𝑚𝑖𝑛(𝑘+2,𝑛),2, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑛,𝑛, *, ...*⏟ ⏞
lda⏟ ⏞

lda x n

]

8.2. oneMKL Domains 925

oneAPI Specification, Release 1.4-provisional-rev-1

• For row major layout,

𝑎=[*, ..., *⏟ ⏞
k

, 𝐴11, *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
k-1

, 𝐴𝑚𝑎𝑥(1,2−𝑘),2, ..., 𝐴2,2, *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,k-n+1)

, 𝐴𝑚𝑎𝑥(1,𝑛−𝑘),𝑛, ..., 𝐴𝑛,𝑛, *, ...*

⏟ ⏞
lda⏟ ⏞

lda x n

]

The following program segment transfers a band matrix from conventional full matrix storage (variable matrix, with
leading dimension ldm) to band storage (variable a, with leading dimension lda):

• Using matrices stored with column major layout,

for (j = 0; j < n; j++) {
m = –j;
for (i = j; i < min(n, j + k + 1); i++) {

a[(m + i) + j * lda] = matrix[i + j * ldm];
}

}

• Using matrices stored with row major layout,

for (i = 0; i < n; i++) {
m = k – i;
for (j = max(0, i – k); j <= i; j++) {

a[(m + j) + i * lda] = matrix[j + i * ldm];
}

}

Packed Triangular Matrix

A triangular matrix A of n rows and n columns is represented in packed format as a one dimensional array a of size at
least (n*(n + 1))/2. All elements in the upper or lower part of the matrix A are stored contiguously in the array a.

Before entry in any BLAS function using a triangular packed matrix,

• If upper_lower = uplo::upper, if column (respectively row) major layout is used, the first (n*(n + 1))/2
elements in the array a must contain the upper triangular part of the matrix A packed sequentially, column by
column (respectively row by row) so that a[0] contains A11, a[1] and a[2] contain A12 and A22 (respectively A13)
respectively, and so on. Hence, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 . . . 𝐴1𝑛

* 𝐴22 𝐴23 . . . 𝐴2𝑛

* * 𝐴33 . . . 𝐴3𝑛

...
...

...
. . .

...
* * * . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored as the array

– For column major layout,

𝑎=[𝐴11,𝐴12,𝐴22,𝐴13,𝐴23,𝐴33,...,𝐴(𝑛−1),𝑛,𝐴𝑛𝑛]

– For row major layout,

𝑎=[𝐴11,𝐴12,𝐴13,...,𝐴1𝑛,𝐴22,𝐴23,...,𝐴2𝑛,...,𝐴(𝑛−1),(𝑛−1),𝐴(𝑛−1),𝑛,𝐴𝑛𝑛]

8.2. oneMKL Domains 926

oneAPI Specification, Release 1.4-provisional-rev-1

• If upper_lower = uplo::lower, if column (respectively row) major layout is used, the first (n*(n + 1))/2
elements in the array a must contain the lower triangular part of the matrix A packed sequentially, column by
column (row by row) so that a[0] contains A11, a[1] and a[2] contain A21 and A31 (respectively A22) respectively,
and so on. The matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 * * . . . *
𝐴21 𝐴22 * . . . *
𝐴31 𝐴32 𝐴33 . . . *

...
...

...
. . .

...
𝐴𝑛1 𝐴𝑛2 𝐴𝑛3 . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored as the array

– For column major layout,

𝑎=[𝐴11,𝐴21,𝐴31,...,𝐴𝑛1,𝐴22,𝐴32,...,𝐴𝑛2,...,𝐴(𝑛−1),(𝑛−1),𝐴𝑛,(𝑛−1),𝐴𝑛𝑛]

– For row major layout,

𝑎=[𝐴11,𝐴21,𝐴22,𝐴31,𝐴32,𝐴33,...,𝐴𝑛,(𝑛−1),𝐴𝑛𝑛]

Vector

A vector X of n elements with increment incx is represented as a one dimensional array x of size at least (1 + (n - 1)
* abs(incx)).

Visually, the vector

𝑋 = (𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛)

is stored in memory as an array

𝑥=[𝑋1, *, ..., *⏟ ⏞
incx

, 𝑋2, *, ..., *⏟ ⏞
incx

, ..., 𝑋𝑛−1, *, ..., *⏟ ⏞
incx

, 𝑋𝑛

⏟ ⏞
1 + (n-1) x incx

] 𝑖𝑓 𝑖𝑛𝑐𝑥 > 0

𝑥=[𝑋𝑛, *, ..., *⏟ ⏞
|incx|

, 𝑋𝑛−1, *, ..., *⏟ ⏞
|incx|

, ..., 𝑋2, *, ..., *⏟ ⏞
|incx|

, 𝑋1

⏟ ⏞
1 + (1-n) x incx

] 𝑖𝑓 𝑖𝑛𝑐𝑥 < 0

Parent topic: Dense Linear Algebra

Scalar Arguments in BLAS

The USM version of oneMKL BLAS routines for DPC++ will accept either a scalar (for example float) or pointer
(float*) for parameters that represent a single fixed value (not a vector or matrix). These parameters are often named
alpha or beta in BLAS.

8.2. oneMKL Domains 927

oneAPI Specification, Release 1.4-provisional-rev-1

Basic Use

Users can call gemv with pointers:

float *alpha_ptr = sycl::malloc_shared<float>(1, queue);
float *beta_ptr = sycl::malloc_shared<float>(1, queue);
// fill alpha_ptr and beta_ptr with desired values
oneapi::mkl::blas::column_major::gemv(queue, trans, m, n, alpha_ptr, lda, x,␣
→˓incx, beta_ptr,

y, incy).wait();

or with literal values:

oneapi::mkl::blas::column_major::gemv(queue, trans, m, n, 2, lda, x, incx, 2.7,
y, incy).wait();

Users can even mix scalar and pointer parameters in a single call:

float *alpha_ptr = sycl::malloc_shared<float>(1, queue);
oneapi::mkl::blas::column_major::gemv(queue, trans, m, n, alpha_ptr, lda, x,␣
→˓incx, 2.7,

y, incy).wait();

Pointers provided for scalar parameters may be SYCL-managed pointers to either device or host memory (for example
pointers created with sycl::malloc_device, sycl::malloc_shared, or sycl::malloc_host), or they may be
raw pointers created with malloc or new.

For most users, this is all they need to know. A few details about how this is implemented are provided below.

Wrapper type

The USM version of oneMKL BLAS routines use a templated value_or_pointer<T> wrapper to enable either point-
ers or values to be passed to routines that take a scalar parameter.

In general, users should not explicitly use this type in their code. There is no need to construct an object of type
value_or_pointer in order to use the oneMKL functions that include it in their function signatures. Instead, values
and pointers in user code will be implicitly converted to this type when a user calls a oneMKL function.

The value_or_pointer<T>wrapper has two constructors, one that converts a value of type T (or anything convertible
to T) to value_or_pointer<T>, and another that converts a pointer to T to value_or_pointer<T>. Internally, the
oneMKL functions can behave slightly differently depending on whether the underlying data is a value or a pointer,
and if it points to host-side memory or device-side memory, but these uses should be transparent to users.

Dependencies

For scalar parameters passed to oneMKL BLAS routines as pointers, the timing of pointer dereferencing depends on
whether it is a USM-managed pointer or a raw pointer.

For a USM-managed pointer, it is dereferenced at kernel launch after the dependencies passed to the function have been
resolved, so the value may be assigned asynchronously in another event passed as a dependency to the routine.

A raw pointer (such as those allocated with malloc or new) is dereferenced at the function call, so it must be valid
when the function is called. In this case the data must be valid when the function is called and it may not be assigned
asynchronously.

Parent topic: Dense Linear Algebra

8.2. oneMKL Domains 928

oneAPI Specification, Release 1.4-provisional-rev-1

BLAS Routines

oneMKL provides DPC++ interfaces to the Basic Linear Algebra Subprograms (BLAS) routines (Level1, Level2,
Level3), as well as several BLAS-like extension routines.

BLAS Level 1 Routines

BLAS Level 1 includes routines which perform vector-vector operations as described in the following table.

Routines Description
asum Sum of vector magnitudes
axpy Scalar-vector product
copy Copy vector
dot Dot product
sdsdot Dot product with double precision
dotc Dot product conjugated
dotu Dot product unconjugated
nrm2 Vector 2-norm (Euclidean norm)
rot Plane rotation of points
rotg Generate Givens rotation of points
rotm Modified Givens plane rotation of points
rotmg Generate modified Givens plane rotation of points
scal Vector-scalar product
swap Vector-vector swap
iamax Index of the maximum absolute value element of a vector
iamin Index of the minimum absolute value element of a vector

asum

Computes the sum of magnitudes of the vector elements.

Description

The asum routine computes the sum of the magnitudes of elements of a real vector, or the sum of magnitudes of the
real and imaginary parts of elements of a complex vector:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

(|𝑅𝑒(𝑥𝑖)|+ |𝐼𝑚(𝑥𝑖)|)

where x is a vector with n elements.

asum supports the following precisions for data:

T Tres
float float
double double
std::complex<float> float
std::complex<double> double

8.2. oneMKL Domains 929

oneAPI Specification, Release 1.4-provisional-rev-1

asum (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void asum(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<Tres,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void asum(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<Tres,1> &result)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

Output Parameters

result
Buffer where the scalar result is stored (the sum of magnitudes of the real and imaginary parts of all elements of
the vector).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 930

oneAPI Specification, Release 1.4-provisional-rev-1

asum (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event asum(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
Tres *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event asum(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
Tres *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Pointer to input vector x. The array holding the vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result
Pointer to the output matrix where the scalar result is stored (the sum of magnitudes of the real and imaginary
parts of all elements of the vector).

8.2. oneMKL Domains 931

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

axpy

Computes a vector-scalar product and adds the result to a vector.

Description

The axpy routines compute a scalar-vector product and add the result to a vector:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑥+ 𝑦

where:

x and y are vectors of n elements,

alpha is a scalar.

axpy supports the following precisions.

T
half
bfloat16
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 932

oneAPI Specification, Release 1.4-provisional-rev-1

axpy (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void axpy(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void axpy(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

alpha
Specifies the scalar alpha.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride of vector x.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n – 1)*abs(incy)). See Matrix Storage
for more details.

incy
Stride of vector y.

8.2. oneMKL Domains 933

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

axpy (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpy(sycl::queue &queue,

std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event axpy(sycl::queue &queue,

std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 934

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

alpha
Specifies the scalar alpha. See Scalar Arguments in BLAS for more details.

x
Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n – 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x.

y
Pointer to the input vector y. The array holding the vector y must be of size at least (1 + (n – 1)*abs(incy)). See
Matrix Storage for more details.

incy
Stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

8.2. oneMKL Domains 935

oneAPI Specification, Release 1.4-provisional-rev-1

copy

Copies a vector to another vector.

Description

The copy routines copy one vector to another:

𝑦 ← 𝑥

where x and y are vectors of n elements.

copy supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

copy (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void copy(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void copy(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

8.2. oneMKL Domains 936

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride of vector x.

incy
Stride of vector y.

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

copy (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event copy(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 937

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event copy(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n – 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x.

incy
Stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

8.2. oneMKL Domains 938

oneAPI Specification, Release 1.4-provisional-rev-1

dot

Computes the dot product of two real vectors.

Description

The dot routines perform a dot product between two vectors:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

dot supports the following precisions for data.

T Tres
half half
bfloat16 bfloat16
float float
double double
float double

Note

For the mixed precision version (inputs are float while result is double), the dot product is computed with double
precision.

dot (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<Tres,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void dot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<Tres,1> &result)

}

8.2. oneMKL Domains 939

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vectors x and y.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride of vector x.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n – 1)*abs(incy)). See Matrix Storage
for more details.

incy
Stride of vector y.

Output Parameters

result
Buffer where the result (a scalar) will be stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dot (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dot(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
Tres *result,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 940

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event dot(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
Tres *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vectors x and y.

x
Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n – 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x.

y
Pointer to the input vector y. The array holding the vector y must be of size at least (1 + (n – 1)*abs(incy)). See
Matrix Storage for more details.

incy
Stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result
Pointer to where the result (a scalar) will be stored.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 941

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

sdsdot

Computes a vector-vector dot product with double precision.

Description

The sdsdot routines perform a dot product between two vectors with double precision:

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑏+

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

sdsdot (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
sycl::buffer<float,1> &x,
std::int64_t incx,
sycl::buffer<float,1> &y,
std::int64_t incy,
sycl::buffer<float,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
sycl::buffer<float,1> &x,
std::int64_t incx,
sycl::buffer<float,1> &y,
std::int64_t incy,
sycl::buffer<float,1> &result)

}

8.2. oneMKL Domains 942

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vectors x and y.

sb
Single precision scalar to be added to the dot product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incxy)). See Matrix Storage
for more details.

incy
Stride of vector y.

Output Parameters

result
Buffer where the result (a scalar) will be stored. If n < 0 the result is sb.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

sdsdot (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
const float *x,
std::int64_t incx,
const float *y,

(continues on next page)

8.2. oneMKL Domains 943

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t incy,
float *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
const float *x,
std::int64_t incx,
const float *y,
std::int64_t incy,
float *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vectors x and y.

sb
Single precision scalar to be added to the dot product.

x
Pointer to the input vector x. The array must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

y
Pointer to the input vector y. The array must be of size at least (1 + (n - 1)*abs(incxy)). See Matrix Storage for
more details.

incy
Stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 944

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

result
Pointer to where the result (a scalar) will be stored. If n < 0 the result is sb.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

dotc

Computes the dot product of two complex vectors, conjugating the first vector.

Description

The dotc routines perform a dot product between two complex vectors, conjugating the first of them:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

dotc supports the following precisions for data.

T
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 945

oneAPI Specification, Release 1.4-provisional-rev-1

dotc (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dotc(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void dotc(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

Input Parameters

queue
The queue where the routine should be executed.

n
The number of elements in vectors x and y.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
The stride of vector x.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details..

incy
The stride of vector y.

8.2. oneMKL Domains 946

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

result
The buffer where the result (a scalar) is stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dotc (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dotc(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
void dotc(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 947

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
The number of elements in vectors x and y.

x
Pointer to input vector x. The array holding the input vector x must be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx
The stride of vector x.

y
Pointer to input vector y. The array holding the input vector y must be of size at least (1 + (n - 1)*abs(incy)).
See Matrix Storage for more details..

incy
The stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result
The pointer to where the result (a scalar) is stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

8.2. oneMKL Domains 948

oneAPI Specification, Release 1.4-provisional-rev-1

dotu

Computes the dot product of two complex vectors.

Description

The dotu routines perform a dot product between two complex vectors:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

dotu supports the following precisions.

T
std::complex<float>
std::complex<double>

dotu (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dotu(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void dotu(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

8.2. oneMKL Domains 949

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vectors x and y.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy
Stride of vector y.

Output Parameters

result
Buffer where the result (a scalar) is stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dotu (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dotu(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 950

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event dotu(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vectors x and y.

x
Pointer to the input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx
Stride of vector x.

y
Pointer to input vector y. The array holding input vector y must be of size at least (1 + (n - 1)*abs(incy)). See
Matrix Storage for more details.

incy
Stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result
Pointer to where the result (a scalar) is stored.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 951

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

nrm2

Computes the Euclidean norm of a vector.

Description

The nrm2 routines computes Euclidean norm of a vector

𝑟𝑒𝑠𝑢𝑙𝑡 = ‖𝑥‖

where:

x is a vector of n elements.

nrm2 supports the following precisions.

T Tres
half half
bfloat16 bfloat16
float float
double double
std::complex<float> float
std::complex<double> double

nrm2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void nrm2(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<Tres,1> &result)

}

8.2. oneMKL Domains 952

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
void nrm2(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<Tres,1> &result)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

Output Parameters

result
Buffer where the Euclidean norm of the vector x will be stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

nrm2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event nrm2(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
Tres *result,

(continues on next page)

8.2. oneMKL Domains 953

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

namespace oneapi::mkl::blas::row_major {
sycl::event nrm2(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
Tres *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result
Pointer to where the Euclidean norm of the vector x will be stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 954

oneAPI Specification, Release 1.4-provisional-rev-1

Parent topic: BLAS Level 1 Routines

rot

Performs rotation of points in the plane.

Description

Given two vectors x and y of n elements, the rot routines compute four scalar-vector products and update the input
vectors with the sum of two of these scalar-vector products as follows:[︂

𝑥
𝑦

]︂
←
[︂

𝑐 * 𝑥+ 𝑠 * 𝑦
−𝑠 * 𝑥+ 𝑐 * 𝑦

]︂
If s is a complex type, the operation is defined as:[︂

𝑥
𝑦

]︂
←
[︂

𝑐 * 𝑥+ 𝑠 * 𝑦
−𝑐𝑜𝑛𝑗(𝑠) * 𝑥+ 𝑐 * 𝑦

]︂
rot supports the following precisions.

T Tc Ts
sycl::half sycl::half sycl::half
oneapi::mkl::bfloat16 oneapi::mkl::bfloat16 oneapi::mkl::bfloat16
float float float
double double double
std::complex<float> float std::complex<float>
std::complex<double> double std::complex<double>
std::complex<float> float float
std::complex<double> double double

rot (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
Tc c,
Ts s)

}

namespace oneapi::mkl::blas::row_major {
void rot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,

(continues on next page)

8.2. oneMKL Domains 955

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
Tc c,
Ts s)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy
Stride of vector y.

c
Scaling factor.

s
Scaling factor.

Output Parameters

x
Buffer holding updated buffer x.

y
Buffer holding updated buffer y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 956

oneAPI Specification, Release 1.4-provisional-rev-1

rot (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rot(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
value_or_pointer<Tc> c,
value_or_pointer<Ts> s,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event rot(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
value_or_pointer<Tc> c,
value_or_pointer<Ts> s,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x.

y
Pointer to input vector y. The array holding input vector y must be of size at least (1 + (n - 1)*abs(incy)). See
Matrix Storage for more details.

incy
Stride of vector y.

c
Scaling factor. See Scalar Arguments in BLAS for more details.

s
Scaling factor. See Scalar Arguments in BLAS for more details.

8.2. oneMKL Domains 957

oneAPI Specification, Release 1.4-provisional-rev-1

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the updated matrix x.

y
Pointer to the updated matrix y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

rotg

Computes the parameters for a Givens rotation.

Description

Given the Cartesian coordinates (a, b) of a point, the rotg routines return the parameters c, s, r, and z associated
with the Givens rotation. The parameters c and s define a unitary matrix such that:[︂

𝑐 𝑠
−𝑠 𝑐

]︂
.

[︂
𝑎
𝑏

]︂
=

[︂
𝑟
0

]︂
The parameter z is defined such that if |a| > |b|, z is s; otherwise if c is not 0 z is 1/c; otherwise z is 1.

rotg supports the following precisions.

T Tc
float float
double double
std::complex<float> float
std::complex<double> double

8.2. oneMKL Domains 958

oneAPI Specification, Release 1.4-provisional-rev-1

rotg (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rotg(sycl::queue &queue,

sycl::buffer<T,1> &a,
sycl::buffer<T,1> &b,
sycl::buffer<Tc,1> &c,
sycl::buffer<T,1> &s)

}

namespace oneapi::mkl::blas::row_major {
void rotg(sycl::queue &queue,

sycl::buffer<T,1> &a,
sycl::buffer<T,1> &b,
sycl::buffer<Tc,1> &c,
sycl::buffer<T,1> &s)

}

Input Parameters

queue
The queue where the routine should be executed

a
Buffer holding the x-coordinate of the point.

b
Buffer holding the y-coordinate of the point.

Output Parameters

a
Buffer holding the parameter r associated with the Givens rotation.

b
Buffer holding the parameter z associated with the Givens rotation.

c
Buffer holding the parameter c associated with the Givens rotation.

s
Buffer holding the parameter s associated with the Givens rotation.

8.2. oneMKL Domains 959

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

rotg (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rotg(sycl::queue &queue,

T *a,
T *b,
Tc *c,
T *s,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event rotg(sycl::queue &queue,

T *a,
T *b,
Tc *c,
T *s,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed

a
Pointer to the x-coordinate of the point.

b
Pointer to the y-coordinate of the point.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 960

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Pointer to the parameter r associated with the Givens rotation.

b
Pointer to the parameter z associated with the Givens rotation.

c
Pointer to the parameter c associated with the Givens rotation.

s
Pointer to the parameter s associated with the Givens rotation.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

rotm

Performs modified Givens rotation of points in the plane.

Description

Given two vectors x and y, each vector element of these vectors is replaced as follows:[︂
𝑥𝑖

𝑦𝑖

]︂
= 𝐻

[︂
𝑥𝑖

𝑦𝑖

]︂
for i from 1 to n, where H is a modified Givens transformation matrix.

rotm supports the following precisions.

T
float
double

8.2. oneMKL Domains 961

oneAPI Specification, Release 1.4-provisional-rev-1

rotm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rotm(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> ¶m)

}

namespace oneapi::mkl::blas::row_major {
void rotm(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> ¶m)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

y
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy
Stride of vector y.

param
Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

8.2. oneMKL Domains 962

oneAPI Specification, Release 1.4-provisional-rev-1

flag = -1.0:

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂
flag = 0.0:

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂
flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂
flag = -2.0:

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

Output Parameters

x
Buffer holding updated buffer x.

y
Buffer holding updated buffer y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

rotm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rotm(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,

(continues on next page)

8.2. oneMKL Domains 963

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T *param,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event rotm(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const T *param,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x.

yparam
Pointer to the input vector y. The array holding the vector y must be of size at least (1 + (n - 1)*abs(incy)). See
Matrix Storage for more details.

incy
Stride of vector y.

param
Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

flag = -1.0:

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂
flag = 0.0:

8.2. oneMKL Domains 964

oneAPI Specification, Release 1.4-provisional-rev-1

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂
flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂
flag = -2.0:

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the updated array x.

y
Pointer to the updated array y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

rotmg

Computes the parameters for a modified Givens rotation.

8.2. oneMKL Domains 965

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Given Cartesian coordinates (x1, y1) of an input vector, the rotmg routines compute the components of a modified
Givens transformation matrix H that zeros the y-component of the resulting vector:[︂

𝑥1
0

]︂
= 𝐻

[︂
𝑥1
√
𝑑1

𝑦1
√
𝑑2

]︂
rotmg supports the following precisions.

T
float
double

rotmg (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rotmg(sycl::queue &queue,

sycl::buffer<T,1> &d1,
sycl::buffer<T,1> &d2,
sycl::buffer<T,1> &x1,
sycl::buffer<T,1> y1,
sycl::buffer<T,1> ¶m)

}

namespace oneapi::mkl::blas::row_major {
void rotmg(sycl::queue &queue,

sycl::buffer<T,1> &d1,
sycl::buffer<T,1> &d2,
sycl::buffer<T,1> &x1,
sycl::buffer<T,1> y1,
sycl::buffer<T,1> ¶m)

}

Input Parameters

queue
The queue where the routine should be executed.

d1
Buffer holding the scaling factor for the x-coordinate of the input vector.

d2
Buffer holding the scaling factor for the y-coordinate of the input vector.

x1
Buffer holding the x-coordinate of the input vector.

y1
Scalar specifying the y-coordinate of the input vector.

8.2. oneMKL Domains 966

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

d1
Buffer holding the first diagonal element of the updated matrix.

d2
Buffer holding the second diagonal element of the updated matrix.

x1
Buffer holding the x-coordinate of the rotated vector before scaling

param
Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

flag = -1.0:

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂
flag = 0.0:

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂
flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂
flag = -2.0:

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 967

oneAPI Specification, Release 1.4-provisional-rev-1

rotmg (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rotmg(sycl::queue &queue,

T *d1,
T *d2,
T *x1,
value_or_pointer<T> y1,
T *param,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event rotmg(sycl::queue &queue,

T *d1,
T *d2,
T *x1,
value_or_pointer<T> y1,
T *param,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

d1
Pointer to the scaling factor for the x-coordinate of the input vector.

d2
Pointer to the scaling factor for the y-coordinate of the input vector.

x1
Pointer to the x-coordinate of the input vector.

y1
Scalar specifying the y-coordinate of the input vector. See Scalar Arguments in BLAS for more details.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 968

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

d1
Pointer to the first diagonal element of the updated matrix.

d2
Pointer to the second diagonal element of the updated matrix.

x1
Pointer to the x-coordinate of the rotated vector before scaling

param
Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

flag = -1.0:

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂
flag = 0.0:

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂
flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂
flag = -2.0:

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

8.2. oneMKL Domains 969

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

scal

Computes the product of a vector by a scalar.

Description

The scal routines computes a scalar-vector product:

𝑥← 𝑎𝑙𝑝ℎ𝑎 * 𝑥

where:

x is a vector of n elements,

alpha is a scalar.

scal supports the following precisions.

T Ts
half half
bfloat16 bfloat16
float float
double double
std::complex<float> std::complex<float>
std::complex<double> std::complex<double>
std::complex<float> float
std::complex<double> double

scal (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void scal(sycl::queue &queue,

std::int64_t n,
Ts alpha,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void scal(sycl::queue &queue,

std::int64_t n,
Ts alpha,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

8.2. oneMKL Domains 970

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

alpha
Specifies the scalar alpha.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

Output Parameters

x
Buffer holding updated buffer x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

scal (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event scal(sycl::queue &queue,

std::int64_t n,
value_or_pointer<Ts> alpha,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event scal(sycl::queue &queue,

std::int64_t n,
value_or_pointer<Ts> alpha,

(continues on next page)

8.2. oneMKL Domains 971

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

alpha
Specifies the scalar alpha. See Scalar Arguments in BLAS for more details.

x
Pointer to the input vector x. The array must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

Output Parameters

x
Pointer to the updated array x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

8.2. oneMKL Domains 972

oneAPI Specification, Release 1.4-provisional-rev-1

swap

Swaps a vector with another vector.

Description

Given two vectors of n elements, x and y, the swap routines return vectors y and x swapped, each replacing the other.[︂
𝑦
𝑥

]︂
←
[︂

𝑥
𝑦

]︂
swap supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

swap (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void swap(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void swap(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

8.2. oneMKL Domains 973

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy
Stride of vector y.

Output Parameters

x
Buffer holding updated buffer x, that is, the input vector y.

y
Buffer holding updated buffer y, that is, the input vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

swap (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event swap(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,

(continues on next page)

8.2. oneMKL Domains 974

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

namespace oneapi::mkl::blas::row_major {
sycl::event swap(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Pointer to the input vector x. The array must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

y
Pointer to the input vector y. The array must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy
Stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the updated array x, that is, the input vector y.

y
Pointer to the updated array y, that is, the input vector x.

8.2. oneMKL Domains 975

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

iamax

Finds the index of the element with the largest absolute value in a vector.

Description

The iamax routines return an index i such that x[i] has the maximum absolute value of all elements in vector x (real
variants), or such that (|Re(x[i])| + |Im(x[i])|) is maximal (complex variants).

The index is zero-based if base is set to oneapi::mkl::index_base::zero (default) or one-based if it is set to
oneapi::mkl::index_base::one.

If either n or incx is not positive, the routine returns 0, regardless of the base of the index selected.

If more than one vector element is found with the same largest absolute value, the index of the first one encountered is
returned.

If the vector contains NaN values, then the routine returns the index of the first NaN.

iamax supports the following precisions.

T
float
double
std::complex<float>
std:complex<double>

8.2. oneMKL Domains 976

oneAPI Specification, Release 1.4-provisional-rev-1

iamax (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void iamax(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<std::int64_t,1> &result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero)

}

namespace oneapi::mkl::blas::row_major {
void iamax(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<std::int64_t,1> &result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero)

}

Input Parameters

queue
The queue where the routine should be executed.

n
The number of elements in vector x.

x
The buffer that holds the input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix
Storage for more details.

incx
The stride of vector x.

base
Indicates how the output value is indexed. If omitted, defaults to zero-based indexing.

Output Parameters

result
The buffer where the index i of the maximal element is stored.

8.2. oneMKL Domains 977

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

iamax (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event iamax(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t *result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event iamax(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t *result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
The number of elements in vector x.

x
The pointer to the input vector x. The array holding the input vector x must be of size at least (1 + (n -
1)*abs(incx)). See Matrix Storage for more details.

incx
The stride of vector x.

base
Indicates how the output value is indexed. If omitted, defaults to zero-based indexing.

8.2. oneMKL Domains 978

oneAPI Specification, Release 1.4-provisional-rev-1

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result
The pointer to where the index i of the maximal element is stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

iamin

Finds the index of the element with the smallest absolute value.

Description

The iamin routines return an index i such that x[i] has the minimum absolute value of all elements in vector x (real
variants), or such that (|Re(x[i])| + |Im(x[i])|) is minimal (complex variants).

The index is zero-based if base is set to oneapi::mkl::index_base::zero (default) or one-based if it is set to
oneapi::mkl::index_base::one.

If either n or incx is not positive, the routine returns 0, regardless of the base of the index selected.

If more than one vector element is found with the same smallest absolute value, the index of the first one encountered
is returned.

If the vector contains NaN values, then the routine returns the index of the first NaN.

iamin supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 979

oneAPI Specification, Release 1.4-provisional-rev-1

iamin (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void iamin(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<std::int64_t,1> &result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero)

}

namespace oneapi::mkl::blas::row_major {
void iamin(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<std::int64_t,1> &result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x.

base
Indicates how the output value is indexed. If omitted, defaults to zero-based indexing.

Output Parameters

result
Buffer where the index i of the minimum element will be stored.

8.2. oneMKL Domains 980

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

iamin (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event iamin(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t *result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event iamin(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t *result,
oneapi::mkl::index_base base = oneapi::mkl::index_base::zero,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x.

x
The pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx
Stride of vector x.

base
Indicates how the output value is indexed. If omitted, defaults to zero-based indexing.

8.2. oneMKL Domains 981

oneAPI Specification, Release 1.4-provisional-rev-1

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result
Pointer to where the index i of the minimum element will be stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

Parent topic: BLAS Routines

8.2. oneMKL Domains 982

oneAPI Specification, Release 1.4-provisional-rev-1

BLAS Level 2 Routines

BLAS Level 2 includes routines which perform matrix-vector operations as described in the following table.

Routines Description
gbmv Matrix-vector product using a general band matrix
gemv Matrix-vector product using a general matrix
ger Rank-1 update of a general matrix
gerc Rank-1 update of a conjugated general matrix
geru Rank-1 update of a general matrix, unconjugated
hbmv Matrix-vector product using a Hermitian band matrix
hemv Matrix-vector product using a Hermitian matrix
her Rank-1 update of a Hermitian matrix
her2 Rank-2 update of a Hermitian matrix
hpmv Matrix-vector product using a Hermitian packed matrix
hpr Rank-1 update of a Hermitian packed matrix
hpr2 Rank-2 update of a Hermitian packed matrix
sbmv Matrix-vector product using symmetric band matrix
spmv Matrix-vector product using a symmetric packed matrix
spr Rank-1 update of a symmetric packed matrix
spr2 Rank-2 update of a symmetric packed matrix
symv Matrix-vector product using a symmetric matrix
syr Rank-1 update of a symmetric matrix
syr2 Rank-2 update of a symmetric matrix
tbmv Matrix-vector product using a triangular band matrix
tbsv Solution of a linear system of equations with a triangular band matrix
tpmv Matrix-vector product using a triangular packed matrix
tpsv Solution of a linear system of equations with a triangular packed matrix
trmv Matrix-vector product using a triangular matrix
trsv Solution of a linear system of equations with a triangular matrix

gbmv

Computes a matrix-vector product with a general band matrix.

Description

The gbmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a general
band matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is an m-by-n matrix with kl sub-diagonals and ku super-diagonals,

x and y are vectors.

gbmv supports the following precisions.

8.2. oneMKL Domains 983

oneAPI Specification, Release 1.4-provisional-rev-1

T
float
double
std::complex<float>
std::complex<double>

gbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gbmv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void gbmv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

8.2. oneMKL Domains 984

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

kl
Number of sub-diagonals of the matrix A. Must be at least zero.

ku
Number of super-diagonals of the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

a
Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if
row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least (kl + ku + 1), and positive.

x
Buffer holding input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed.
The buffer must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y.

y
Buffer holding input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is
transposed. The buffer must be of size at least (1 + (len - 1)*abs(incy)) where len is this length. See Matrix
Storage for more details.

incy
Stride of vector y.

Output Parameters

y
Buffer holding the updated vector y.

8.2. oneMKL Domains 985

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gbmv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gbmv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 986

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

kl
Number of sub-diagonals of the matrix A. Must be at least zero.

ku
Number of super-diagonals of the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n if column major layout
is used or at least lda*m if row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least (kl + ku + 1), and positive.

x
Pointer to input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed. The
array holding input vector x must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more
details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y. See Scalar Arguments in BLAS for more details.

y
Pointer to input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is transposed.
The array holding input/output vector y must be of size at least (1 + (len - 1)*abs(incy)) where len is this
length. See Matrix Storage for more details.

incy
Stride of vector y.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 987

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

gemv

Computes a matrix-vector product using a general matrix.

Description

The gemv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a general
matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is an m-by-n matrix, and x, y are vectors.

gemv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 988

oneAPI Specification, Release 1.4-provisional-rev-1

gemv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void gemv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A), the transposition operation applied to A.

m
Specifies the number of rows of the matrix A. The value of m must be at least zero.

n
Specifies the number of columns of the matrix A. The value of n must be at least zero.

alpha
Scaling factor for the matrix-vector product.

a
The buffer holding the input matrix A. Must have a size of at least lda*n if column major layout is used or at
least lda*m if row major layout is used. See Matrix Storage for more details.

8.2. oneMKL Domains 989

oneAPI Specification, Release 1.4-provisional-rev-1

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

x
Buffer holding input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed.
The buffer must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more details.

incx
The stride of vector x. Must not be zero.

beta
The scaling factor for vector y.

y
Buffer holding input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is
transposed. The buffer must be of size at least (1 + (len - 1)*abs(incy)) where len is this length. See Matrix
Storage for more details.

incy
The stride of vector y. Must not be zero.

Output Parameters

y
The buffer holding updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,

(continues on next page)

8.2. oneMKL Domains 990

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemv(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

m
Specifies the number of rows of the matrix A. The value of m must be at least zero.

n
Specifies the number of columns of the matrix A. The value of n must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to the input matrix A. Must have a size of at least lda*n if column major layout is used or at least lda*m
if row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

x
Pointer to the input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed. The
array holding vector x must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more details.

incx
The stride of vector x. Must not be zero.

8.2. oneMKL Domains 991

oneAPI Specification, Release 1.4-provisional-rev-1

beta
The scaling factor for vector y. See Scalar Arguments in BLAS for more details.

y
Pointer to input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is transposed.
The array holding input/output vector y must be of size at least (1 + (len - 1)*abs(incy)) where len is this
length. See Matrix Storage for more details.

incy
The stride of vector y. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
The pointer to updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

ger

Computes a rank-1 update of a general matrix.

Description

The ger routines compute a scalar-vector-vector product and add the result to a general matrix. The operation is defined
as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 +𝐴

where:

alpha is scalar,

A is an m-by-n matrix,

8.2. oneMKL Domains 992

oneAPI Specification, Release 1.4-provisional-rev-1

x is a vector of length m,

y is a vector of length n.

ger supports the following precisions.

T
float
double

ger (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue
The queue where the routine should be executed.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

8.2. oneMKL Domains 993

oneAPI Specification, Release 1.4-provisional-rev-1

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride of vector x. Must not be zero.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if
row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

Output Parameters

a
Buffer holding the updated matrix A.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

ger (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,

(continues on next page)

8.2. oneMKL Domains 994

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Pointer to input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if row
major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

8.2. oneMKL Domains 995

oneAPI Specification, Release 1.4-provisional-rev-1

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated matrix A.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

gerc

Computes a rank-1 update (conjugated) of a general complex matrix.

Description

The gerc routines compute a scalar-vector-vector product and add the result to a general matrix. The operation is
defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝐻 +𝐴

where:

alpha is a scalar,

A is an m-by-n matrix,

x is a vector of length m,

y is vector of length n.

gerc supports the following precisions.

T
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 996

oneAPI Specification, Release 1.4-provisional-rev-1

gerc (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue
The queue where the routine should be executed.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride of vector x. Must not be zero.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

8.2. oneMKL Domains 997

oneAPI Specification, Release 1.4-provisional-rev-1

incy
Stride of vector y. Must not be zero.

a
Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if
row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

Output Parameters

a
Buffer holding the updated matrix A.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gerc (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,

(continues on next page)

8.2. oneMKL Domains 998

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to the input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)).
See Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

y
Pointer to the input/output vector y. The array holding the input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix Amust have size at least lda*n if column major layout
is used or at least lda*m if row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 999

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Pointer to the updated matrix A.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

geru

Computes a rank-1 update (unconjugated) of a general complex matrix.

Description

The geru routines routines compute a scalar-vector-vector product and add the result to a general matrix. The operation
is defined as

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 +𝐴

where:

alpha is a scalar,

A is an m-by-n matrix,

x is a vector of length m,

y is a vector of length n.

geru supports the following precisions.

T
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1000

oneAPI Specification, Release 1.4-provisional-rev-1

geru (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue
The queue where the routine should be executed.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride of vector x. Must not be zero.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

8.2. oneMKL Domains 1001

oneAPI Specification, Release 1.4-provisional-rev-1

incy
Stride of vector y. Must not be zero.

a
Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if
row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

Output Parameters

a
Buffer holding the updated matrix A.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

geru (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,

(continues on next page)

8.2. oneMKL Domains 1002

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to the input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)).
See Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n if column major layout
is used or at least lda*m if row major layout is used. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1003

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Pointer to the updated matrix A.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hbmv

Computes a matrix-vector product using a Hermitian band matrix.

Description

The hbmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a Hermitian
band matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n Hermitian band matrix, with k super-diagonals,

x and y are vectors of length n.

hbmv supports the following precisions.

T
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1004

oneAPI Specification, Release 1.4-provisional-rev-1

hbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void hbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

k
Number of super-diagonals of the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

8.2. oneMKL Domains 1005

oneAPI Specification, Release 1.4-provisional-rev-1

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,

(continues on next page)

8.2. oneMKL Domains 1006

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

k
Number of super-diagonals of the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to the input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y. See Scalar Arguments in BLAS for more details.

8.2. oneMKL Domains 1007

oneAPI Specification, Release 1.4-provisional-rev-1

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hemv

Computes a matrix-vector product using a Hermitian matrix.

Description

The hemv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a Hermitian
matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n Hermitian matrix,

x and y are vectors of length n.

hemv supports the following precisions.

8.2. oneMKL Domains 1008

oneAPI Specification, Release 1.4-provisional-rev-1

T
std::complex<float>
std::complex<double>

hemv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hemv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void hemv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

8.2. oneMKL Domains 1009

oneAPI Specification, Release 1.4-provisional-rev-1

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least m, and positive.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hemv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hemv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,

(continues on next page)

8.2. oneMKL Domains 1010

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hemv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least m, and positive.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y. See Scalar Arguments in BLAS for more details.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

8.2. oneMKL Domains 1011

oneAPI Specification, Release 1.4-provisional-rev-1

incy
Stride of vector y. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

her

Computes a rank-1 update of a Hermitian matrix.

Description

The her routines compute a scalar-vector-vector product and add the result to a Hermitian matrix. The operation is
defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝐻 +𝐴

where:

alpha is scalar,

A is an n-by-n Hermitian matrix,

x is a vector of length n.

her supports the following precisions.

8.2. oneMKL Domains 1012

oneAPI Specification, Release 1.4-provisional-rev-1

T Treal
std::complex<float> float
std::complex<double> double

her (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void her(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
Treal alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void her(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
Treal alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

8.2. oneMKL Domains 1013

oneAPI Specification, Release 1.4-provisional-rev-1

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

Output Parameters

a
Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower = upper or the
updated lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

her (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event her(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<Treal> alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event her(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<Treal> alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,

(continues on next page)

8.2. oneMKL Domains 1014

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 1015

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

her2

Computes a rank-2 update of a Hermitian matrix.

Description

The her2 routines compute two scalar-vector-vector products and add them to a Hermitian matrix. The operation is
defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) * 𝑦 * 𝑥𝐻 +𝐴

where:

alpha is a scalar,

A is an n-by-n Hermitian matrix,

x and y are vectors or length n.

her2 supports the following precisions.

T
std::complex<float>
std::complex<double>

her2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void her2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,

(continues on next page)

8.2. oneMKL Domains 1016

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void her2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

8.2. oneMKL Domains 1017

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the
updated lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

her2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event her2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event her2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1018

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 1019

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hpmv

Computes a matrix-vector product using a Hermitian packed matrix.

Description

The hpmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a Hermitian
packed matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n Hermitian matrix supplied in packed form,

x and y are vectors of length n.

hpmv supports the following precisions.

T
std::complex<float>
std::complex<double>

hpmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,

(continues on next page)

8.2. oneMKL Domains 1020

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void hpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

a
Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

8.2. oneMKL Domains 1021

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hpmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1022

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix
Storage for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y. See Scalar Arguments in BLAS for more details.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 1023

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hpr

Computes a rank-1 update of a Hermitian packed matrix.

Description

The hpr routines compute a scalar-vector-vector product and add the result to a Hermitian packed matrix. The operation
is defined as

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝐻 +𝐴

where:

alpha is scalar,

A is an n-by-n Hermitian matrix, supplied in packed form,

x is a vector of length n.

hpr supports the following precisions.

T Treal
std::complex<float> float
std::complex<double> double

hpr (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hpr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
Treal alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

8.2. oneMKL Domains 1024

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
void hpr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
Treal alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

a
Buffer holding input matrix A. Must have size at least (n*(n-1))/2. See Matrix Storage for more details.

The imaginary part of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

a
Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the
updated lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

8.2. oneMKL Domains 1025

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::unimplemented

hpr (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hpr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<Treal> alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hpr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<Treal> alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix Amust have size at least (n*(n-1))/2. See Matrix Storage
for more details.

The imaginary part of the diagonal elements need not be set and are assumed to be zero.

8.2. oneMKL Domains 1026

oneAPI Specification, Release 1.4-provisional-rev-1

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hpr2

Performs a rank-2 update of a Hermitian packed matrix.

Description

The hpr2 routines compute two scalar-vector-vector products and add them to a Hermitian packed matrix. The opera-
tion is defined as

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) * 𝑦 * 𝑥𝐻 +𝐴

where:

alpha is a scalar,

A is an n-by-n Hermitian matrix, supplied in packed form,

x and y are vectors of length n.

hpr2 supports the following precisions.

8.2. oneMKL Domains 1027

oneAPI Specification, Release 1.4-provisional-rev-1

T
std::complex<float>
std::complex<double>

hpr2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hpr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

namespace oneapi::mkl::blas::row_major {
void hpr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

8.2. oneMKL Domains 1028

oneAPI Specification, Release 1.4-provisional-rev-1

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Buffer holding input matrix A. Must have size at least (n*(n-1))/2. See Matrix Storage for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

a
Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the
updated lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hpr2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hpr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hpr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
(continues on next page)

8.2. oneMKL Domains 1029

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix Amust have size at least (n*(n-1))/2. See Matrix Storage
for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1030

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

If alpha is zero, A matrix is unchanged, otherwise imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

sbmv

Computes a matrix-vector product with a symmetric band matrix.

Description

The sbmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a sym-
metric band matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n symmetric matrix with k super-diagonals,

x and y are vectors of length n.

sbmv supports the following precisions.

T
float
double

8.2. oneMKL Domains 1031

oneAPI Specification, Release 1.4-provisional-rev-1

sbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void sbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void sbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

k
Number of super-diagonals of the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

8.2. oneMKL Domains 1032

oneAPI Specification, Release 1.4-provisional-rev-1

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

sbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event sbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,

(continues on next page)

8.2. oneMKL Domains 1033

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event sbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

k
Number of super-diagonals of the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y. See Scalar Arguments in BLAS for more details.

8.2. oneMKL Domains 1034

oneAPI Specification, Release 1.4-provisional-rev-1

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

spmv

Computes a matrix-vector product with a symmetric packed matrix.

Description

The spmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a sym-
metric packed matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n symmetric matrix, supplied in packed form,

x and y are vectors of length n.

spmv supports the following precisions.

8.2. oneMKL Domains 1035

oneAPI Specification, Release 1.4-provisional-rev-1

T
float
double

spmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void spmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void spmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

a
Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

8.2. oneMKL Domains 1036

oneAPI Specification, Release 1.4-provisional-rev-1

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

spmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event spmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1037

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event spmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix
Storage for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for vector y. See Scalar Arguments in BLAS for more details.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1038

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

spr

Performs a rank-1 update of a symmetric packed matrix.

Description

The spr routines compute a scalar-vector-vector product and add the result to a symmetric packed matrix. The operation
is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝑇 +𝐴

where:

alpha is scalar,

A is an n-by-n symmetric matrix, supplied in packed form,

x is a vector of length n.

spr supports the following precisions.

T
float
double

8.2. oneMKL Domains 1039

oneAPI Specification, Release 1.4-provisional-rev-1

spr (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void spr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

namespace oneapi::mkl::blas::row_major {
void spr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

a
Buffer holding input matrix A. Must have size at least (n*(n + 1))/2. See Matrix Storage for more details.

8.2. oneMKL Domains 1040

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the
updated lower triangular part of the symmetric matrix A if upper_lower=lower.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

spr (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event spr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event spr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1041

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n + 1))/2. See Matrix
Storage for more details.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

8.2. oneMKL Domains 1042

oneAPI Specification, Release 1.4-provisional-rev-1

spr2

Computes a rank-2 update of a symmetric packed matrix.

Description

The spr2 routines compute two scalar-vector-vector products and add them to a symmetric packed matrix. The oper-
ation is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 + 𝑎𝑙𝑝ℎ𝑎 * 𝑦 * 𝑥𝑇 +𝐴

where:

alpha is scalar,

A is an n-by-n symmetric matrix, supplied in packed form,

x and y are vectors of length n.

spr supports the following precisions.

T
float
double

spr2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void spr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

namespace oneapi::mkl::blas::row_major {
void spr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

8.2. oneMKL Domains 1043

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Buffer holding input matrix A. Must have size at least (n*(n-1))/2. See Matrix Storage for more details.

Output Parameters

a
Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the
updated lower triangular part of the symmetric matrix A if upper_lower=lower.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1044

oneAPI Specification, Release 1.4-provisional-rev-1

spr2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event spr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event spr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

8.2. oneMKL Domains 1045

oneAPI Specification, Release 1.4-provisional-rev-1

incy
Stride of vector y. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix Amust have size at least (n*(n-1))/2. See Matrix Storage
for more details.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

symv

Computes a matrix-vector product for a symmetric matrix.

Description

The symv routines routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with
a symmetric matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥+ 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n symmetric matrix,

x and y are vectors of length n.

symv supports the following precisions.

8.2. oneMKL Domains 1046

oneAPI Specification, Release 1.4-provisional-rev-1

T
float
double
std::complex<float>
std::complex<double>

symv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void symv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void symv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

8.2. oneMKL Domains 1047

oneAPI Specification, Release 1.4-provisional-rev-1

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least m, and positive.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for the vector y.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

symv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event symv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,

(continues on next page)

8.2. oneMKL Domains 1048

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event symv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least m, and positive.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

beta
Scaling factor for the vector y. See Scalar Arguments in BLAS for more details.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

8.2. oneMKL Domains 1049

oneAPI Specification, Release 1.4-provisional-rev-1

incy
Stride of vector y. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

syr

Computes a rank-1 update of a symmetric matrix.

Description

The syr routines compute a scalar-vector-vector product add them and add the result to a matrix, with a symmetric
matrix. The operation is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝑇 +𝐴

where:

alpha is scalar,

A is an n-by-n symmetric matrix,

x is a vector of length n.

syr supports the following precisions.

8.2. oneMKL Domains 1050

oneAPI Specification, Release 1.4-provisional-rev-1

T
float
double
std::complex<float>
std::complex<double>

syr (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void syr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

8.2. oneMKL Domains 1051

oneAPI Specification, Release 1.4-provisional-rev-1

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

Output Parameters

a
Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the
updated lower triangular part of the symmetric matrix A if upper_lower=lower.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syr (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syr(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1052

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

8.2. oneMKL Domains 1053

oneAPI Specification, Release 1.4-provisional-rev-1

syr2

Computes a rank-2 update of a symmetric matrix.

Description

The syr2 routines compute two scalar-vector-vector product add them and add the result to a matrix, with a symmetric
matrix. The operation is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 + 𝑎𝑙𝑝ℎ𝑎 * 𝑦 * 𝑥𝑇 +𝐴

where:

alpha is a scalar,

A is an n-by-n symmetric matrix,

x and y are vectors of length n.

syr2 supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

syr2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void syr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,

(continues on next page)

8.2. oneMKL Domains 1054

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

y
Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

Output Parameters

a
Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the
updated lower triangular part of the symmetric matrix A if upper_lower=lower.

8.2. oneMKL Domains 1055

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syr2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syr2(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1056

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

y
Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy
Stride of vector y. Must not be zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a
Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 1057

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

tbmv

Computes a matrix-vector product using a triangular band matrix.

Description

The tbmv routines compute a matrix-vector product with a triangular band matrix. The operation is defined as:

𝑥← 𝑜𝑝(𝐴) * 𝑥

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals,

x is a vector of length n.

tbmv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

tbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,

(continues on next page)

8.2. oneMKL Domains 1058

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

k
Number of sub/super-diagonals of the matrix A. Must be at least zero.

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

8.2. oneMKL Domains 1059

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

x
Buffer holding the updated vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

tbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event tbmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1060

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

k
Number of sub/super-diagonals of the matrix A. Must be at least zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the updated vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

8.2. oneMKL Domains 1061

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

tbsv

Solves a system of linear equations whose coefficients are in a triangular band matrix.

Description

The tbsv routines solve a system of linear equations whose coefficients are in a triangular band matrix. The operation
is defined as:

𝑜𝑝(𝐴) * 𝑥 = 𝑏

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals,

b and x are vectors of length n.

tbsv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

tbsv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tbsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tbsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
(continues on next page)

8.2. oneMKL Domains 1062

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

k
Number of sub/super-diagonals of the matrix A. Must be at least zero.

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

Output Parameters

x
Buffer holding the solution vector x.

8.2. oneMKL Domains 1063

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

tbsv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tbsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event tbsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1064

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Number of rows and columns of A. Must be at least zero.

k
Number of sub/super-diagonals of the matrix A. Must be at least zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least (k + 1), and positive.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the solution vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

8.2. oneMKL Domains 1065

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

tpmv

Computes a matrix-vector product using a triangular packed matrix.

Description

The tpmv routines compute a matrix-vector product with a triangular packed matrix. The operation is defined as:

𝑥← 𝑜𝑝(𝐴) * 𝑥

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, supplied in packed form,

x is a vector of length n.

tpmv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

tpmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1066

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

a
Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

Output Parameters

x
Buffer holding the updated vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1067

oneAPI Specification, Release 1.4-provisional-rev-1

tpmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event tpmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix
Storage for more details.

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

8.2. oneMKL Domains 1068

oneAPI Specification, Release 1.4-provisional-rev-1

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the updated vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

tpsv

Solves a system of linear equations whose coefficients are in a triangular packed matrix.

Description

The tpsv routines solve a system of linear equations whose coefficients are in a triangular packed matrix. The operation
is defined as:

𝑜𝑝(𝐴) * 𝑥 = 𝑏

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, supplied in packed form,

b and x are vectors of length n.

tpsv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1069

oneAPI Specification, Release 1.4-provisional-rev-1

tpsv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tpsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tpsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

a
Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

x
Buffer holding the n-element right-hand side vector b. The buffer must be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

8.2. oneMKL Domains 1070

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

x
Buffer holding the solution vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

tpsv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tpsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event tpsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1071

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix
Storage for more details.

x
Pointer to the n-element right-hand side vector b. The array holding the n-element right-hand side vector b must
be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the solution vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

8.2. oneMKL Domains 1072

oneAPI Specification, Release 1.4-provisional-rev-1

trmv

Computes a matrix-vector product using a triangular matrix.

Description

The trmv routines compute a matrix-vector product with a triangular matrix. The operation is defined as:

𝑥← 𝑜𝑝(𝐴) * 𝑥

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix,

x is a vector of length n.

trmv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

trmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void trmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void trmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,

(continues on next page)

8.2. oneMKL Domains 1073

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t incx)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx
Stride of vector x. Must not be zero.

Output Parameters

x
Buffer holding the updated vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1074

oneAPI Specification, Release 1.4-provisional-rev-1

trmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trmv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

8.2. oneMKL Domains 1075

oneAPI Specification, Release 1.4-provisional-rev-1

x
Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the updated vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

trsv

Solves a system of linear equations whose coefficients are in a triangular matrix.

Description

The trsv routines compute a matrix-vector product with a triangular band matrix. The operation is defined as:

𝑜𝑝(𝐴) * 𝑥 = 𝑏

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular matrix,

b and x are vectors of length n.

trsv supports the following precisions.

8.2. oneMKL Domains 1076

oneAPI Specification, Release 1.4-provisional-rev-1

T
float
double
std::complex<float>
std::complex<double>

trsv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void trsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void trsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

8.2. oneMKL Domains 1077

oneAPI Specification, Release 1.4-provisional-rev-1

a
Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

x
Buffer holding the n-element right-hand side vector b. The buffer must be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

Output Parameters

x
Buffer holding the solution vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trsv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_nonunit,
std::int64_t n,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trsv(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,

(continues on next page)

8.2. oneMKL Domains 1078

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::diag unit_nonunit,
std::int64_t n,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit
Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n
Numbers of rows and columns of A. Must be at least zero.

a
Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda
Leading dimension of matrix A. Must be at least n, and positive.

x
Pointer to the n-element right-hand side vector b. The array holding the n-element right-hand side vector b must
be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.

incx
Stride of vector x. Must not be zero.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x
Pointer to the solution vector x.

8.2. oneMKL Domains 1079

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

Parent topic: BLAS Routines

BLAS Level 3 Routines

BLAS Level 3 includes routines which perform matrix-matrix operations as described in the following table.

Rou-
tines

Description

gemm Computes a matrix-matrix product with general matrices.
hemm Computes a matrix-matrix product where one input matrix is Hermitian and one is general.
herk Performs a Hermitian rank-k update.
her2k Performs a Hermitian rank-2k update.
symm Computes a matrix-matrix product where one input matrix is symmetric and one matrix is general.
syrk Performs a symmetric rank-k update.
syr2k Performs a symmetric rank-2k update.
trmm Computes a matrix-matrix product where one input matrix is triangular and one input matrix is general.
trsm Solves a triangular matrix equation (forward or backward solve).

gemm

Computes a matrix-matrix product with general matrices.

8.2. oneMKL Domains 1080

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The gemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general
matrices. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐵) + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A, B and C are matrices,

op(A) is an m-by-k matrix,

op(B) is a k-by-n matrix,

C is an m-by-n matrix.

gemm supports the following precisions.

Ta
(A matrix)

Tb
(B matrix)

Tc
(C matrix)

Ts
(alpha/beta)

std::int8_t std::int8_t std::int32_t float
std::int8_t std::int8_t float float
half half float float
half half half half
bfloat16 bfloat16 float float
bfloat16 bfloat16 bfloat16 float
float float float float
double double double double
std::complex<float> std::complex<float> std::complex<float> std::complex<float>
std::complex<double>std::complex<double>std::complex<double>std::complex<double>

gemm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemm(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
sycl::buffer<Tb,1> &b,

(continues on next page)

8.2. oneMKL Domains 1081

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t ldb,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void gemm(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies the form of op(A), the transposition operation applied to A.

transb
Specifies the form of op(B), the transposition operation applied to B.

m
Specifies the number of rows of the matrix op(A) and of the matrix C. The value of m must be at least zero.

n
Specifies the number of columns of the matrix op(B) and the number of columns of the matrix C. The value of n
must be at least zero.

k
Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). The value of
k must be at least zero.

alpha
Scaling factor for the matrix-matrix product.

a
The buffer holding the input matrix A.

8.2. oneMKL Domains 1082

oneAPI Specification, Release 1.4-provisional-rev-1

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

b
The buffer holding the input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta
Scaling factor for matrix C.

c
The buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used
to store matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more
details.

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if row major layout is used to store matrices.

8.2. oneMKL Domains 1083

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
The buffer, which is overwritten by alpha*op(A)*op(B) + beta*C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
value_or_pointer<Ts> alpha,
const Ta *a,
std::int64_t lda,
const Tb *b,
std::int64_t ldb,
value_or_poitner<Ts> beta,
Tc *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,

(continues on next page)

8.2. oneMKL Domains 1084

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

value_or_pointer<Ts> alpha,
const Ta *a,
std::int64_t lda,
const Tb *b,
std::int64_t ldb,
value_or_pointer<Ts> beta,
Tc *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies the form of op(A), the transposition operation applied to A.

transb
Specifies the form of op(B), the transposition operation applied to B.

m
Specifies the number of rows of the matrix op(A) and of the matrix C. The value of m must be at least zero.

n
Specifies the number of columns of the matrix op(B) and the number of columns of the matrix C. The value of n
must be at least zero.

k
Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). The value of
k must be at least zero.

alpha
Scaling factor for the matrix-matrix product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A.

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

8.2. oneMKL Domains 1085

oneAPI Specification, Release 1.4-provisional-rev-1

b
Pointer to input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
The pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if row major layout is used to store matrices.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by alpha*op(A)*op(B) + beta*C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 1086

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

hemm

Computes a matrix-matrix product where one input matrix is Hermitian and one is general.

Description

The hemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, where one
of the matrices in the multiplication is Hermitian. The argument left_right determines if the Hermitian matrix,
A, is on the left of the multiplication (left_right = side::left) or on the right (left_right = side::right).
Depending on left_right, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 *𝐵 + 𝑏𝑒𝑡𝑎 * 𝐶

or

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 *𝐴+ 𝑏𝑒𝑡𝑎 * 𝐶

where:

alpha and beta are scalars,

A is a Hermitian matrix, either m-by-m or n-by-n matrices,

B and C are m-by-n matrices.

hemm supports the following precisions:

T
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1087

oneAPI Specification, Release 1.4-provisional-rev-1

hemm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hemm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void hemm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

uplo
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

m
Specifies the number of rows of the matrix B and C.

The value of m must be at least zero.

8.2. oneMKL Domains 1088

oneAPI Specification, Release 1.4-provisional-rev-1

n
Specifies the number of columns of the matrix B and C.

The value of n must be at least zero.

alpha
Scaling factor for the matrix-matrix product.

a
Buffer holding input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if
A is on the right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the
right. Must be positive.

b
Buffer holding input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or
at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

beta
Scaling factor for matrix C.

c
The buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used
to store matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more
details.

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

Output Parameters

c
Output buffer, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A + beta*C
(left_right = side::right).

Notes

If beta = 0, matrix C does not need to be initialized before calling hemm.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

8.2. oneMKL Domains 1089

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::unimplemented

hemm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hemm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hemm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

uplo
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

8.2. oneMKL Domains 1090

oneAPI Specification, Release 1.4-provisional-rev-1

m
Specifies the number of rows of the matrix B and C.

The value of m must be at least zero.

n
Specifies the number of columns of the matrix B and C.

The value of n must be at least zero.

alpha
Scaling factor for the matrix-matrix product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if A is
on the right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the
right. Must be positive.

b
Pointer to input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at
least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
The pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A
+ beta*C (left_right = side::right).

8.2. oneMKL Domains 1091

oneAPI Specification, Release 1.4-provisional-rev-1

Notes

If beta = 0, matrix C does not need to be initialized before calling hemm.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

herk

Performs a Hermitian rank-k update.

Description

The herk routines compute a rank-k update of a Hermitian matrix C by a general matrix A. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐴)𝐻 + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X or op(X) = XH,

alpha and beta are real scalars,

C is a Hermitian matrix and A is a general matrix.

Here op(A) is n x k, and C is n x n.

herk supports the following precisions:

T Treal
std::complex<float> float
std::complex<double> double

8.2. oneMKL Domains 1092

oneAPI Specification, Release 1.4-provisional-rev-1

herk (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void herk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
Treal alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
Treal beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void herk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
Treal alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
Treal beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details. Sup-
ported operations are transpose::nontrans and transpose::conjtrans.

n
The number of rows and columns in C.The value of n must be at least zero.

k
Number of columns in op(A).

The value of k must be at least zero.

alpha
Real scaling factor for the rank-k update.

8.2. oneMKL Domains 1093

oneAPI Specification, Release 1.4-provisional-rev-1

a
Buffer holding input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta
Real scaling factor for matrix C.

c
Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc
Leading dimension of C. Must be positive and at least n.

Output Parameters

c
The output buffer, overwritten by alpha*op(A)*op(A)T + beta*C. The imaginary parts of the diagonal elements
are set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1094

oneAPI Specification, Release 1.4-provisional-rev-1

herk (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event herk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<Treal> alpha,
const T *a,
std::int64_t lda,
value_or_pointer<Treal> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event herk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<Treal> alpha,
const T *a,
std::int64_t lda,
value_or_pointer<Treal> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details. Sup-
ported operations are transpose::nontrans and transpose::conjtrans.

n
The number of rows and columns in C.The value of n must be at least zero.

k
Number of columns in op(A).

The value of k must be at least zero.

8.2. oneMKL Domains 1095

oneAPI Specification, Release 1.4-provisional-rev-1

alpha
Real scaling factor for the rank-k update. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta
Real scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc
Leading dimension of C. Must be positive and at least n.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by alpha*op(A)*op(A)T + beta*C. The imaginary parts of the diagonal
elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 1096

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

her2k

Performs a Hermitian rank-2k update.

Description

The her2k routines perform a rank-2k update of an n x n Hermitian matrix C by general matrices A and B.

If trans = transpose::nontrans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 *𝐵𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) *𝐵 *𝐴𝐻 + 𝑏𝑒𝑡𝑎 * 𝐶

where A is n x k and B is k x n.

If trans = transpose::conjtrans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 *𝐴𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) *𝐴 *𝐵𝐻 + 𝑏𝑒𝑡𝑎 * 𝐶

where A is k x n and B is n x k.

In both cases:

alpha is a complex scalar and beta is a real scalar.

C is a Hermitian matrix and A , B are general matrices.

The inner dimension of both matrix multiplications is k.

her2k supports the following precisions:

T Treal
std::complex<float> float
std::complex<double> double

8.2. oneMKL Domains 1097

oneAPI Specification, Release 1.4-provisional-rev-1

her2k (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void her2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
Treal beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void her2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
Treal beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies the operation to apply, as described above. Supported operations are transpose::nontrans and
transpose::conjtrans.

n
The number of rows and columns in C. The value of n must be at least zero.

k
The inner dimension of matrix multiplications. The value of k must be at least equal to zero.

8.2. oneMKL Domains 1098

oneAPI Specification, Release 1.4-provisional-rev-1

alpha
Complex scaling factor for the rank-2k update.

a
Buffer holding input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

b
Buffer holding input matrix B.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least k. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least k.

beta
Real scaling factor for matrix C.

c
Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

8.2. oneMKL Domains 1099

oneAPI Specification, Release 1.4-provisional-rev-1

ldc
Leading dimension of C. Must be positive and at least n.

Output Parameters

c
Output buffer, overwritten by the updated C matrix.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

her2k (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event her2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<Treal> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event her2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,

(continues on next page)

8.2. oneMKL Domains 1100

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T *b,
std::int64_t ldb,
value_or_pointer<Treal> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies the operation to apply, as described above. Supported operations are transpose::nontrans and
transpose::conjtrans.

n
The number of rows and columns in C. The value of n must be at least zero.

k
The inner dimension of matrix multiplications. The value of k must be at least equal to zero.

alpha
Complex scaling factor for the rank-2k update. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

b
Pointer to input matrix B.

8.2. oneMKL Domains 1101

oneAPI Specification, Release 1.4-provisional-rev-1

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least k. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least k.

beta
Real scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc
Leading dimension of C. Must be positive and at least n.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by the updated C matrix.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1102

oneAPI Specification, Release 1.4-provisional-rev-1

Parent topic: BLAS Level 3 Routines

symm

Computes a matrix-matrix product where one input matrix is symmetric and one matrix is general.

Description

The symm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, where one
of the matrices in the multiplication is symmetric. The argument left_right determines if the symmetric matrix,
A, is on the left of the multiplication (left_right = side::left) or on the right (left_right = side::right).
Depending on left_right, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 *𝐵 + 𝑏𝑒𝑡𝑎 * 𝐶

or

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 *𝐴+ 𝑏𝑒𝑡𝑎 * 𝐶

where:

alpha and beta are scalars,

A is a symmetric matrix, either m-by-m or n-by-n,

B and C are m-by-n matrices.

symm supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

symm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void symm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,

(continues on next page)

8.2. oneMKL Domains 1103

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void symm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

m
Number of rows of B and C. The value of m must be at least zero.

n
Number of columns of B and C. The value of n must be at least zero.

alpha
Scaling factor for the matrix-matrix product.

a
Buffer holding input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if
A is on the right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the
right. Must be positive.

b
Buffer holding input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or
at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

8.2. oneMKL Domains 1104

oneAPI Specification, Release 1.4-provisional-rev-1

beta
Scaling factor for matrix C.

c
The buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used
to store matrices or at least ldc*m if row major layout is used to store matrices. See Matrix Storage for more
details.

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

Output Parameters

c
Output buffer, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A + beta*C
(left_right = side::right).

Notes

If beta = 0, matrix C does not need to be initialized before calling symm.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

symm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event symm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,

(continues on next page)

8.2. oneMKL Domains 1105

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event symm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

m
Number of rows of B and C. The value of m must be at least zero.

n
Number of columns of B and C. The value of n must be at least zero.

alpha
Scaling factor for the matrix-matrix product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if A is
on the right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the
right. Must be positive.

b
Pointer to input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at
least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

8.2. oneMKL Domains 1106

oneAPI Specification, Release 1.4-provisional-rev-1

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
The pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A
+ beta*C (left_right = side::right).

Notes

If beta = 0, matrix C does not need to be initialized before calling symm.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

8.2. oneMKL Domains 1107

oneAPI Specification, Release 1.4-provisional-rev-1

syrk

Performs a symmetric rank-k update.

Description

The syrk routines perform a rank-k update of a symmetric matrix C by a general matrix A. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐴)𝑇 + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X or op(X) = XT ,

alpha and beta are scalars,

C is a symmetric matrix and Ais a general matrix.

Here op(A) is n-by-k, and C is n-by-n.

syrk supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

syrk (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syrk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void syrk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,

(continues on next page)

8.2. oneMKL Domains 1108

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A (See oneMKL defined datatypes for more details). Con-
jugation is never performed, even if trans = transpose::conjtrans.

n
Number of rows and columns in C. The value of n must be at least zero.

k
Number of columns in op(A).The value of k must be at least zero.

alpha
Scaling factor for the rank-k update.

a
Buffer holding input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta
Scaling factor for matrix C.

8.2. oneMKL Domains 1109

oneAPI Specification, Release 1.4-provisional-rev-1

c
Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc
Leading dimension of C. Must be positive and at least n.

Output Parameters

c
Output buffer, overwritten by alpha*op(A)*op(A)T + beta*C.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syrk (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syrk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syrk(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,

(continues on next page)

8.2. oneMKL Domains 1110

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t lda,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A (See oneMKL defined datatypes for more details). Con-
jugation is never performed, even if trans = transpose::conjtrans.

n
Number of rows and columns in C. The value of n must be at least zero.

k
Number of columns in op(A). The value of k must be at least zero.

alpha
Scaling factor for the rank-k update. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

8.2. oneMKL Domains 1111

oneAPI Specification, Release 1.4-provisional-rev-1

c
Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc
Leading dimension of C. Must be positive and at least n.

Output Parameters

c
Pointer to the output matrix, overwritten by alpha*op(A)*op(A)T + beta*C.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

syr2k

Performs a symmetric rank-2k update.

Description

The syr2k routines perform a rank-2k update of an n x n symmetric matrix C by general matrices A and B.

If trans = transpose::nontrans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * (𝐴 *𝐵𝑇 +𝐵 *𝐴𝑇) + 𝑏𝑒𝑡𝑎 * 𝐶

where A and B are n x k matrices.

If trans = transpose::trans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * (𝐴𝑇 *𝐵 +𝐵𝑇 *𝐴) + 𝑏𝑒𝑡𝑎 * 𝐶

where A and B are k x n matrices.

In both cases:

alpha and beta are scalars,

C is a symmetric matrix and A,B are general matrices,

8.2. oneMKL Domains 1112

oneAPI Specification, Release 1.4-provisional-rev-1

The inner dimension of both matrix multiplications is k.

syr2k supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

syr2k (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syr2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void syr2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

8.2. oneMKL Domains 1113

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies the operation to apply, as described above. Conjugation is never performed, even if trans =
transpose::conjtrans.

n
Number of rows and columns in C.The value of n must be at least zero.

k
Inner dimension of matrix multiplications.The value of k must be at least zero.

alpha
Scaling factor for the rank-2k update.

a
Buffer holding input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

b
Buffer holding input matrix B.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an n-by-k matrix so the array b must have
size at least ldb*k.

B is an k-by-n matrix so the array b must have
size at least ldb*n

Row ma-
jor

B is an n-by-k matrix so the array b must have
size at least ldb*n.

B is an k-by-n matrix so the array b must have
size at least ldb*k.

See Matrix Storage for more details.

8.2. oneMKL Domains 1114

oneAPI Specification, Release 1.4-provisional-rev-1

ldb
The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least n. ldb must be at least k.

Row major ldb must be at least k. ldb must be at least n.

beta
Scaling factor for matrix C.

c
Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details

ldc
Leading dimension of C. Must be positive and at least n.

Output Parameters

c
Output buffer, overwritten by the updated C matrix.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syr2k (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syr2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,

(continues on next page)

8.2. oneMKL Domains 1115

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syr2k(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

trans
Specifies the operation to apply, as described above. Conjugation is never performed, even if trans =
transpose::conjtrans.

n
Number of rows and columns in C. The value of n must be at least zero.

k
Inner dimension of matrix multiplications.The value of k must be at least zero.

alpha
Scaling factor for the rank-2k update. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

8.2. oneMKL Domains 1116

oneAPI Specification, Release 1.4-provisional-rev-1

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

b
Pointer to input matrix B.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an n-by-k matrix so the array b must have
size at least ldb*k.

B is an k-by-n matrix so the array b must have
size at least ldb*n

Row ma-
jor

B is an n-by-k matrix so the array b must have
size at least ldb*n.

B is an k-by-n matrix so the array b must have
size at least ldb*k.

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least n. ldb must be at least k.

Row major ldb must be at least k. ldb must be at least n.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details

ldc
Leading dimension of C. Must be positive and at least n.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1117

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Pointer to the output matrix, overwritten by the updated C matrix.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

trmm

Computes a matrix-matrix product where one input matrix is triangular and one input matrix is general.

Description

The trmm routines compute a scalar-matrix-matrix product where one of the matrices in the multiplication is triangular.
The argument left_right determines if the triangular matrix, A, is on the left of the multiplication (left_right =
side::left) or on the right (left_right = side::right). Depending on left_right.

There are two operations available, an in-place operation and an out-of-place operation. The in-place operation is
defined as:

𝐵 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) *𝐵

or

𝐵 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 * 𝑜𝑝(𝐴)

The out-of-place operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) *𝐵 + 𝑏𝑒𝑡𝑎 * 𝐶

or

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 * 𝑜𝑝(𝐴) + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

8.2. oneMKL Domains 1118

oneAPI Specification, Release 1.4-provisional-rev-1

alpha and beta are scalars,

A is a triangular matrix, and B and C are general matrices.

Here B and C are m x n and A is either m x m or n x n, depending on left_right.

trmm supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

trmm (Buffer Version)

In-place API

Syntax

namespace oneapi::mkl::blas::column_major {
void trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb)

}

namespace oneapi::mkl::blas::row_major {
void trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb)

}

8.2. oneMKL Domains 1119

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifies the number of rows of B. The value of m must be at least zero.

n
Specifies the number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for the matrix-matrix product.

a
Buffer holding input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if
left_right = side::right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b
Buffer holding input/output matrix B. Must have size at least ldb*n if column major layout is used to store
matrices or at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

Output Parameters

b
Output buffer, overwritten by alpha*op(A)*B or alpha*B*op(A).

8.2. oneMKL Domains 1120

oneAPI Specification, Release 1.4-provisional-rev-1

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Out-of-place API

Syntax

namespace oneapi::mkl::blas::column_major {
void trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,

(continues on next page)

8.2. oneMKL Domains 1121

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to matrix A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifices the number of rows of B. The value of m must be at least zero.

n
Specifies the Number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for matrix-matrix product.

a
Buffer holding input matrix A. Must have size at least lda*m if left_right = side::left or lda*n if
left_right = side::right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if left_right = side::left or at least n if left_right =
side::right. Must be positive.

b
Buffer holding input matrix B. Must have size at least ldb*n if column major layout or at least ldb*m if row
major layout is used. See Matrix Storage for more details.

ldb
Leading dimension of matrix B. It must be positive and at least m if column major layout or at least n if row major
layout is used.

beta
Scaling factor for matrix C.

c
Buffer holding input/output matrix C. Size of the buffer must be at least ldc*n if column major layout or at least
ldc*m if row major layout is used. See Matrix Storage for more details.

8.2. oneMKL Domains 1122

oneAPI Specification, Release 1.4-provisional-rev-1

ldc
Leading dimension of matrix C. Must be at least m if column major layout or at least n if row major layout is used.
Must be positive.

Output Parameters

c
Output buffer overwritten by alpha*op(A)*B + beta*C if left_right = side::left or alpha*B*op(A) +
beta*C if left_right = side::right.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trmm (USM Version)

In-place API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
T *b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,

(continues on next page)

8.2. oneMKL Domains 1123

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
T *b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifies the number of rows of B. The value of m must be at least zero.

n
Specifies the number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for the matrix-matrix product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if left_right
= side::right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b
Pointer to input/output matrix B. Must have size at least ldb*n if column major layout is used to store matrices
or at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1124

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b
Pointer to the output matrix, overwritten by alpha*op(A)*B or alpha*B*op(A).

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Out-of-place API

Syntax

namespace oneapi::mkl::blas::column_major {
void trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1125

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
void trmm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the multiplication (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to matrix A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifices the number of rows of B. The value of m must be at least zero.

n
Specifies the Number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for matrix-matrix product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. Must have size at least lda*m if left_right = side::left or lda*n if left_right
= side::right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if left_right = side::left or at least n if left_right =
side::right. Must be positive.

b
Pointer to input matrix B. Must have size at least ldb*n if column major layout or at least ldb*m if row major

8.2. oneMKL Domains 1126

oneAPI Specification, Release 1.4-provisional-rev-1

layout is used. See Matrix Storage for more details.

ldb
Leading dimension of matrix B. It must be positive and at least m if column major layout or at least n if row major
layout is used.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrix C. Must have size at least ldc*n if column major layout or at least ldc*m if row
major layout is used. See Matrix Storage for more details.

ldc
Leading dimension of matrix C. Must be at least m if column major layout or at least n if row major layout is used.
Must be positive.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by alpha*op(A)*B + beta*C if left_right = side::left or
alpha*B*op(A) + beta*C if left_right = side::right.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

trsm

Solves a triangular matrix equation (forward or backward solve).

8.2. oneMKL Domains 1127

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The trsm routines solves a triangular matrix equations. There are two operations available, an in-place operation and
an out-of-place operation. The in-place operation solves for X in:

𝑜𝑝(𝐴) *𝑋 = 𝑎𝑙𝑝ℎ𝑎 *𝐵

or

𝑋 * 𝑜𝑝(𝐴) = 𝑎𝑙𝑝ℎ𝑎 *𝐵

The out-of-place operation solves for X and then adds that solution to a scaled matrix C:

𝑜𝑝(𝐴) *𝑋 = 𝑎𝑙𝑝ℎ𝑎 *𝐵,𝐶 ← 𝑋 + 𝑏𝑒𝑡𝑎 * 𝐶

or

𝑋 * 𝑜𝑝(𝐴) = 𝑎𝑙𝑝ℎ𝑎 *𝐵,𝐶 ← 𝑋 + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is a triangular matrix, and

B, X, and C are m x n general matrices.

A is either m x m or n x n, depending on whether it multiplies X on the left or right.

For the in-place operation, the matrix B is overwritten by the solution matrix X on return. For the out-of-place operation,
B remains untouched and the solution is added to a scaled C matrix.

trsm supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

trsm (Buffer Version)

In-place API

Syntax

namespace oneapi::mkl::blas::column_major {
void trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::diag unit_diag,

(continues on next page)

8.2. oneMKL Domains 1128

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb)

}

namespace oneapi::mkl::blas::row_major {
void trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb)

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A multiplies X on the left (side::left) or on the right (side::right). See oneMKL defined
datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifies the number of rows of B. The value of m must be at least zero.

n
Specifies the number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for the solution.

a
Buffer holding input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if
left_right = side::right. See Matrix Storage for more details.

8.2. oneMKL Domains 1129

oneAPI Specification, Release 1.4-provisional-rev-1

lda
Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b
Buffer holding input/output matrix B. Must have size at least ldb*n if column major layout is used to store
matrices or at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

Output Parameters

b
Output buffer. Overwritten by the solution matrix X.

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Out-of-place API

Syntax

namespace oneapi::mkl::blas::column_major {
void trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,

(continues on next page)

8.2. oneMKL Domains 1130

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the matrix solve (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to matrix A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifices the number of rows of B. The value of m must be at least zero.

n
Specifies the Number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for the solution.

a
Buffer holding input matrix A. Must have size at least lda*m if left_right = side::left or lda*n if
left_right = side::right. See Matrix Storage for more details.

8.2. oneMKL Domains 1131

oneAPI Specification, Release 1.4-provisional-rev-1

lda
Leading dimension of A. Must be at least m if left_right = side::left or at least n if left_right =
side::right. Must be positive.

b
Buffer holding input matrix B. Must have size at least ldb*n if column major layout or at least ldb*m if row
major layout is used. See Matrix Storage for more details.

ldb
Leading dimension of matrix B. It must be positive and at least m if column major layout or at least n if row major
layout is used.

beta
Scaling factor for matrix C.

c
Buffer holding input/output matrix C. Size of the buffer must be at least ldc*n if column major layout or at least
ldc*m if row major layout is used. See Matrix Storage for more details.

ldc
Leading dimension of matrix C. Must be at least m if column major layout or at least n if row major layout is used.
Must be positive.

Output Parameters

c
Output buffer overwritten by solution matrix X + beta*C.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trsm (USM Version)

In-place API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::diag unit_diag,

(continues on next page)

8.2. oneMKL Domains 1132

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
T *b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
T *b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A multiplies X on the left (side::left) or on the right (side::right). See oneMKL defined
datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

transa
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifies the number of rows of B. The value of m must be at least zero.

n
Specifies the number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for the solution. See Scalar Arguments in BLAS for more details.

8.2. oneMKL Domains 1133

oneAPI Specification, Release 1.4-provisional-rev-1

a
Pointer to input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if left_right
= side::right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b
Pointer to input/output matrix B. Must have size at least ldb*n if column major layout is used to store matrices
or at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb
Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

b
Pointer to the output matrix. Overwritten by the solution matrix X.

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1134

oneAPI Specification, Release 1.4-provisional-rev-1

Out-of-place API

Syntax

namespace oneapi::mkl::blas::column_major {
void trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
void trsm(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether A is on the left side of the matrix solve (side::left) or on the right side (side::right).
See oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

8.2. oneMKL Domains 1135

oneAPI Specification, Release 1.4-provisional-rev-1

trans
Specifies op(A), the transposition operation applied to matrix A. See oneMKL defined datatypes for more details.

unit_diag
Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined datatypes
for more details.

m
Specifices the number of rows of B. The value of m must be at least zero.

n
Specifies the Number of columns of B. The value of n must be at least zero.

alpha
Scaling factor for the solution. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. Must have size at least lda*m if left_right = side::left or lda*n if left_right
= side::right. See Matrix Storage for more details.

lda
Leading dimension of A. Must be at least m if left_right = side::left or at least n if left_right =
side::right. Must be positive.

b
Pointer to input matrix B. Must have size at least ldb*n if column major layout or at least ldb*m if row major
layout is used. See Matrix Storage for more details.

ldb
Leading dimension of matrix B. It must be positive and at least m if column major layout or at least n if row major
layout is used.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrix C. Must have size at least ldc*n if column major layout or at least ldc*m if row
major layout is used. See Matrix Storage for more details.

ldc
Leading dimension of matrix C. Must be at least m if column major layout or at least n if row major layout is used.
Must be positive.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by the solution matrix X + beta*C.

8.2. oneMKL Domains 1136

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

Parent topic: BLAS Routines

BLAS-like Extensions

oneAPI Math Kernel Library DPC++ provides additional routines to extend the functionality of the BLAS routines.
These include routines to compute many independent vector-vector and matrix-matrix operations.

The following table lists the BLAS-like extensions with their descriptions.

Routines Description
axpy_batch Computes groups of vector-scalar products added to a vector.
gemm_batch Computes groups of matrix-matrix products with general matrices.
trsm_batch Solves a triangular matrix equation for a group of matrices.
gemmt Computes a matrix-matrix product with general matrices, but updates only the upper or lower trian-

gular part of the result matrix.
gemm_bias Computes a matrix-matrix product using general integer matrices with bias
imatcopy Computes an in-place matrix transposition or copy.
omatcopy Computes an out-of-place matrix transposition or copy.
omatcopy2 Computes a two-strided out-of-place matrix transposition or copy.
omatadd Computes scaled matrix addition with possibly transposed arguments.
imat-
copy_batch

Computes groups of in-place matrix transposition or copy operations.

omat-
copy_batch

Computes groups of out-of-place matrix transposition or copy operations.

omatadd_batchComputes groups of scaled matrix additions.

axpy_batch

Computes a group of axpy operations.

8.2. oneMKL Domains 1137

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The axpy_batch routines are batched versions of axpy, performing multiple axpy operations in a single call. Each
axpy operation adds a scalar-vector product to a vector.

axpy_batch supports the following precisions for data.

T
float
double
std::complex<float>
std::complex<double>

axpy_batch (Buffer Version)

Description

The buffer version of axpy_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := alpha * X + Y

end for

where:

alpha is scalar,

X and Y are vectors.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void axpy_batch(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

8.2. oneMKL Domains 1138

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
void axpy_batch(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in X and Y.

alpha
Specifies the scalar alpha.

x
Buffer holding input vectors X with size stridex * batch_size.

incx
Stride of vector X. Must not be zero.

stridex
Stride between different X vectors. Must be at least zero.

y
Buffer holding input/output vectors Y with size stridey * batch_size.

incy
Stride of vector Y. Must not be zero.

stridey
Stride between different Y vectors. Must be at least (1 + (n-1)*abs(incy)).

batch_size
Specifies the number of axpy operations to perform.

8.2. oneMKL Domains 1139

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Output buffer, overwritten by batch_size axpy operations of the form alpha * X + Y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

axpy_batch (USM Version)

Description

The USM version of axpy_batch supports the group API and strided API.

The group API operation is defined as

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
X and Y are vectors in x[idx] and y[idx]
Y := alpha[i] * X + Y
idx := idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := alpha * X + Y

end for

where:

alpha is scalar,

X and Y are vectors.

For group API, x and y arrays contain the pointers for all the input vectors. The total number of vectors in x and y are
given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

8.2. oneMKL Domains 1140

oneAPI Specification, Release 1.4-provisional-rev-1

For strided API, x and y arrays contain all the input vectors. The total number of vectors in x and y are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpy_batch(sycl::queue &queue,

const std::int64_t *n,
const T *alpha,
const T **x,
const std::int64_t *incx,
T **y,
const std::int64_t *incy,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event axpy_batch(sycl::queue &queue,

const std::int64_t *n,
const T *alpha,
const T **x,
const std::int64_t *incx,
T **y,
const std::int64_t *incy,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Array of group_count integers. n[i] specifies the number of elements in vectors X and Y for every vector in
group i.

alpha
Array of group_count scalar elements. alpha[i] specifies the scaling factor for vector X in group i.

x
Array of pointers to input vectors X with size total_batch_count. The size of array allocated for the X vector
of the group i must be at least (1 + (n[i] – 1)*abs(incx[i])). See Matrix Storage for more details.

incx
Array of group_count integers. incx[i] specifies the stride of vector X in group i. Must not be zero.

y
Array of pointers to input/output vectors Y with size total_batch_count. The size of array allocated for the Y
vector of the group i must be at least (1 + (n[i] – 1)*abs(incy[i])). See Matrix Storage for more details.

8.2. oneMKL Domains 1141

oneAPI Specification, Release 1.4-provisional-rev-1

incy
Array of group_count integers. incy[i] specifies the stride of vector Y in group i. Must not be zero.

group_count
Number of groups. Must be at least 0.

group_size
Array of group_count integers. group_size[i] specifies the number of axpy operations in group i. Each
element in group_size must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Array of pointers holding the Y vectors, overwritten by total_batch_count axpy operations of the form alpha
* X + Y.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpy_batch(sycl::queue &queue,

std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event axpy_batch(sycl::queue &queue,

std::int64_t n,
value_or_pointer<T> alpha,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,

(continues on next page)

8.2. oneMKL Domains 1142

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in X and Y.

alpha
Specifies the scalar alpha. See Scalar Arguments in BLAS for more details.

x
Pointer to input vectors X with size stridex * batch_size.

incx
Stride of vector X. Must not be zero.

stridex
Stride between different X vectors. Must be at least zero.

y
Pointer to input/output vectors Y with size stridey * batch_size.

incy
Stride of vector Y. Must not be zero.

stridey
Stride between different Y vectors. Must be at least (1 + (n-1)*abs(incy)).

batch_size
Specifies the number of axpy operations to perform.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Output vectors, overwritten by batch_size axpy operations of the form alpha * X + Y.

Return Values

Output event to wait on to ensure computation is complete.

8.2. oneMKL Domains 1143

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic:BLAS-like Extensions

axpby

Computes a vector-scalar product added to a scaled-vector.

Description

The axpby routines compute two scalar-vector product and add them:

𝑦 ← 𝑏𝑒𝑡𝑎 * 𝑦 + 𝑎𝑙𝑝ℎ𝑎 * 𝑥

where x and y are vectors of n elements and alpha and beta are scalars.

axpby supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

axpby (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void axpby(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x, std::int64_t incx,
T beta,
sycl::buffer<T,1> &y, std::int64_t incy)

}

8.2. oneMKL Domains 1144

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
void axpby(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x, std::int64_t incx,
T beta,
sycl::buffer<T,1> &y, std::int64_t incy)

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x and y.

alpha
Specifies the scalar alpha.

x
Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage
for more details.

incx
Stride between two consecutive elements of the x vector.

beta
Specifies the scalar beta.

y
Buffer holding input vector y. The buffer must be of size at least (1 + (n – 1)*abs(incy)). See Matrix Storage
for more details.

incy
Stride between two consecutive elements of the y vector.

Output Parameters

y
Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1145

oneAPI Specification, Release 1.4-provisional-rev-1

axpby (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpby(sycl::queue &queue,

std::int64_t n,
value_or_pointer<T> alpha,
const T *x, std::int64_t incx,
value_or_pointer<T> beta,
T *y, std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event axpby(sycl::queue &queue,

std::int64_t n,
value_or_pointer<T> alpha,
const T *x, std::int64_t incx,
value_or_pointer<T> beta,
T *y, std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in vector x and y.

alpha
Specifies the scalar alpha. See Scalar Arguments in BLAS for more details.

beta
Specifies the scalar beta. See Scalar Arguments in BLAS for more details.

x
Pointer to the input vector x. The allocated memory must be of size at least (1 + (n – 1)*abs(incx)). See Matrix
Storage for more details.

incx
Stride between consecutive elements of the x vector.

y
Pointer to the input vector y. The allocated memory must be of size at least (1 + (n – 1)*abs(incy)). See Matrix
Storage for more details.

incy
Stride between consecutive elements of the y vector.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1146

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Array holding the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

copy_batch

Computes a group of copy operations.

Description

The copy_batch routines are batched versions of copy, performing multiple copy operations in a single call. Each
copy operation copies one vector to another.

copy_batch supports the following precisions for data.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1147

oneAPI Specification, Release 1.4-provisional-rev-1

copy_batch (Buffer Version)

Description

The buffer version of copy_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := X

end for

where:

X and Y are vectors.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void copy_batch(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void copy_batch(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

8.2. oneMKL Domains 1148

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in X and Y.

x
Buffer holding input vectors X with size stridex * batch_size.

incx
Stride of vector X. Must not be zero.

stridex
Stride between different X vectors. Must be at least zero.

y
Buffer holding input/output vectors Y with size stridey * batch_size.

incy
Stride of vector Y. Must not be zero.

stridey
Stride between different Y vectors. Must be at least (1 + (n-1)*abs(incy)).

batch_size
Specifies the number of copy operations to perform.

Output Parameters

y
Output buffer, overwritten by batch_size copy operations.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1149

oneAPI Specification, Release 1.4-provisional-rev-1

copy_batch (USM Version)

Description

The USM version of copy_batch supports the group API and strided API.

The group API operation is defined as

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
X and Y are vectors in x[idx] and y[idx]
Y := X
idx := idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := X

end for

where:

X and Y are vectors.

For group API, x and y arrays contain the pointers for all the input vectors. The total number of vectors in x and y are
given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, x and y arrays contain all the input vectors. The total number of vectors in x and y are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event copy_batch(sycl::queue &queue,

const std::int64_t *n,
const T **x,
const std::int64_t *incx,
T **y,
const std::int64_t *incy,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1150

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event copy_batch(sycl::queue &queue,

const std::int64_t *n,
const T **x,
const std::int64_t *incx,
T **y,
const std::int64_t *incy,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Array of group_count integers. n[i] specifies the number of elements in vectors X and Y for every vector in
group i.

x
Array of pointers to input vectors X with size total_batch_count. The size of array allocated for the X vector
of the group i must be at least (1 + (n[i] – 1)*abs(incx[i])). See Matrix Storage for more details.

incx
Array of group_count integers. incx[i] specifies the stride of vector X in group i. Must not be zero.

y
Array of pointers to input/output vectors Y with size total_batch_count. The size of array allocated for the Y
vector of the group i must be at least (1 + (n[i] – 1)*abs(incy[i])). See Matrix Storage for more details.

incy
Array of group_count integers. incy[i] specifies the stride of vector Y in group i. Must not be zero.

group_count
Number of groups. Must be at least 0.

group_size
Array of group_count integers. group_size[i] specifies the number of copy operations in group i. Each
element in group_size must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Array of pointers holding the Y vectors, overwritten by total_batch_count copy operations.

8.2. oneMKL Domains 1151

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event copy_batch(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event copy_batch(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

n
Number of elements in X and Y.

x
Pointer to input vectors X with size stridex * batch_size.

incx
Stride of vector X. Must not be zero.

stridex
Stride between different X vectors. Must be at least zero.

y
Pointer to input/output vectors Y with size stridey * batch_size.

8.2. oneMKL Domains 1152

oneAPI Specification, Release 1.4-provisional-rev-1

incy
Stride of vector Y. Must not be zero.

stridey
Stride between different Y vectors. Must be at least (1 + (n-1)*abs(incy)).

batch_size
Specifies the number of copy operations to perform.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y
Output vectors, overwritten by batch_size copy operations

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic:BLAS-like Extensions

dgmm_batch

Computes a group of dgmm operations.

Description

The dgmm_batch routines perform multiple diagonal matrix-matrix product operations in a single call.

dgmm_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1153

oneAPI Specification, Release 1.4-provisional-rev-1

dgmm_batch (Buffer Version)

Description

The buffer version of dgmm_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and C are matrices at offset i * stridea in a, i * stridec in c.
X is a vector at offset i * stridex in x
C := diag(X) * A or C = A * diag(X)

end for

where:

A is a matrix,

X is a diagonal matrix stored as a vector

The a and x buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and x buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void dgmm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
std::int64_t m,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void dgmm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
std::int64_t m,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,

(continues on next page)

8.2. oneMKL Domains 1154

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t stridex,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies the position of the diagonal matrix in the product. See oneMKL defined datatypes for more details.

m
Number of rows of matrices A and C. Must be at least zero.

n
Number of columns of matrices A and C. Must be at least zero.

a

Buffer holding the input matrices A with size stridea * batch_size. Must be of at least lda * j +
stridea * (batch_size - 1) where j is n if column major layout is used or m if major layout is used.

lda
The leading dimension of the matrices A. It must be positive and at least m if column major layout is used or at
least n if row major layout is used.

stridea
Stride between different A matrices.

x
Buffer holding the input matrices X with size stridex * batch_size. Must be of size at least (1 + (len -
1)*abs(incx)) + stridex * (batch_size - 1) where len is n if the diagonal matrix is on the right of the
product or m otherwise.

incx
Stride between two consecutive elements of the x vectors.

stridex
Stride between different X vectors, must be at least 0.

c
Buffer holding input/output matrices C with size stridec * batch_size.

ldc
The leading dimension of the matrices C. It must be positive and at least m if column major layout is used to store
matrices or at least n if column major layout is used to store matrices.

stridec
Stride between different C matrices. Must be at least ldc * n if column major layout is used or ldc * m if row
major layout is used.

batch_size
Specifies the number of diagonal matrix-matrix product operations to perform.

8.2. oneMKL Domains 1155

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Output overwritten by batch_size diagonal matrix-matrix product operations.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dgmm_batch (USM Version)

Description

The USM version of dgmm_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
a and c are matrices of size mxn at position idx in a_array and c_array
x is a vector of size m or n depending on left_right, at position idx in x_array
if (left_right == oneapi::mkl::side::left)

c := diag(x) * a
else

c := a * diag(x)
idx := idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
A and C are matrices at offset i * stridea in a, i * stridec in c.
X is a vector at offset i * stridex in x
C := diag(X) * A or C = A * diag(X)

end for

where:

A is a matrix,

X is a diagonal matrix stored as a vector

The a and x buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and x buffers is given by the batch_size parameter.

8.2. oneMKL Domains 1156

oneAPI Specification, Release 1.4-provisional-rev-1

For group API, a and x arrays contain the pointers for all the input matrices. The total number of matrices in a and x
are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a and x arrays contain all the input matrices. The total number of matrices in a and x are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dgmm_batch(sycl::queue &queue,

const oneapi::mkl::side *left_right,
const std::int64_t *m,
const std::int64_t *n,
const T **a,
const std::int64_t *lda,
const T **x,
const std::int64_t *incx,
T **c,
const std::int64_t *ldc,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event dgmm_batch(sycl::queue &queue,

const oneapi::mkl::side *left_right,
const std::int64_t *m,
const std::int64_t *n,
const T **a,
const std::int64_t *lda,
const T **x,
const std::int64_t *incx,
T **c,
const std::int64_t *ldc,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1157

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies the position of the diagonal matrix in the product. See oneMKL defined datatypes for more details.

m
Array of group_count integers. m[i] specifies the number of rows of A for every matrix in group i. All entries
must be at least zero.

n
Array of group_count integers. n[i] specifies the number of columns of A for every matrix in group i. All
entries must be at least zero.

a
Array of pointers to input matrices A with size total_batch_count. Must be of size at least lda[i] * n[i] if
column major layout is used or at least lda[i] * m[i] if row major layout is used. See Matrix Storage for more
details.

lda
Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be positive and at least m[i] if column major layout is used or at least n[i] if row major layout is
used.

x
Array of pointers to input vectors X with size total_batch_count. Must be of size at least (1 + len[i] –
1)*abs(incx[i])) where len[i] is n[i] if the diagonal matrix is on the right of the product or m[i] otherwise.
See Matrix Storage for more details.

incx
Array of group_count integers. incx[i] specifies the stride of x for every vector in group i. All entries must
be positive.

c
Array of pointers to input/output matrices C with size total_batch_count. Must be of size at least ldc[i] *
n[i] if column major layout is used or at least ldc[i] * m[i] if row major layout is used. See Matrix Storage
for more details.

ldc
Array of group_count integers. ldc[i] specifies the leading dimension of C for every matrix in group i. All
entries must be positive and ldc[i] must be at least m[i] if column major layout is used to store matrices or at
least n[i] if row major layout is used to store matrices.

group_count
Specifies the number of groups. Must be at least 0.

group_size
Array of group_count integers. group_size[i] specifies the number of diagonal matrix-matrix product op-
erations in group i. All entries must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1158

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Output overwritten by batch_size diagonal matrix-matrix product operations.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dgmm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
std::int64_t m,
std::int64_t n,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *b,
std::int64_t incx,
std::int64_t stridex,
T *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event dgmm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
std::int64_t m,
std::int64_t n,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *b,
std::int64_t incx,
std::int64_t stridex,
T *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1159

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies the position of the diagonal matrix in the product. See oneMKL defined datatypes for more details.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

a
Pointer to input matrices A with size stridea * batch_size. Must be of size at least lda * k + stridea *
(batch_size - 1) where k is n if column major layout is used or m if row major layout is used.

lda
The leading dimension of the matrices A. It must be positive and at least m. Must be positive and at least m if
column major layout is used or at least n if row major layout is used.

stridea
Stride between different A matrices.

x
Pointer to input matrices X with size stridex * batch_size. Must be of size at least (1 + (len - 1)*abs(incx))
+ stridex * (batch_size - 1) where len is n if the diagonal matrix is on the right of the product or m otherwise.

incx
Stride between two consecutive elements of the x vector.

stridex
Stride between different X vectors, must be at least 0.

c
Pointer to input/output matrices C with size stridec * batch_size.

ldc
The leading dimension of the matrices C. It must be positive and at least ldc * m if column major layout is used
to store matrices or at least ldc * n if column major layout is used to store matrices.

stridec
Stride between different C matrices. Must be at least ldc * n if column major layout is used or ldc * m if row
major layout is used.

batch_size
Specifies the number of diagonal matrix-matrix product operations to perform.

Output Parameters

c
Output overwritten by batch_size diagonal matrix-matrix product operations.

8.2. oneMKL Domains 1160

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

gemm_batch

Computes a group of gemm operations.

Description

The gemm_batch routines are batched versions of gemm, performing multiple gemm operations in a single call. Each
gemm operation perform a matrix-matrix product with general matrices.

gemm_batch supports the following precisions.

Ta
(A matrix)

Tb
(B matrix)

Tc
(C matrix)

Ts
(alpha/beta)

std::int8_t std::int8_t std::int32_t float
std::int8_t std::int8_t float float
half half float float
half half half half
bfloat16 bfloat16 float float
bfloat16 bfloat16 bfloat16 float
float float float float
double double double double
std::complex<float> std::complex<float> std::complex<float> std::complex<float>
std::complex<double>std::complex<double>std::complex<double>std::complex<double>

8.2. oneMKL Domains 1161

oneAPI Specification, Release 1.4-provisional-rev-1

gemm_batch (Buffer Version)

Description

The buffer version of gemm_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A, B and C are matrices at offset i * stridea, i * strideb, i * stridec in a, b and␣

→˓c.
C := alpha * op(A) * op(B) + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A, B, and C are matrices,

op(A) is m x k, op(B) is k x n, and C is m x n.

The a, b and c buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a, b and c buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void gemm_batch(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
std::int64_t strideb,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void gemm_batch(sycl::queue &queue,

oneapi::mkl::transpose transa,
(continues on next page)

8.2. oneMKL Domains 1162

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
std::int64_t strideb,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

transb
Specifies op(B) the transposition operation applied to the matrices B. See oneMKL defined datatypes for more
details.

m
Number of rows of op(A) and C. Must be at least zero.

n
Number of columns of op(B) and C. Must be at least zero.

k
Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha
Scaling factor for the matrix-matrix products.

a
Buffer holding the input matrices A with size stridea * batch_size.

lda
The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

8.2. oneMKL Domains 1163

oneAPI Specification, Release 1.4-provisional-rev-1

stridea
Stride between different A matrices.

b
Buffer holding the input matrices B with size strideb * batch_size.

ldb
The leading dimension of the matrices``B``. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

strideb
Stride between different B matrices.

beta
Scaling factor for the matrices C.

c
Buffer holding input/output matrices C with size stridec * batch_size.

ldc
The leading dimension of the matrices C. It must be positive and at least m if column major layout is used to store
matrices or at least n if row major layout is used to store matrices.

stridec
Stride between different C matrices. Must be at least ldc * n.

batch_size
Specifies the number of matrix multiply operations to perform.

Output Parameters

c
Output buffer, overwritten by batch_size matrix multiply operations of the form alpha * op(A)*op(B) + beta
* C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1164

oneAPI Specification, Release 1.4-provisional-rev-1

gemm_batch (USM Version)

Description

The USM version of gemm_batch supports the group API and the strided API. The group API supports pointer and
span inputs.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A, B, and C are matrices in a[idx], b[idx] and c[idx]
C := alpha[i] * op(A) * op(B) + beta[i] * C
idx = idx + 1

end for
end for

The advantage of using span instead of pointer is that the sizes of the array can vary and the size of the span can be
queried at runtime. For each GEMM parameter, except the output matrices, the span can be of size 1, the number of
groups or the total batch size. For the output matrices, to ensure all computation are independent, the size of the span
must be the total batch size.

Depending on the size of the spans, each parameter for the GEMM computation is used as follows:

• If the span has size 1, the parameter is reused for all GEMM computation.

• If the span has size group_count, the parameter is reused for all GEMM within a group, but each group will have
a different value for this parameter. This is like the gemm_batch group API with pointers.

• If the span has size equal to the total batch size, each GEMM computation will use a different value for this
parameter.

The strided API operation is defined as

for i = 0 ... batch_size – 1
A, B and C are matrices at offset i * stridea, i * strideb, i * stridec in a, b and␣

→˓c.
C := alpha * op(A) * op(B) + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A, B, and C are matrices,

op(A) is m x k, op(B) is k x n, and C is m x n.

For group API, a, b and c arrays contain the pointers for all the input matrices. The total number of matrices in a, b
and c are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a, b, c arrays contain all the input matrices. The total number of matrices in a, b and c are given by
the batch_size parameter.

Group API

8.2. oneMKL Domains 1165

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm_batch(sycl::queue &queue,

const oneapi::mkl::transpose *transa,
const oneapi::mkl::transpose *transb,
const std::int64_t *m,
const std::int64_t *n,
const std::int64_t *k,
const Ts *alpha,
const Ta **a,
const std::int64_t *lda,
const Tb **b,
const std::int64_t *ldb,
const Ts *beta,
Tc **c,
const std::int64_t *ldc,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

sycl::event gemm_batch(sycl::queue &queue,
const sycl::span<oneapi::mkl::transpose> &transa,
const sycl::span<oneapi::mkl::transpose> &transb,
const sycl::span<std::int64_t> &m,
const sycl::span<std::int64_t> &n,
const sycl::span<std::int64_t> &k,
const sycl::span<Ts> &alpha,
const sycl::span<const Ta*> &a,
const sycl::span<std::int64_t> &lda,
const sycl::span<const Tb*> &b,
const sycl::span<std::int64_t> &ldb,
const sycl::span<Ts> &beta,
sycl::span<Tc*> &c,
const sycl::span<std::int64_t> &ldc,
size_t group_count,
const sycl::span<size_t> &group_sizes,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm_batch(sycl::queue &queue,

const oneapi::mkl::transpose *transa,
const oneapi::mkl::transpose *transb,
const std::int64_t *m,
const std::int64_t *n,
const std::int64_t *k,
const Ts *alpha,
const Ta **a,
const std::int64_t *lda,
const Tb **b,
const std::int64_t *ldb,
const Ts *beta,

(continues on next page)

8.2. oneMKL Domains 1166

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

Tc **c,
const std::int64_t *ldc,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

sycl::event gemm_batch(sycl::queue &queue,
const sycl::span<oneapi::mkl::transpose> &transa,
const sycl::span<oneapi::mkl::transpose> &transb,
const sycl::span<std::int64_t> &m,
const sycl::span<std::int64_t> &n,
const sycl::span<std::int64_t> &k,
const sycl::span<Ts> &alpha,
const sycl::span<const Ta*> &a,
const sycl::span<std::int64_t> &lda,
const sycl::span<const Tb*> &b,
const sycl::span<std::int64_t> &ldb,
const sycl::span<Ts> &beta,
sycl::span<Tc*> &c,
const sycl::span<std::int64_t> &ldc,
size_t group_count,
const sycl::span<size_t> &group_sizes,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Array or span of group_count oneapi::mkl::transpose values. transa[i] specifies the form of op(A)
used in the matrix multiplication in group i. See oneMKL defined datatypes for more details.

transb
Array or span of group_count oneapi::mkl::transpose values. transb[i] specifies the form of op(B)
used in the matrix multiplication in group i. See oneMKL defined datatypes for more details.

m
Array or span of group_count integers. m[i] specifies the number of rows of op(A) and C for every matrix in
group i. All entries must be at least zero.

n
Array or span of group_count integers. n[i] specifies the number of columns of op(B) and C for every matrix
in group i. All entries must be at least zero.

k
Array or span of group_count integers. k[i] specifies the number of columns of op(A) and rows of op(B) for
every matrix in group i. All entries must be at least zero.

alpha
Array or span of group_count scalar elements. alpha[i] specifies the scaling factor for every matrix-matrix
product in group i.

8.2. oneMKL Domains 1167

oneAPI Specification, Release 1.4-provisional-rev-1

a
Array of pointers or span of input matrices A with size total_batch_count.

See Matrix Storage for more details.

lda
Array or span of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group
i. All entries must be positive.

A not transposed A transposed
Column major lda[i] must be at least m[i]. lda[i] must be at least k[i].
Row major lda[i] must be at least k[i]. lda[i] must be at least m[i].

b
Array of pointers or span of input matrices B with size total_batch_count.

See Matrix Storage for more details.

ldb
Array or span of group_count integers. ldb[i] specifies the leading dimension of B for every matrix in group
i. All entries must be positive.

B not transposed B transposed
Column major ldb[i] must be at least k[i]. ldb[i] must be at least n[i].
Row major ldb[i] must be at least n[i]. ldb[i] must be at least k[i].

beta
Array or span of group_count scalar elements. beta[i] specifies the scaling factor for matrix C for every
matrix in group i.

c
Array of pointers or span of input/output matrices C with size total_batch_count.

See Matrix Storage for more details.

ldc
Array or span of group_count integers. ldc[i] specifies the leading dimension of C for every matrix in group
i. All entries must be positive and ldc[i] must be at least m[i] if column major layout is used to store matrices
or at least n[i] if row major layout is used to store matrices.

group_count
Specifies the number of groups. Must be at least 0.

group_size
Array or span of group_count integers. group_size[i] specifies the number of matrix multiply products in
group i. All entries must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1168

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Overwritten by the m[i]-by-n[i] matrix calculated by (alpha[i] * op(A)*op(B) + beta[i] * C) for group i.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Output Parameters

c
Overwritten by the m[i]-by-n[i] matrix calculated by (alpha[i] * op(A)*op(B) + beta[i] * C) for group i.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm_batch(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
value_or_pointer<Ts> alpha,
const Ta *a,
std::int64_t lda,
std::int64_t stridea,
const Tb *b,
std::int64_t ldb,
std::int64_t strideb,
value_or_pointer<Ts> beta,
Tc *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,

(continues on next page)

8.2. oneMKL Domains 1169

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm_batch(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
value_or_pointer<Ts> alpha,
const Ta *a,
std::int64_t lda,
std::int64_t stridea,
const Tb *b,
std::int64_t ldb,
std::int64_t strideb,
value_or_pointer<Ts> beta,
Tc *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

transb
Specifies op(B) the transposition operation applied to the matrices B. See oneMKL defined datatypes for more
details.

m
Number of rows of op(A) and C. Must be at least zero.

n
Number of columns of op(B) and C. Must be at least zero.

k
Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha
Scaling factor for the matrix-matrix products. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrices A with size stridea * batch_size.

lda
The leading dimension of the matrices A. It must be positive.

8.2. oneMKL Domains 1170

oneAPI Specification, Release 1.4-provisional-rev-1

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

stridea
Stride between different A matrices.

b
Pointer to input matrices B with size strideb * batch_size.

ldb
The leading dimension of the matrices``B``. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

strideb
Stride between different B matrices.

beta
Scaling factor for the matrices C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrices C with size stridec * batch_size.

ldc
The leading dimension of the matrices C. It must be positive and at least m if column major layout is used to store
matrices or at least n if row major layout is used to store matrices.

stridec
Stride between different C matrices.

batch_size
Specifies the number of matrix multiply operations to perform.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Output matrices, overwritten by batch_size matrix multiply operations of the form alpha * op(A)*op(B) +
beta * C.

8.2. oneMKL Domains 1171

oneAPI Specification, Release 1.4-provisional-rev-1

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

gemv_batch

Computes a group of gemv operations.

Description

The gemv_batch routines are batched versions of gemv, performing multiple gemv operations in a single call. Each
gemv operations perform a scalar-matrix-vector product and add the result to a scalar-vector product.

gemv_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

gemv_batch (Buffer Version)

Description

The buffer version of gemv_batch supports only the strided API.

The strided API operation is defined as:

8.2. oneMKL Domains 1172

oneAPI Specification, Release 1.4-provisional-rev-1

for i = 0 ... batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are matrices at offset i * stridex, i * stridey, in x and y.
Y := alpha * op(A) * X + beta * Y

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is a matrix and X and Y are vectors,

The x and y buffers contain all the input matrices. The stride between vectors is given by the stride parameter. The
total number of vectors in x and y buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void gemv_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void gemv_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,

(continues on next page)

8.2. oneMKL Domains 1173

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector products.

a
Buffer holding the input matrices A with size stridea * batch_size.

lda
The leading dimension of the matrices A. It must be positive and at least m if column major layout is used or at
least n if row major layout is used.

stridea
Stride between different A matrices. Must be at least zero.

x
Buffer holding the input vectors X with size stridex * batch_size.

incx
The stride of the vector X. Must not be zero.

stridex
Stride between different consecutive X vectors, must be at least 0.

beta
Scaling factor for the vector Y.

y
Buffer holding input/output vectors Y with size stridey * batch_size.

incy
Stride between two consecutive elements of the Y vectors. Must not be zero.

stridey
Stride between two consecutive Y vectors. Must be at least (1 + (m - 1)*abs(incy)) if layout is column major or
(1 + (n - 1)*abs(incy)) if row major layout is used.

batch_size
Specifies the number of matrix-vector operations to perform.

8.2. oneMKL Domains 1174

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Output overwritten by batch_size matrix-vector product operations of the form alpha * op(A) * X + beta *
Y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemv_batch (USM Version)

Description

The USM version of gemv_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A is an m x n matrix in a[idx]
X and Y are vectors in x[idx] and y[idx]
Y := alpha[i] * op(A) * X + beta[i] * Y
idx = idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are vectors at offset i * stridex, i * stridey in x and y.
Y := alpha * op(A) * X + beta * Y

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is a matrix and X and Y are vectors,

8.2. oneMKL Domains 1175

oneAPI Specification, Release 1.4-provisional-rev-1

For group API, x and y arrays contain the pointers for all the input vectors. A array contains the pointers to all input
matrices. The total number of vectors in x and y and matrices in A are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, x and y arrays contain all the input vectors. A array contains the pointers to all input matrices. The
total number of vectors in x and y and matrices in A are given by the batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,

const oneapi::mkl::transpose *trans,
const std::int64_t *m,
const std::int64_t *n,
const T *alpha,
const T **a,
const std::int64_t *lda,
const T **x,
const std::int64_t *incx,
const T *beta,
T **y,
const std::int64_t *incy,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,

const oneapi::mkl::transpose *trans,
const std::int64_t *m,
const std::int64_t *n,
const T *alpha,
const T **a,
const std::int64_t *lda,
const T **x,
const std::int64_t *incx,
const T *beta,
T **y,
const std::int64_t *incy,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1176

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

trans
Array of group_count oneapi::mkl::transpose values. trans[i] specifies the form of op(A) used in the
matrix-vector product in group i. See oneMKL defined datatypes for more details.

m
Array of group_count integers. m[i] specifies the number of rows of A for every matrix in group i. All entries
must be at least zero.

n
Array of group_count integers. n[i] specifies the number of columns of A for every matrix in group i. All
entries must be at least zero.

alpha
Array of group_count scalar elements. alpha[i] specifies the scaling factor for every matrix-vector product
in group i.

a
Array of pointers to input matrices A with size total_batch_count.

See Matrix Storage for more details.

lda
Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be positive and at least m if column major layout is used or at least n if row major layout is used.

x
Array of pointers to input vectors X with size total_batch_count.

See Matrix Storage for more details.

incx
Array of group_count integers. incx[i] specifies the stride of X for every vector in group i. Must not be zero.

beta
Array of group_count scalar elements. beta[i] specifies the scaling factor for vector Y for every vector in
group i.

y
Array of pointers to input/output vectors Y with size total_batch_count.

See Matrix Storage for more details.

incy
Array of group_count integers. incy[i] specifies the leading dimension of Y for every vector in group i.
Must not be zero.

group_count
Specifies the number of groups. Must be at least 0.

group_size
Array of group_count integers. group_size[i] specifies the number of matrix-vector products in group i.
All entries must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1177

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Overwritten by vector calculated by (alpha[i] * op(A) * X + beta[i] * Y) for group i.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
value_or_pointer<T> beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1178

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

m
Number of rows of A. Must be at least zero.

n
Number of columns of A. Must be at least zero.

alpha
Scaling factor for the matrix-vector products. See Scalar Arguments in BLAS for more details.

a
Pointer to the input matrices A with size stridea * batch_size.

lda
The leading dimension of the matrices A. It must be positive and at least m if column major layout is used or at
least n if row major layout is used.

stridea
Stride between different A matrices. Must be at least zero.

x
Pointer to the input vectors X with size stridex * batch_size.

incx
Stride of the vector X. Must not be zero.

stridex
Stride between different consecutive X vectors, must be at least 0.

beta
Scaling factor for the vector Y. See Scalar Arguments in BLAS for more details.

y
Pointer to the input/output vectors Y with size stridey * batch_size.

incy
Stride between two consecutive elements of the y vectors. Must not be zero.

stridey
Stride between two consecutive Y vectors. Must be at least (1 + (m - 1)*abs(incy)) if layout is column major or
(1 + (n - 1)*abs(incy)) if row major layout is used.

batch_size
Specifies the number of matrix-vector operations to perform.

8.2. oneMKL Domains 1179

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

y
Output overwritten by batch_size matrix-vector product operations of the form alpha * op(A) * X + beta *
Y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

syrk_batch

Computes a group of syrk operations.

Description

The syrk_batch routines are batched versions of syrk, performing multiple syrk operations in a single call. Each
syrk operation perform a rank-k update with general matrices.

syrk_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1180

oneAPI Specification, Release 1.4-provisional-rev-1

syrk_batch (Buffer Version)

Description

The buffer version of syrk_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and C are matrices at offset i * stridea, i * stridec in a and c.
C := alpha * op(A) * op(A)^T + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A and C are matrices,

op(A) is n x k and C is n x n.

The a and c buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and c buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void syrk_batch(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void syrk_batch(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,

(continues on next page)

8.2. oneMKL Domains 1181

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t lda,
std::int64_t stridea,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether data in C is stored in its upper or lower triangle. For more details, see oneMKL defined
datatypes.

trans
Specifies op(A) the transposition operation applied to the matrix A. Conjugation is never performed, even if trans
= transpose::conjtrans. See oneMKL defined datatypes for more details.

n
Number of rows and columns of C. Must be at least zero.

k
Number of columns of op(A). Must be at least zero.

alpha
Scaling factor for the rank-k update.

a
Buffer holding the input matrices A with size stridea * batch_size.

lda
The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

stridea
Stride between different A matrices.

beta
Scaling factor for the matrices C.

c
Buffer holding input/output matrices C with size stridec * batch_size.

ldc
The leading dimension of the matrices C. It must be positive and at least n.

stridec
Stride between different C matrices. Must be at least ldc * n.

8.2. oneMKL Domains 1182

oneAPI Specification, Release 1.4-provisional-rev-1

batch_size
Specifies the number of rank-k update operations to perform.

Output Parameters

c
Output buffer, overwritten by batch_size rank-k update operations of the form alpha * op(A)*op(A)^T + beta
* C.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syrk_batch (USM Version)

Description

The USM version of syrk_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A, B, and C are matrices in a[idx] and c[idx]
C := alpha[i] * op(A) * op(A)^T + beta[i] * C
idx = idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
A, B and C are matrices at offset i * stridea, i * stridec in a and c.
C := alpha * op(A) * op(A)^T + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A and C are matrices,

op(A) is n x k and C is n x n.

8.2. oneMKL Domains 1183

oneAPI Specification, Release 1.4-provisional-rev-1

For group API, a and c arrays contain the pointers for all the input matrices. The total number of matrices in a and c
are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a and c arrays contain all the input matrices. The total number of matrices in a and c are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syrk_batch(sycl::queue &queue,

const uplo *upper_lower,
const transpose *trans,
const std::int64_t *n,
const std::int64_t *k,
const T *alpha,
const T **a,
const std::int64_t *lda,
const T *beta,
T **c,
const std::int64_t *ldc,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syrk_batch(sycl::queue &queue,

const uplo *upper_lower,
const transpose *trans,
const std::int64_t *n,
const std::int64_t *k,
const T *alpha,
const T **a,
const std::int64_t *lda,
const T *beta,
T **c,
const std::int64_t *ldc,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1184

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Array of group_count oneapi::mkl::upper_lower values. upper_lower[i] specifies whether data in C
for every matrix in group i is in upper or lower triangle.

trans
Array of group_count oneapi::mkl::transpose values. trans[i] specifies the form of op(A) used in the
rank-k update in group i. See oneMKL defined datatypes for more details.

n
Array of group_count integers. n[i] specifies the number of rows and columns of C for every matrix in group
i. All entries must be at least zero.

k
Array of group_count integers. k[i] specifies the number of columns of op(A) for every matrix in group i.
All entries must be at least zero.

alpha
Array of group_count scalar elements. alpha[i] specifies the scaling factor for every rank-k update in group
i.

a
Array of pointers to input matrices A with size total_batch_count.

See Matrix Storage for more details.

lda
Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be positive.

A not transposed A transposed
Column major lda[i] must be at least n[i]. lda[i] must be at least k[i].
Row major lda[i] must be at least k[i]. lda[i] must be at least n[i].

beta
Array of group_count scalar elements. beta[i] specifies the scaling factor for matrix C for every matrix in
group i.

c
Array of pointers to input/output matrices C with size total_batch_count.

See Matrix Storage for more details.

ldc
Array of group_count integers. ldc[i] specifies the leading dimension of C for every matrix in group i. All
entries must be positive and ldc[i] must be at least n[i].

group_count
Specifies the number of groups. Must be at least 0.

group_size
Array of group_count integers. group_size[i] specifies the number of rank-k update products in group i.
All entries must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1185

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Overwritten by the n[i]-by-n[i] matrix calculated by (alpha[i] * op(A)*op(A)^T + beta[i] * C) for group
i.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syrk_batch(sycl::queue &queue,

uplo upper_lower,
transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syrk_batch(sycl::queue &queue,

uplo upper_lower,
transpose trans,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1186

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether data in C is stored in its upper or lower triangle. For more details, see oneMKL defined
datatypes.

trans
Specifies op(A) the transposition operation applied to the matrices A. Conjugation is never performed, even if
trans = transpose::conjtrans. See oneMKL defined datatypes for more details.

n
Number of rows and columns of C. Must be at least zero.

k
Number of columns of op(A). Must be at least zero.

alpha
Scaling factor for the rank-k updates. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrices A with size stridea * batch_size.

lda
The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

stridea
Stride between different A matrices.

beta
Scaling factor for the matrices C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrices C with size stridec * batch_size.

ldc
The leading dimension of the matrices C. It must be positive and at least n.

stridec
Stride between different C matrices.

batch_size
Specifies the number of rank-k update operations to perform.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1187

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Output matrices, overwritten by batch_size rank-k update operations of the form alpha * op(A)*op(A)^T +
beta * C.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

trsm_batch

Computes a group of trsm operations.

Description

The trsm_batch routines are batched versions of trsm, performing multiple trsm operations in a single call. Each
trsm solves an equation of the form op(A) * X = alpha * B or X * op(A) = alpha * B.

trsm_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1188

oneAPI Specification, Release 1.4-provisional-rev-1

trsm_batch (Buffer Version)

Description

The buffer version of trsm_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and B are matrices at offset i * stridea and i * strideb in a and b.
if (left_right == oneapi::mkl::side::left) then

compute X such that op(A) * X = alpha * B
else

compute X such that X * op(A) = alpha * B
end if
B := X

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha is a scalar,

A is a triangular matrix,

B and X are m x n general matrices,

A is either m x m or n x n,depending on whether it multiplies X on the left or right. On return, the matrix B is overwritten
by the solution matrix X.

The a and b buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and b buffers are given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void trsm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size)

}

8.2. oneMKL Domains 1189

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
void trsm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size)

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether the matrices A multiply X on the left (side::left) or on the right (side::right). See
oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrices A are upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

unit_diag
Specifies whether the matrices A are assumed to be unit triangular (all diagonal elements are 1). See oneMKL
defined datatypes for more details.

m
Number of rows of the B matrices. Must be at least zero.

n
Number of columns of the B matrices. Must be at least zero.

alpha
Scaling factor for the solutions.

a
Buffer holding the input matrices A with size stridea * batch_size.

lda
Leading dimension of the matrices A. Must be at least m if left_right = side::left, and at least n if
left_right = side::right. Must be positive.

stridea
Stride between different A matrices.

8.2. oneMKL Domains 1190

oneAPI Specification, Release 1.4-provisional-rev-1

b
Buffer holding the input matrices B with size strideb * batch_size.

ldb
Leading dimension of the matrices B. It must be positive and at least m if column major layout is used to store
matrices or at least n if row major layout is used to store matrices.

strideb
Stride between different B matrices.

batch_size
Specifies the number of triangular linear systems to solve.

Output Parameters

b
Output buffer, overwritten by batch_size solution matrices X.

Notes

If alpha = 0, matrix B is set to zero and the matrices A and B do not need to be initialized before calling trsm_batch.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trsm_batch (USM Version)

Description

The USM version of trsm_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A and B are matrices in a[idx] and b[idx]
if (left_right == oneapi::mkl::side::left) then

compute X such that op(A) * X = alpha[i] * B
else

compute X such that X * op(A) = alpha[i] * B
end if
B := X

(continues on next page)

8.2. oneMKL Domains 1191

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

idx = idx + 1
end for

end for

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and B are matrices at offset i * stridea and i * strideb in a and b.
if (left_right == oneapi::mkl::side::left) then

compute X such that op(A) * X = alpha * B
else

compute X such that X * op(A) = alpha * B
end if
B := X

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha is a scalar,

A is a triangular matrix,

B and X are m x n general matrices,

A is either m x m or n x n,depending on whether it multiplies X on the left or right. On return, the matrix B is overwritten
by the solution matrix X.

For group API, a and b arrays contain the pointers for all the input matrices. The total number of matrices in a and b
are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a and b arrays contain all the input matrices. The total number of matrices in a and b are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsm_batch(sycl::queue &queue,

const oneapi::mkl::side *left_right,
const oneapi::mkl::uplo *upper_lower,
const oneapi::mkl::transpose *trans,
const oneapi::mkl::diag *unit_diag,
const std::int64_t *m,
const std::int64_t *n,
const T *alpha,
const T **a,
const std::int64_t *lda,
T **b,

(continues on next page)

8.2. oneMKL Domains 1192

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::int64_t *ldb,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trsm_batch(sycl::queue &queue,

const oneapi::mkl::side *left_right,
const oneapi::mkl::uplo *upper_lower,
const oneapi::mkl::transpose *trans,
const oneapi::mkl::diag *unit_diag,
const std::int64_t *m,
const std::int64_t *n,
const T *alpha,
const T **a,
const std::int64_t *lda,
T **b,
const std::int64_t *ldb,
std::int64_t group_count,
const std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Array of group_count oneapi::mkl::side values. left_right[i] specifies whether A multiplies X on the
left (side::left) or on the right (side::right) for every trsm operation in group i. See oneMKL defined
datatypes for more details.

upper_lower
Array of group_count oneapi::mkl::uplo values. upper_lower[i] specifies whether A is upper or lower
triangular for every matrix in group i. See oneMKL defined datatypes for more details.

trans
Array of group_count oneapi::mkl::transpose values. trans[i] specifies the form of op(A) used for
every trsm operation in group i. See oneMKL defined datatypes for more details.

unit_diag
Array of group_count oneapi::mkl::diag values. unit_diag[i] specifies whether A is assumed to be unit
triangular (all diagonal elements are 1) for every matrix in group i. See oneMKL defined datatypes for more
details.

m
Array of group_count integers. m[i] specifies the number of rows of B for every matrix in group i. All entries
must be at least zero.

n
Array of group_count integers. n[i] specifies the number of columns of B for every matrix in group i. All
entries must be at least zero.

8.2. oneMKL Domains 1193

oneAPI Specification, Release 1.4-provisional-rev-1

alpha
Array of group_count scalar elements. alpha[i] specifies the scaling factor in group i.

a
Array of pointers to input matrices A with size total_batch_count. See Matrix Storage for more details.

lda
Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be at least m if left_right is side::left, and at least n if left_right is side::right. All
entries must be positive.

b
Array of pointers to input matrices B with size total_batch_count. See Matrix Storage for more details.

ldb
Array of group_count integers. ldb[i] specifies the leading dimension of B for every matrix in group i. All
entries must be positive and at least m and positive if column major layout is used to store matrices or at least n
if row major layout is used to store matrices.

group_count
Specifies the number of groups. Must be at least 0.

group_size
Array of group_count integers. group_size[i] specifies the number of trsm operations in group i. All
entries must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

b
Output buffer, overwritten by the total_batch_count solution matrices X.

Notes

If alpha = 0, matrix B is set to zero and the matrices A and B do not need to be initialized before calling trsm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1194

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
T *b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trsm_batch(sycl::queue &queue,

oneapi::mkl::side left_right,
oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose trans,
oneapi::mkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
T *b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

left_right
Specifies whether the matrices A multiply X on the left (side::left) or on the right (side::right). See
oneMKL defined datatypes for more details.

upper_lower
Specifies whether the matrices A are upper or lower triangular. See oneMKL defined datatypes for more details.

trans
Specifies op(A), the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

unit_diag
Specifies whether the matrices A are assumed to be unit triangular (all diagonal elements are 1). See oneMKL
defined datatypes for more details.

m
Number of rows of the B matrices. Must be at least zero.

8.2. oneMKL Domains 1195

oneAPI Specification, Release 1.4-provisional-rev-1

n
Number of columns of the B matrices. Must be at least zero.

alpha
Scaling factor for the solutions. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrices A with size stridea * batch_size.

lda
Leading dimension of the matrices A. Must be at least m if left_right = side::left, and at least n if
left_right = side::right. Must be positive.

stridea
Stride between different A matrices.

b
Pointer to input matrices B with size strideb * batch_size.

ldb
Leading dimension of the matrices B. It must be positive and at least m if column major layout is used to store
matrices or at least n if row major layout is used to store matrices.

strideb
Stride between different B matrices.

batch_size
Specifies the number of triangular linear systems to solve.

Output Parameters

b
Output matrices, overwritten by batch_size solution matrices X.

Notes

If alpha = 0, matrix B is set to zero and the matrices A and B do not need to be initialized before calling trsm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

8.2. oneMKL Domains 1196

oneAPI Specification, Release 1.4-provisional-rev-1

gemmt

Computes a matrix-matrix product with general matrices, but updates only the upper or lower triangular part of the
result matrix.

Description

The gemmt routines compute a scalar-matrix-matrix product and add the result to the upper or lower part of a scalar-
matrix product, with general matrices. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐵) + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars

A, B, and C are matrices

op(A) is n x k, op(B) is k x n, and C is n x n.

gemmt supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

gemmt (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemmt(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

8.2. oneMKL Domains 1197

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
void gemmt(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

transa
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb
Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

n
Number of rows of op(A), columns of op(B), and columns and rows ofC. Must be at least zero.

k
Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha
Scaling factor for the matrix-matrix product.

a
Buffer holding the input matrix A.

A not transposed A transposed
Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

8.2. oneMKL Domains 1198

oneAPI Specification, Release 1.4-provisional-rev-1

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

b
Buffer holding the input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta
Scaling factor for matrix C.

c
Buffer holding the input/output matrix C. Must have size at least ldc * n. See Matrix Storage for more details.

ldc
Leading dimension of C. Must be positive and at least m.

Output Parameters

c
Output buffer, overwritten by the upper or lower triangular part of alpha * op(A)*op(B) + beta * C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemmt.

8.2. oneMKL Domains 1199

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemmt (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemmt(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemmt(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t n,
std::int64_t k,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
const T *b,
std::int64_t ldb,
value_or_pointer<T> beta,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

8.2. oneMKL Domains 1200

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

transa
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb
Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

n
Number of columns of op(A), columns of op(B), and columns ofC. Must be at least zero.

k
Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha
Scaling factor for the matrix-matrix product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A.

A not transposed A transposed
Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

b
Pointer to input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

8.2. oneMKL Domains 1201

oneAPI Specification, Release 1.4-provisional-rev-1

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrix C. Must have size at least ldc * n. See Matrix Storage for more details.

ldc
Leading dimension of C. Must be positive and at least m.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by the upper or lower triangular part of alpha * op(A)*op(B) + beta *
C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemmt.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

8.2. oneMKL Domains 1202

oneAPI Specification, Release 1.4-provisional-rev-1

gemm_bias

Computes a matrix-matrix product using general integer matrices with bias.

Description

The gemm_bias routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, using
general integer matrices with biases/offsets. The operation is defined as:

𝐶←𝑎𝑙𝑝ℎ𝑎*(𝑜𝑝(𝐴)−𝐴_𝑜𝑓𝑓𝑠𝑒𝑡)*(𝑜𝑝(𝐵)−𝐵_𝑜𝑓𝑓𝑠𝑒𝑡)+𝑏𝑒𝑡𝑎*𝐶+𝐶_𝑜𝑓𝑓𝑠𝑒𝑡

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A_offset is an m-by-k matrix with every element equal to the value ao,

B_offset is a k-by-n matrix with every element equal to the value bo,

C_offset is an m-by-n matrix defined by the co buffer as described below,

A, B, and C are matrices,

op(A) is m x k, op(B) is k x n, and C is m x n.

gemm_bias supports the following precisions.

Ta Tb
std::uint8_t std::uint8_t
std::int8_t std::uint8_t
std::uint8_t std::int8_t
std::int8_t std::int8_t

gemm_bias (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemm_bias(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
oneapi::mkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
float alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
Ta ao,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
Tb bo,

(continues on next page)

8.2. oneMKL Domains 1203

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

float beta,
sycl::buffer<std::int32_t,1> &c,
std::int64_t ldc,
sycl::buffer<std::int32_t,1> &co)

}

namespace oneapi::mkl::blas::row_major {
void gemm_bias(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
oneapi::mkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
float alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
Ta ao,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
Tb bo,
float beta,
sycl::buffer<std::int32_t,1> &c,
std::int64_t ldc,
sycl::buffer<std::int32_t,1> &co)

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb
Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

offset_type
Specifies the form of C_offset used in the matrix multiplication. See oneMKL defined datatypes for more
details.

m
Number of rows of op(A) and C. Must be at least zero.

n
Number of columns of op(B) and C. Must be at least zero.

k
Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha
Scaling factor for the matrix-matrix product.

8.2. oneMKL Domains 1204

oneAPI Specification, Release 1.4-provisional-rev-1

a
The buffer holding the input matrix A.

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

ao
Specifies the scalar offset value for matrix A.

b
Buffer holding the input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

bo
Specifies the scalar offset value for matrix B.

beta
Scaling factor for matrix C.

c
Buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used
to store matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more
details.

8.2. oneMKL Domains 1205

oneAPI Specification, Release 1.4-provisional-rev-1

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if row major layout is used to store matrices.

co
Buffer holding the offset values for matrix C.

If offset_type = offset::fix, the co array must have size at least 1.

If offset_type = offset::col, the co array must have size at least max(1,m).

If offset_type = offset::row, the co array must have size at least max(1,n).

Output Parameters

c
Output buffer, overwritten by alpha * (op(A) - A_offset)*(op(B) - B_offset) + beta * C + C_offset.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_bias.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemm_bias (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm_bias(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
oneapi::mkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
value_or_pointer<float> alpha,
const Ta *a,
std::int64_t lda,
Ta ao,
const Tb *b,

(continues on next page)

8.2. oneMKL Domains 1206

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t ldb,
Tb bo,
value_or_pointer<float> beta,
std::int32_t *c,
std::int64_t ldc,
const std::int32_t *co,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm_bias(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
oneapi::mkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
value_or_pointer<float> alpha,
const Ta *a,
std::int64_t lda,
Ta ao,
const Tb *b,
std::int64_t ldb,
Tb bo,
value_or_pointer<float> beta,
std::int32_t *c,
std::int64_t ldc,
const std::int32_t *co,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb
Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

offset_type
Specifies the form of C_offset used in the matrix multiplication. See oneMKL defined datatypes for more
details.

m
Number of rows of op(A) and C. Must be at least zero.

n
Number of columns of op(B) and C. Must be at least zero.

k
Number of columns of op(A) and rows of op(B). Must be at least zero.

8.2. oneMKL Domains 1207

oneAPI Specification, Release 1.4-provisional-rev-1

alpha
Scaling factor for the matrix-matrix product. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A.

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda
The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

ao
Specifies the scalar offset value for matrix A.

b
Pointer to input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb
The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

bo
Specifies the scalar offset value for matrix B.

beta
Scaling factor for matrix C. See Scalar Arguments in BLAS for more details.

c
Pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

8.2. oneMKL Domains 1208

oneAPI Specification, Release 1.4-provisional-rev-1

ldc
The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if row major layout is used to store matrices.

co
Pointer to offset values for matrix C.

If offset_type = offset::fix, the co array must have size at least 1.

If offset_type = offset::col, the co array must have size at least max(1,m).

If offset_type = offset::row, the co array must have size at least max(1,n).

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Pointer to the output matrix, overwritten by alpha * (op(A) - A_offset)*(op(B) - B_offset) + beta * C +
C_offset.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_bias.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

8.2. oneMKL Domains 1209

oneAPI Specification, Release 1.4-provisional-rev-1

imatcopy

Computes an in-place scaled matrix transpose or copy operation using a general dense matrix.

Description

The imatcopy routine performs an in-place scaled matrix copy or transposition.

The operation is defined as:

𝐶 ← 𝛼 * 𝑜𝑝(𝐶)

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha is a scalar,

C is a matrix to be transformed in place,

and C is m x n on input.

imatcopy supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

imatcopy (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void imatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &matrix_in_out,
std::int64_t ld_in,
std::int64_t ld_out);

}

namespace oneapi::mkl::blas::row_major {
void imatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &matrix_in_out,

(continues on next page)

8.2. oneMKL Domains 1210

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t ld_in,
std::int64_t ld_out);

}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(C), the transposition operation applied to the matrix C. See oneMKL defined datatypes for more
details.

m
Number of rows of C on input. Must be at least zero.

n
Number of columns of C on input. Must be at least zero.

alpha
Scaling factor for the matrix transposition or copy.

matrix_in_out
Buffer holding the input/output matrix C. Must have size as follows:

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

Size of array matrix_in_out must be at
least max(ld_in, ld_out) * n

Size of array matrix_in_out must be at least
max(ld_in``*``n, ld_out``*``m)

Row
major

Size of array matrix_in_out must be at
least max(ld_in, ld_out) * m

Size of array matrix_in_out must be at least
max(ld_in``*``m, ld_out``*``n)

ld_in
The leading dimension of the matrix C on input. It must be positive, and must be at least m if column major layout
is used, and at least n if row-major layout is used.

ld_out
The leading dimension of the matrix C on output. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or trans =
transpose::conjtrans

Column ma-
jor

ld_out must be at least m. ld_out must be at least n.

Row major ld_out must be at least n. ld_out must be at least m.

8.2. oneMKL Domains 1211

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

matrix_in_out
Output buffer, overwritten by alpha * op(C).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

imatcopy (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event imatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
T *matrix_in_out,
std::int64_t ld_in,
std::int64_t ld_out,
const std::vector<sycl::event> &dependencies = {});

namespace oneapi::mkl::blas::row_major {
sycl::event imatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
T *matrix_in_out,
std::int64_t ld_in,
std::int64_t ld_out,
const std::vector<sycl::event> &dependencies = {});

8.2. oneMKL Domains 1212

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine will be executed.

trans
Specifies op(C), the transposition operation applied to the matrix C. See oneMKL defined datatypes for more
details.

m
Number of rows for the matrix C on input. Must be at least zero.

n
Number of columns for the matrix C on input. Must be at least zero.

alpha
Scaling factor for the matrix transpose or copy operation. See Scalar Arguments in BLAS for more details.

matrix_in_out

Pointer to input/output matrix C. Must have size as follows:

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

Size of array matrix_in_out must be at
least max(ld_in, ld_out) * n

Size of array matrix_in_out must be at least
max(ld_in``*``n, ld_out``*``m)

Row
major

Size of array matrix_in_out must be at
least max(ld_in, ld_out) * m

Size of array matrix_in_out must be at least
max(ld_in``*``m, ld_out``*``n)

ld_in
Leading dimension of the matrix C on input. If matrices are stored using column major layout, ld_in must be
at least m. If matrices are stored using row major layout, ld_in must be at least n. Must be positive.

ld_out
Leading dimension of the matrix C on output. Must be positive.

trans =
transpose::nontrans

trans = transpose::trans or trans =
transpose::conjtrans

Column ma-
jor

ld_out must be at least m. ld_out must be at least n.

Row major ld_out must be at least n. ld_out must be at least m.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1213

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

matrix_in_out
Pointer to output matrix C overwritten by alpha * op(C).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

omatcopy

Computes an out-of-place scaled matrix transpose or copy operation using a general dense matrix.

Description

The omatcopy routine performs an out-of-place scaled matrix copy or transposition.

The operation is defined as:

𝐵 ← 𝛼 * 𝑜𝑝(𝐴)

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha is a scalar,

A and B are matrices,

A is m x n matrix,

B is m x n matrix if op is non-transpose and an n x m matrix otherwise.,

omatcopy supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1214

oneAPI Specification, Release 1.4-provisional-rev-1

omatcopy (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void omatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
sycl::buffer<T, 1> &b,
std::int64_t ldb);

}

namespace oneapi::mkl::blas::row_major {
void omatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
sycl::buffer<T, 1> &b,
std::int64_t ldb);

}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A), the transposition operation applied to the matrix A. See oneMKL defined datatypes for more
details.

m
Number of rows for the matrix A. Must be at least zero.

n
Number of columns for the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix transposition or copy.

a
Buffer holding the input matrix A. Must have size at least lda * n for column-major and at least lda * m for
row-major.

lda
Leading dimension of the matrix A. If matrices are stored using column major layout, lda must be at least m. If
matrices are stored using row major layout, lda must be at least n. Must be positive.

8.2. oneMKL Domains 1215

oneAPI Specification, Release 1.4-provisional-rev-1

b
Buffer holding the output matrix B.

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

B is m x n matrix. Size of array b must be
at least ldb * n

B is n x m matrix. Size of array b must be at least
ldb * m

Row ma-
jor

B is m x n matrix. Size of array b must be
at least ldb * m

B is n x m matrix. Size of array b must be at least
ldb * n

ldb
The leading dimension of the matrix B. Must be positive.

trans =
transpose::nontrans

trans = transpose::trans or trans =
transpose::conjtrans

Column ma-
jor

ldb must be at least m. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least m.

Output Parameters

b
Output buffer, overwritten by alpha * op(A).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

omatcopy (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event omatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,

(continues on next page)

8.2. oneMKL Domains 1216

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t lda,
T *b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {});

}

namespace oneapi::mkl::blas::row_major {
sycl::event omatcopy(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
T *b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue
The queue where the routine will be executed.

trans
Specifies op(A), the transposition operation applied to the matrix A. See oneMKL defined datatypes for more
details.

m
Number of rows for the matrix A. Must be at least zero.

n
Number of columns for the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix transposition or copy. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. Must have size at least lda * n for column-major and at least lda * m for row-major.

lda
Leading dimension of the matrix A. If matrices are stored using column major layout, lda must be at least m. If
matrices are stored using row major layout, lda must be at least n. Must be positive.

b
Pointer to output matrix B.

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

B is m x n matrix. Size of array b must be
at least ldb * n

B is n x m matrix. Size of array b must be at least
ldb * m

Row ma-
jor

B is m x n matrix. Size of array b must be
at least ldb * m

B is n x m matrix. Size of array b must be at least
ldb * n

8.2. oneMKL Domains 1217

oneAPI Specification, Release 1.4-provisional-rev-1

ldb
Leading dimension of the matrix B. Must be positive.

trans =
transpose::nontrans

trans = transpose::trans or trans =
transpose::conjtrans

Column ma-
jor

Must be at least m Must be at least n

Row major Must be at least n Must be at least m

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

b
Pointer to output matrix B overwritten by alpha * op(A).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

omatcopy2

Computes two-strided scaling and out-of-place transposition or copying of general dense matrices.

Description

The omatcopy2 routine performs a two-strided scaling and out-of-place transposition or copy of matrices. For complex
matrices the transpose operation can be a conjugate transpose.

Normally, matrices in the BLAS or LAPACK are specified by a single stride index. For instance, in the column-major
order, A(2,1) is stored in memory one element away from A(1,1), but A(1,2) is a leading dimension away. The
leading dimension in this case is at least the number of rows of the source matrix. If a matrix has two strides, then both
A(2,1) and A(1,2) may be an arbitrary distance from A(1,1).

8.2. oneMKL Domains 1218

oneAPI Specification, Release 1.4-provisional-rev-1

The operation is defined as:

𝐵 ← 𝛼 * 𝑜𝑝(𝐴)

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha is a scalar,

A and B are matrices,

A is m x n matrix,

B is m x n matrix if op is non-transpose and an n x m matrix otherwise.,

omatcopy2 supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

omatcopy2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void omatcopy2(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T, 1> &b,
std::int64_t ldb,
std::int64_t strideb);

}

namespace oneapi::mkl::blas::row_major {
void omatcopy2(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T, 1> &b,
std::int64_t ldb,

(continues on next page)

8.2. oneMKL Domains 1219

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t strideb);
}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A), the transposition operation applied to the matrix A. See oneMKL defined datatypes for more
details.

m
Number of rows for the matrix A. Must be at least zero.

n
Number of columns for the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix transposition or copy.

a
Buffer holding the input matrix A. Must have size at least lda * n for column major ordering and at least lda *
m for row major ordering.

lda
Leading dimension of the matrix A. If matrices are stored using column major layout, lda is the number of
elements in the array between adjacent columns of the matrix, and must be at least stridea * (m-1) + 1. If
using row major layout, lda is the number of elements between adjacent rows of the matrix and must be at least
stridea * (n-1) + 1.

stridea
The second stride of the matrix A. For column major layout, stridea is the number of elements in the array
between adjacent rows of the matrix. For row major layout stridea is the number of elements between adjacent
columns of the matrix. In both cases stridea must be at least 1.

b
Buffer holding the output matrix B.

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

B is m x n matrix. Size of buffer b must be
at least ldb * n

B is n x m matrix. Size of buffer b must be at least
ldb * m

Row ma-
jor

B is m x n matrix. Size of buffer b must be
at least ldb * m

B is n x m matrix. Size of buffer b must be at least
ldb * n

ldb
The leading dimension of the matrix B. Must be positive.

8.2. oneMKL Domains 1220

oneAPI Specification, Release 1.4-provisional-rev-1

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

ldbmust be at least strideb * (m-
1) + 1.

ldb must be at least strideb * (n-1) + 1.

Row major ldbmust be at least strideb * (n-
1) + 1.

ldb must be at least strideb * (m-1) + 1.

strideb
The second stride of the matrix B. For column major layout, strideb is the number of elements in the array
between adjacent rows of the matrix. For row major layout, strideb is the number of elements between adjacent
columns of the matrix. In both cases strideb must be at least 1.

Output Parameters

b
Output buffer, overwritten by alpha * op(A).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

omatcopy2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event omatcopy2(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
T *b,
std::int64_t ldb,
std::int64_t strideb,
const std::vector<sycl::event> &dependencies = {});

}

8.2. oneMKL Domains 1221

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event omatcopy2(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
T *b,
std::int64_t ldb,
std::int64_t strideb,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue
The queue where the routine will be executed.

trans
Specifies op(A), the transposition operation applied to matrix A. See oneMKL defined datatypes for more details.

m
Number of rows for the matrix A. Must be at least zero.

n
Number of columns for the matrix A. Must be at least zero.

alpha
Scaling factor for the matrix transposition or copy. See Scalar Arguments in BLAS for more details.

a
Pointer to input matrix A. Must have size at least lda * n for column-major and at least lda * m for row-major.

lda
Leading dimension of the matrix A. If matrices are stored using column major layout, lda is the number of
elements in the array between adjacent columns of the matrix, and must be at least stridea * (m-1) + 1. If
using row major layout, lda is the number of elements between adjacent rows of the matrix and must be at least
stridea * (n-1) + 1.

stridea
The second stride of the matrix A. For column major layout, stridea is the number of elements in the array
between adjacent rows of the matrix. For row major layout stridea is the number of elements between adjacent
columns of the matrix. In both cases stridea must be at least 1.

b
Pointer to output matrix B.

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

B is m x n matrix. Size of array b must be
at least ldb * n

B is n x m matrix. Size of array b must be at least
ldb * m

Row ma-
jor

B is m x n matrix. Size of array b must be
at least ldb * m

B is n x m matrix. Size of array b must be at least
ldb * n

8.2. oneMKL Domains 1222

oneAPI Specification, Release 1.4-provisional-rev-1

ldb
The leading dimension of the matrix B. Must be positive.

trans = transpose::nontrans trans = transpose::trans or trans =
transpose::conjtrans

Column
major

ldbmust be at least strideb * (m-
1) + 1.

ldb must be at least strideb * (n-1) + 1.

Row major ldbmust be at least strideb * (n-
1) + 1.

ldb must be at least strideb * (m-1) + 1.

strideb
The second stride of the matrix B. For column major layout, strideb is the number of elements in the array
between adjacent rows of the matrix. For row major layout, strideb is the number of elements between adjacent
columns of the matrix. In both cases strideb must be at least 1.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

b
Pointer to output matrix B overwritten by alpha * op(A).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

8.2. oneMKL Domains 1223

oneAPI Specification, Release 1.4-provisional-rev-1

omatadd

Computes a sum of two general dense matrices, with optional transposes.

Description

The omatadd routine performs an out-of-place scaled matrix addition with optional transposes in the arguments. The
operation is defined as:

𝐶 ← 𝛼 * 𝑜𝑝(𝐴) + 𝛽 * 𝑜𝑝(𝐵)

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH

alpha and beta are scalars,

A and B are input matrices while C is an output matrix,

C is m x n,

A is m x n if the op(A) is not transposed or n by m if it is,

and B is m x n if the op(B) is not transposed or n by m if it is.

In general, A, B, and C should not overlap in memory, with the exception of the following in-place operations:

• A and C may point to the same memory if op(A) is non-transpose and lda = ldc;

• B and C may point to the same memory if op(B) is non-transpose and ldb = ldc.

omatadd supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

omatadd (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void omatadd(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
T beta,
sycl::buffer<T, 1> &b,
std::int64_t ldb,

(continues on next page)

8.2. oneMKL Domains 1224

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T, 1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void omatadd(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
T beta,
sycl::buffer<T, 1> &b,
std::int64_t ldb,
sycl::buffer<T, 1> &c,
std::int64_t ldc)

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A), the transposition operation applied to the matrix A. See oneMKL defined datatypes for more
details.

transb
Specifies op(B), the transposition operation applied to the matrix B. See oneMKL defined datatypes for more
details.

m
Number of rows for the result matrix C. Must be at least zero.

n
Number of columns for the result matrix C. Must be at least zero.

alpha
Scaling factor for the matrix A.

a
Buffer holding the input matrix A.

transa = transpose::nontrans transa = transpose::trans or transa =
transpose::conjtrans

Column
major

A is m x n matrix. Size of array a must be
at least lda * n

A is n x m matrix. Size of array a must be at least
lda * m

Row ma-
jor

A is m x n matrix. Size of array a must be
at least lda * m

A is n x m matrix. Size of array a must be at least
lda * n

8.2. oneMKL Domains 1225

oneAPI Specification, Release 1.4-provisional-rev-1

lda
The leading dimension of the matrix A. It must be positive.

transa =
transpose::nontrans

transa = transpose::trans or transa =
transpose::conjtrans

Column
major

lda must be at least m. lda must be at least n.

Row major lda must be at least n. lda must be at least m.

beta
Scaling factor for the matrix B.

b
Buffer holding the input matrix B. Must have size at least:

transb = transpose::nontrans transb = transpose::trans or transb =
transpose::conjtrans

Column
major

B is m x n matrix. Size of array b must be
at least ldb * n

B is n x m matrix. Size of array b must be at least
ldb * m

Row ma-
jor

B is m x n matrix. Size of array b must be
at least ldb * m

B is n x m matrix. Size of array b must be at least
ldb * n

ldb
The leading dimension of the B matrix. It must be positive.

transb =
transpose::nontrans

transb = transpose::trans or transb =
transpose::conjtrans

Column
major

ldb must be at least m. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least m.

c
Buffer holding the output matrix C.

Column major C is m x n matrix. Size of array c must be at least ldc * n
Row major C is m x n matrix. Size of array c must be at least ldc * m

ldc
Leading dimension of the C matrices. If matrices are stored using column major layout, ldc must be at least m.
If matrices are stored using row major layout, ldc must be at least n. Must be positive.

8.2. oneMKL Domains 1226

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Output buffer overwritten by alpha * op(A) + beta * op(B).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

omatadd (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event omatadd(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
value_or_pointer<T> beta,
const T *b,
std::int64_t ldb,
T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {});

}

namespace oneapi::mkl::blas::row_major {
sycl::event omatadd(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
value_or_pointer<T> beta,
const T *b,
std::int64_t ldb,

(continues on next page)

8.2. oneMKL Domains 1227

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A), the transposition operation applied to the matrix A. See oneMKL defined datatypes for more
details.

transb
Specifies op(B), the transposition operation applied to the matrix B. See oneMKL defined datatypes for more
details.

m
Number of rows for the result matrix C. Must be at least zero.

n
Number of columns for the result matrix C. Must be at least zero.

alpha
Scaling factor for the matrix A. See Scalar Arguments in BLAS for more details.

a
Array holding the input matrix A.

transa = transpose::nontrans transa = transpose::trans or transa =
transpose::conjtrans

Column
major

A is m x n matrix. Size of array a must be
at least lda * n

A is n x m matrix. Size of array a must be at least
lda * m

Row ma-
jor

A is m x n matrix. Size of array a must be
at least lda * m

A is n x m matrix. Size of array a must be at least
lda * n

lda
The leading dimension of the matrix A. It must be positive.

transa =
transpose::nontrans

transa = transpose::trans or transa =
transpose::conjtrans

Column
major

lda must be at least m. lda must be at least n.

Row major lda must be at least n. lda must be at least m.

beta
Scaling factor for the matrices B. See Scalar Arguments in BLAS for more details.

b
Array holding the input matrices B.

8.2. oneMKL Domains 1228

oneAPI Specification, Release 1.4-provisional-rev-1

transb = transpose::nontrans transb = transpose::trans or transb =
transpose::conjtrans

Column
major

B is m x n matrix. Size of array b must be
at least ldb * n

B is n x m matrix. Size of array b must be at least
ldb * m

Row ma-
jor

B is m x n matrix. Size of array b must be
at least ldb * m

B is n x m matrix. Size of array b must be at least
ldb * n

ldb
The leading dimension of the B matrix. It must be positive.

transb =
transpose::nontrans

transb = transpose::trans or transb =
transpose::conjtrans

Column
major

ldb must be at least m. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least m.

c
Array holding the output matrix C.

Column major C is m x n matrix. Size of array c must be at least ldc * n
Row major C is m x n matrix. Size of array c must be at least ldc * m

ldc
Leading dimension of the C matrix. If matrices are stored using column major layout, ldc must be at least m. If
matrices are stored using row major layout, ldc must be at least n. Must be positive.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Output array, overwritten by alpha * op(A) + beta * op(B).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

8.2. oneMKL Domains 1229

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

imatcopy_batch

Computes a group of in-place scaled matrix transpose or copy operations using general dense matrices.

Description

The imatcopy_batch routines perform a series of in-place scaled matrix copies or transpositions. They are batched
versions of imatcopy, but the imatcopy_batch routines perform their operations with groups of matrices. Each group
contains matrices with the same parameters.

There is a strided API, in which the matrices in a batch are a set distance away from each other in memory and in which
all matrices share the same parameters (for example matrix size), and a more flexible group API where each group of
matrices has the same parameters but the user may provide multiple groups that have different parameters. The group
API argument structure is better suited to USM pointers than to sycl::buffer arguments, so we only specify it for
USM inputs. The strided API works with both USM and buffer memory.

strided API group API
Buffer memory supported not supported
USM pointers supported supported

imatcopy_batch supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

imatcopy_batch (Buffer Version)

Description

The buffer version of imatcopy_batch supports only the strided API.

The operation for the strided API is defined as:

for i = 0 ... batch_size – 1
C is a matrix at offset i * stride in matrix_array_in_out
C := alpha * op(C)

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha is a scalar,

C is a matrix to be transformed in place,

8.2. oneMKL Domains 1230

oneAPI Specification, Release 1.4-provisional-rev-1

and C is m x n.

The matrix_array_in_out buffer contains all the input matrices. The stride between matrices is given by the stride
parameter. The total number of matrices in matrix_array_in_out is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void imatcopy_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &matrix_array_in_out,
std::int64_t ld_in,
std::int64_t ld_out,
std::int64_t stride,
std::int64_t batch_size);

}

namespace oneapi::mkl::blas::row_major {
void imatcopy_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &matrix_array_in_out,
std::int64_t ld_in,
std::int64_t ld_out,
std::int64_t stride,
std::int64_t batch_size);

}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(C), the transposition operation applied to the matrices C. See oneMKL defined datatypes for more
details.

m
Number of rows of each matrix C on input. Must be at least zero.

n
Number of columns of each matrix C on input. Must be at least zero.

alpha
Scaling factor for the matrix transpositions or copies.

matrix_array_in_out
Buffer holding the input matrices C with size stride * batch_size.

8.2. oneMKL Domains 1231

oneAPI Specification, Release 1.4-provisional-rev-1

ld_in
The leading dimension of the matrices C on input. It must be positive, and must be at least m if column major
layout is used, and at least n if row-major layout is used.

ld_out
The leading dimension of the matrices C on output. It must be positive.

C not transposed C transposed
Column major ld_out must be at least m. ld_out must be at least n.
Row major ld_out must be at least n. ld_out must be at least m.

stride
Stride between different C matrices.

C not transposed C transposed
Column
major

stride must be at least max(ld_in*m,
ld_out*m).

stride must be at least max(ld_in*m,
ld_out*n).

Row major stride must be at least max(ld_in*n,
ld_out*n).

stride must be at least max(ld_in*n,
ld_out*m).

batch_size
Specifies the number of matrix transposition or copy operations to perform.

Output Parameters

matrix_array_in_out
Output buffer, overwritten by batch_size matrix copy or transposition operations of the form alpha * op(C).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

8.2. oneMKL Domains 1232

oneAPI Specification, Release 1.4-provisional-rev-1

imatcopy_batch (USM Version)

Description

The USM version of imatcopy_batch supports the group API and the strided API.

The operation for the group API is defined as:

idx = 0
for i = 0 ... group_count – 1

m,n, alpha, ld_in, ld_out and group_size at position i in their respective arrays
for j = 0 ... group_size – 1

C is a matrix at position idx in matrix_array_in_out
C := alpha * op(C)
idx := idx + 1

end for
end for

The operation for the strided API is defined as:

for i = 0 ... batch_size – 1
C is a matrix at offset i * stride in matrix_array_in_out
C := alpha * op(C)

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha is a scalar,

C is a matrix to be transformed in place,

and C is m x n.

For the group API, the matrices are given by arrays of pointers. C represents a matrix stored at the address pointed to
by matrix_array_in_out. The number of entries in matrix_array_in_out is given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For the strided API, the single array C contains all the matrices to be transformed in place. The locations of the
individual matrices within the buffer or array are given by stride lengths, while the number of matrices is given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
event imatcopy_batch(sycl::queue &queue,

const oneapi::mkl::transpose *trans_array,
const std::int64_t *m_array,
const std::int64_t *n_array,
const T *alpha_array,
T **matrix_array_in_out,

(continues on next page)

8.2. oneMKL Domains 1233

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::int64_t *ld_in_array,
const std::int64_t *ld_out_array,
std::int64_t group_count,
const std::int64_t *groupsize,
const std::vector<sycl::event> &dependencies = {});

}

namespace oneapi::mkl::blas::row_major {
event imatcopy_batch(sycl::queue &queue,

const oneapi::mkl::transpose *trans_array,
const std::int64_t *m_array,
const std::int64_t *n_array,
const T *alpha_array,
T **matrix_array_in_out,
const std::int64_t *ld_in_array,
const std::int64_t *ld_out_array,
std::int64_t group_count,
const std::int64_t *groupsize,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue
The queue where the routine should be executed.

trans_array
Array of size group_count. Each element i in the array specifies op(C) the transposition operation applied to
the matrices C.

m_array
Array of size group_count of number of rows of C on input. Each must be at least 0.

n_array
Array of size group_count of number of columns of C on input. Each must be at least 0.

alpha_array
Array of size group_count containing scaling factors for the matrix transpositions or copies.

matrix_array_in_out
Array of size total_batch_count, holding pointers to arrays used to store C matrices.

ld_in_array
Array of size group_count. The leading dimension of the matrix input C. If matrices are stored using column
major layout, ld_in_array[i] must be at least m_array[i]. If matrices are stored using row major layout,
ld_in_array[i] must be at least n_array[i]. Must be positive.

ld_out_array
Array of size group_count. The leading dimension of the output matrix C. Each entry ld_out_array[i] must
be positive and at least:

• m_array[i] if column major layout is used and C is not transposed

• m_array[i] if row major layout is used and C is transposed

• n_array[i] otherwise

8.2. oneMKL Domains 1234

oneAPI Specification, Release 1.4-provisional-rev-1

group_count
Number of groups. Must be at least 0.

group_size
Array of size group_count. The element group_size[i] is the number of matrices in the group i. Each
element in group_size must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

matrix_array_in_out
Output array of pointers to C matrices, overwritten by total_batch_count matrix transpose or copy operations
of the form alpha*op(C).

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event imatcopy_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *matrix_array_in_out,
std::int64_t ld_in,
std::int64_t ld_out,
std::int64_t stride,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {});

namespace oneapi::mkl::blas::row_major {
sycl::event imatcopy_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *matrix_array_in_out,
std::int64_t ld_in,
std::int64_t ld_out,
std::int64_t stride,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {});

8.2. oneMKL Domains 1235

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(C), the transposition operation applied to the matrices C.

m
Number of rows for each matrix C on input. Must be at least 0.

n
Number of columns for each matrix C on input. Must be at least 0.

alpha
Scaling factor for the matrix transpose or copy operation. See Scalar Arguments in BLAS for more details.

matrix_array_in_out
Array holding the matrices C. Must have size at least stride*batch_size.

ld_in
Leading dimension of the C matrices on input. If matrices are stored using column major layout, ld_in must be
at least m. If matrices are stored using row major layout, ld_in must be at least n. Must be positive.

ld_out
Leading dimension of the C matrices on output. If matrices are stored using column major layout, ld_out must
be at least m if C is not transposed or n if C is transposed. If matrices are stored using row major layout, ld_out
must be at least n if C is not transposed or at least m if C is transposed. Must be positive.

stride
Stride between different C matrices within matrix_array_in_out.

C not transposed C transposed
Column
major

stride must be at least max(ld_in*m,
ld_out*m).

stride must be at least max(ld_in*m,
ld_out*n).

Row major stride must be at least max(ld_in*n,
ld_out*n).

stride must be at least max(ld_in*n,
ld_out*m).

batch_size
Specifies the number of matrices to transpose or copy.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

matrix_array_in_out
Output array, overwritten by batch_size matrix transposition or copy operations of the form alpha*op(C).

8.2. oneMKL Domains 1236

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

omatcopy_batch

Computes a group of out-of-place scaled matrix transpose or copy operations using general dense matrices.

Description

The omatcopy_batch routines perform a series of out-of-place scaled matrix copies or transpositions. They are
batched versions of omatcopy, but the omatcopy_batch routines perform their operations with groups of matrices.
Each group contains matrices with the same parameters.

There is a strided API, in which the matrices in a batch are a set distance away from each other in memory and in which
all matrices share the same parameters (for example matrix size), and a more flexible group API where each group of
matrices has the same parameters but the user may provide multiple groups that have different parameters. The group
API argument structure is better suited to USM pointers than to sycl::buffer arguments, so we only specify it for
USM inputs. The strided API works with both USM and buffer memory.

strided API group API
Buffer memory supported not supported
USM pointers supported supported

omatcopy_batch supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1237

oneAPI Specification, Release 1.4-provisional-rev-1

omatcopy_batch (Buffer Version)

Description

The buffer version of omatadd_batch supports only the strided API.

The operation for the strided API is defined as:

for i = 0 ... batch_size – 1
A and B are matrices at offset i * stridea in a and i * strideb in b
B := alpha * op(A)

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha is a scalar,

A and B are input and output matrices,

A is m x n,

and B is m x n if the matrix is not transposed or n by m if it is.

The a buffer contains all the input matrices while the b buffer contains all the output matrices. The locations of the
individual matrices within the buffer are given by the stride_a and stride_b parameters, while the total number of
matrices in each buffer is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void omatcopy_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
std::int64_t stride_a,
sycl::buffer<T, 1> &b,
std::int64_t ldb,
std::int64_t stride_b,
std::int64_t batch_size);

}

namespace oneapi::mkl::blas::row_major {
void omatcopy_batch(sycl::queue &queue,

oneapi::mkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,

(continues on next page)

8.2. oneMKL Domains 1238

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t stride_a,
sycl::buffer<T, 1> &b,
std::int64_t ldb,
std::int64_t stride_b,
std::int64_t batch_size);

}

Input Parameters

queue
The queue where the routine should be executed.

trans
Specifies op(A), the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

m
Number of rows for each matrix A. Must be at least zero.

n
Number of columns for each matrix A. Must be at least zero.

alpha
Scaling factor for the matrix transposition or copy operations.

a
Buffer holding the input matrices A with size stride_a * batch_size.

lda
The leading dimension of the matrices A. It must be positive, and must be at least m if column major layout is
used, and at least n if row-major layout is used.

stride_a
Stride between the different A matrices. If matrices are stored using column major layout, stride_a must be at
least lda*n. If matrices are stored using row major layout, stride_a must be at least lda*m.

b
Buffer holding the output matrices B with size stride_b * batch_size.

ldb
The leading dimension of the matrices B. It must be positive.

B not transposed B transposed
Column major ldb must be at least m. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least m.

stride_b
Stride between different B matrices.

B not transposed B transposed
Column major stride_b must be at least ldb x n. stride_b must be at least ldb x m.
Row major stride_b must be at least ldb x m. stride_b must be at least ldb x n.

8.2. oneMKL Domains 1239

oneAPI Specification, Release 1.4-provisional-rev-1

batch_size
Specifies the number of matrix transposition or copy operations to perform.

Output Parameters

b
Output buffer, overwritten by batch_size matrix copy or transposition operations of the form alpha * op(A).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

omatcopy_batch (USM Version)

Description

The USM version of omatcopy_batch supports the group API and the strided API.

The operation for the group API is defined as:

idx = 0
for i = 0 ... group_count – 1

m, n, alpha, lda, ldb and group_size at position i in their respective arrays
for j = 0 ... group_size – 1

A and B are matrices at position idx in their respective arrays
B := alpha * op(A)
idx := idx + 1

end for
end for

The operation for the strided API is defined as:

for i = 0 ... batch_size – 1
A and B are matrices at offset i * stridea in a and i * strideb in b
B := alpha * op(A)

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha is a scalar,

A and B are input and output matrices,

A is m x n,

8.2. oneMKL Domains 1240

oneAPI Specification, Release 1.4-provisional-rev-1

and B is m x n if the matrix is not transposed or n by m if it is.

For the group API, the matrices are given by arrays of pointers. A and B represent matrices stored at addresses pointed
to by a_array and b_array respectively. The number of entries in a_array and b_array is given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For the strided API, the single input array contains all the input matrices, and the single output array contains all the
output matrices. The locations of the individual matrices within the array are given by stride lengths, while the number
of matrices is given by the batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event omatcopy_batch(sycl::queue &queue,

const oneapi::mkl::transpose *trans_array,
const std::int64_t *m_array,
const std::int64_t *n_array,
const T *alpha_array,
const T **a_array,
const std::int64_t *lda_array,
T **b_array,
const std::int64_t *ldb_array,
std::int64_t group_count,
const std::int64_t *groupsize,
const std::vector<sycl::event> &dependencies = {});

}

namespace oneapi::mkl::blas::row_major {
sycl::event omatcopy_batch(sycl::queue &queue,

const oneapi::mkl::transpose *trans_array,
const std::int64_t *m_array,
const std::int64_t *n_array,
const T *alpha_array,
const T **a_array,
const std::int64_t *lda_array,
T **b_array,
const std::int64_t *ldb_array,
std::int64_t group_count,
const std::int64_t *groupsize,
const std::vector<sycl::event> &dependencies = {});

}

8.2. oneMKL Domains 1241

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

trans_array
Array of size group_count. Each element i in the array specifies op(A) the transposition operation applied to
the matrices A.

m_array
Array of size group_count of number of rows of A. Each must be at least 0.

n_array
Array of size group_count of number of columns of A. Each must be at least 0.

alpha_array
Array of size group_count containing scaling factors for the matrix transpositions or copies.

a_array
Array of size total_batch_count, holding pointers to arrays used to store A matrices.

lda_array
Array of size group_count of leading dimension of the A matrices. If matrices are stored using column
major layout, lda_array[i] must be at least m_array[i]. If matrices are stored using row major layout,
lda_array[i] must be at least n_array[i]. Each must be positive.

b_array
Array of size total_batch_count of pointers used to store B matrices. The array allocated for each B matrix
of the group i must be of size at least:

B not transposed B transposed
Column major ldb_array[i] x n_array[i] ldb_array[i] x m_array[i]
Row major ldb_array[i] x m_array[i] ldb_array[i] x n_array[i]

ldb_array
Array of size group_count. The leading dimension of the output matrix B. Each entry ldb_array[i] must be
positive and at least:

B not transposed B transposed
Column major ldb[i] must be at least m_array[i]. ldb[i] must be at least n_array[i].
Row major ldb[i] must be at least n_array[i]. ldb[i] must be at least m_array[i].

group_count
Number of groups. Must be at least 0.

group_size
Array of size group_count. The element group_size[i] is the number of matrices in the group i. Each
element in group_size must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1242

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b_array
Output array of pointers to B matrices, overwritten by total_batch_countmatrix transpose or copy operations
of the form alpha*op(A).

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
event omatcopy_batch(queue &queue,

transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
T *b,
std::int64_t ldb,
std::int64_t stride_b,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {});

}

namespace oneapi::mkl::blas::row_major {
event omatcopy_batch(queue &queue,

transpose trans,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
T *b,
std::int64_t ldb,
std::int64_t stride_b,
std::int64_t batch_size,
const vector_class<event> &dependencies = {});

}

8.2. oneMKL Domains 1243

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine will be executed.

trans
Specifies op(A), the transposition operation applied to the matrices A.

m
Number of rows for each matrix A. Must be at least 0.

n
Number of columns for each matrix B. Must be at least 0.

alpha
Scaling factor for the matrix transpose or copy operation. See Scalar Arguments in BLAS for more details.

a
Array holding the matrices A. Must have size at least stride_a*batch_size.

lda
Leading dimension of the A matrices. If matrices are stored using column major layout, lda must be at least m.
If matrices are stored using row major layout, lda must be at least n. Must be positive.

stride_a
Stride between the different A matrices. If matrices are stored using column major layout, stride_a must be at
least lda*n. If matrices are stored using row major layout, stride_a must be at least lda*m.

b
Array holding the matrices B. Must have size at least stride_b*batch_size.

ldb
Leading dimension of the B matrices. Must be positive.

B not transposed B transposed
Column major ldb must be at least m. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least m.

stride_b
Stride between different B matrices.

B not transposed B transposed
Column major stride_b must be at least ldb x n. stride_b must be at least ldb x m.
Row major stride_b must be at least ldb x m. stride_b must be at least ldb x n.

batch_size
Specifies the number of matrices to transpose or copy.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

8.2. oneMKL Domains 1244

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b
Output array, overwritten by batch_size matrix transposition or copy operations of the form alpha*op(A).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

omatadd_batch

Computes a group of out-of-place scaled matrix additions using general dense matrices.

Description

The omatadd_batch routines perform a series of out-of-place scaled matrix additions. They are batched versions of
omatadd, but the omatadd_batch routines perform their operations with groups of matrices. Each group contains
matrices with the same parameters.

There is a strided API, in which the matrices in a batch are a set distance away from each other in memory and in which
all matrices share the same parameters (for example matrix size), and a more flexible group API where each group of
matrices has the same parameters but the user may provide multiple groups that have different parameters. The group
API argument structure is better suited to USM pointers than to sycl::buffer arguments, so we only specify it for
USM inputs. The strided API works with both USM and buffer memory.

strided API group API
Buffer memory supported not supported
USM pointers supported supported

omatadd_batch supports the following precisions:

8.2. oneMKL Domains 1245

oneAPI Specification, Release 1.4-provisional-rev-1

T
float
double
std::complex<float>
std::complex<double>

omatadd_batch (Buffer Version)

Description

The buffer version of omatcopy_batch supports only the strided API.

The operation of omatadd_batch is defined as:

for i = 0 ... batch_size – 1
A is a matrix at offset i * stridea in a
B is a matrix at offset i * strideb in b
C is a matrix at offset i * stridec in c
C := alpha * op(A) + beta * op(B)

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A and B are input matrices while C is an output matrix,

C is m x n,

A is m x n if the op(A) is not transposed or n by m if it is,

and B is m x n if the op(B) is not transposed or n by m if it is.

The a and b buffers contain all the input matrices while the c buffer contains all the output matrices. The locations of
the individual matrices within the buffer are given by the stride_a, stride_b, and stride_c parameters, while the
total number of matrices in each buffer is given by the batch_size parameter.

In general, the a, b, and c buffers should not overlap in memory, with the exception of the following in-place operations:

• a and cmay point to the same memory if op(A) is non-transpose and all the Amatrices have the same parameters
as all the respective C matrices;

• b and cmay point to the same memory if op(B) is non-transpose and all the Bmatrices have the same parameters
as all the respective C matrices.

Strided API

8.2. oneMKL Domains 1246

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::blas::column_major {
void omatadd_batch(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
std::int64_t stride_a,
T beta,
sycl::buffer<T, 1> &b,
std::int64_t ldb,
std::int64_t stride_b,
sycl::buffer<T, 1> &c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size);

}

namespace oneapi::mkl::blas::row_major {
void omatadd_batch(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T, 1> &a,
std::int64_t lda,
std::int64_t stride_a,
T beta,
sycl::buffer<T, 1> &b,
std::int64_t ldb,
std::int64_t stride_b,
sycl::buffer<T, 1> &c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size);

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A), the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

transb
Specifies op(B), the transposition operation applied to the matrices B. See oneMKL defined datatypes for more

8.2. oneMKL Domains 1247

oneAPI Specification, Release 1.4-provisional-rev-1

details.

m
Number of rows for the result matrix C. Must be at least zero.

n
Number of columns for the result matrix C. Must be at least zero.

alpha
Scaling factor for the matrices A.

a
Buffer holding the input matrices A. Must have size at least stride_a * batch_size.

lda
The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least n.
Row major lda must be at least n. lda must be at least m.

stride_a
Stride between the different A matrices within the buffer.

A not transposed A transposed
Column major stride_a must be at least lda*n. stride_a must be at least lda*m.
Row major stride_a must be at least lda*m. stride_a must be at least lda*n.

beta
Scaling factor for the matrices B.

b
Buffer holding the input matrices B. Must have size at least stride_b * batch_size.

ldb
The leading dimension of the B matrices. It must be positive.

B not transposed B transposed
Column major ldb must be at least m. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least m.

stride_b
Stride between different B matrices.

B not transposed B transposed
Column major stride_b must be at least ldb x n. stride_b must be at least ldb x m.
Row major stride_b must be at least ldb x m. stride_b must be at least ldb x n.

c
Buffer holding the output matrices C. Must have size at least stride_c * batch_size.

8.2. oneMKL Domains 1248

oneAPI Specification, Release 1.4-provisional-rev-1

ldc
Leading dimension of the C matrices. If matrices are stored using column major layout, ldc must be at least m.
If matrices are stored using row major layout, ldc must be at least n. Must be positive.

stride_c
Stride between the different C matrices. If matrices are stored using column major layout, stride_c must be at
least ldc*n. If matrices are stored using row major layout, stride_c must be at least ldc*m.

batch_size
Specifies the number of matrix transposition or copy operations to perform.

Output Parameters

c
Output buffer, overwritten by batch_size matrix addition operations of the form alpha*op(A) +
beta*op(B). Must have size at least stride_c*batch_size.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

omatadd_batch (USM Version)

Description

The USM version of omatadd_batch supports the group API and the strided API.

The operation for the group API is defined as:

idx = 0
for i = 0 ... group_count – 1

m, n, alpha, beta, lda, ldb, ldc and group_size at position i in their respective␣
→˓arrays

for j = 0 ... group_size – 1
A, B and C are matrices at position idx in their respective arrays
C := alpha * op(A) + beta * op(B)
idx := idx + 1

end for
end for

The operation for the strided API is defined as:

8.2. oneMKL Domains 1249

oneAPI Specification, Release 1.4-provisional-rev-1

for i = 0 ... batch_size – 1
A is a matrix at offset i * stridea in a
B is a matrix at offset i * strideb in b
C is a matrix at offset i * stridec in c
C := alpha * op(A) + beta * op(B)

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A and B are input matrices while C is an output matrix,

C is m x n,

A is m x n if the op(A) is not transposed or n by m if it is,

and B is m x n if the op(B) is not transposed or n by m if it is.

For the group API, the matrices are given by arrays of pointers. A, B, and C represent matrices stored at addresses pointed
to by a_array, b_array, and c_array respectively. The number of entries in a_array, b_array, and c_array is
given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁

𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For the strided API, the a and b arrays contain all the input matrices while the c array contains all the output matri-
ces. The locations of the individual matrices within the array are given by the stride_a, stride_b, and stride_c
parameters, while the total number of matrices in each array is given by the batch_size parameter.

In general, the batches of matrices indicated by a, b, and c should not overlap in memory, with the exception of the the
following in-place operations:

• a and cmay point to the same memory if op(A) is non-transpose and all the Amatrices have identical parameters
as all the respective C matrices;

• b and c may point to the same memory if op(B) is non-transpose and all the the B matrices have identical
parameters as all the respective C matrices.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event omatadd_batch(sycl::queue &queue,

const oneapi::mkl::transpose *transa_array,
const oneapi::mkl::transpose *transb_array,
const std::int64_t *m_array,
const std::int64_t *n_array,
const T *alpha_array,
const T **a_array,
const std::int64_t *lda_array,
const T *beta_array,
const T **b_array,
const std::int64_t *ldb_array,

(continues on next page)

8.2. oneMKL Domains 1250

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T **c_array,
const std::int64_t *ldc_array,
std::int64_t group_count,
const std::int64_t *groupsize,
const std::vector<sycl::event> &dependencies = {});

}

namespace oneapi::mkl::blas::row_major {
sycl::event omatadd_batch(sycl::queue &queue,

const oneapi::mkl::transpose *transa_array,
const oneapi::mkl::transpose *transb_array,
const std::int64_t *m_array,
const std::int64_t *n_array,
const T *alpha_array,
const T **a_array,
const std::int64_t *lda_array,
const T *beta_array,
const T **b_array,
const std::int64_t *ldb_array,
const T **c_array,
const std::int64_t *ldc_array,
std::int64_t group_count,
const std::int64_t *groupsize,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue
The queue where the routine should be executed.

transa_array
Array of size group_count. Each element i in the array specifies op(A) the transposition operation applied to
the matrices A.

transb_array
Array of size group_count. Each element i in the array specifies op(B) the transposition operation applied to
the matrices B.

m_array
Array of size group_count of number of rows of C. Each must be at least 0.

n_array
Array of size group_count of number of columns of C. Each must be at least 0.

alpha_array
Array of size group_count containing scaling factors for the matrices A.

a_array
Array of size total_batch_count, holding pointers to arrays used to store A matrices. The array allocated for
each A matrix of the group i must be of size at least:

8.2. oneMKL Domains 1251

oneAPI Specification, Release 1.4-provisional-rev-1

transa[i] =
transpose::nontrans

transa[i] = transpose::trans or transa[i] =
transpose::conjtrans

Column
major

lda_array[i] *
n_array[i]

lda_array[i] * m_array[i]

Row major lda_array[i] *
m_array[i]

lda_array[i] * n_array[i]

lda_array
Array of size group_count of leading dimension of the A matrices. All must be positive and satisfy:

transa[i] =
transpose::nontrans

transa[i] = transpose::trans or transa =
transpose::conjtrans

Column
major

lda_array[i] must be at least
m_array[i].

lda_array[i] must be at least n_array[i].

Row major lda_array[i] must be at least
n_array[i].

lda_array[i] must be at least m_array[i].

beta_array
Array of size group_count containing scaling factors for the matrices B.

b_array
Array of size total_batch_count of pointers used to store the B matrices. The array allocated for each B
matrix of the group i must be of size at least:

transb[i] =
transpose::nontrans

transb[i] = transpose::trans or transb[i] =
transpose::conjtrans

Column
major

ldb_array[i] *
n_array[i]

ldb_array[i] * m_array[i]

Row major ldb_array[i] *
m_array[i]

ldb_array[i] * n_array[i]

ldb_array
Array of size group_count. The leading dimension of B matrices. All must be positive and satisfy:

transb[i] =
transpose::nontrans

transb[i] = transpose::trans or transb[i] =
transpose::conjtrans

Column
major

ldb_array[i] must be at least
m_array[i].

ldb_array[i] must be at least n_array[i].

Row ma-
jor

ldb_array[i] must be at least
n_array[i].

ldb_array[i] must be at least m_array[i].

c_array
Array of size total_batch_count of pointers used to store the C output matrices. The array allocated for each
C matrix of the group i must be of size at least:

Column major ldc_array[i] * n_array[i]
Row major ldc_array[i] * m_array[i]

8.2. oneMKL Domains 1252

oneAPI Specification, Release 1.4-provisional-rev-1

ldc_array
Array of size group_count. The leading dimension of the C matrices. If matrices are stored using column
major layout, ldc_array[i] must be at least m_array[i]. If matrices are stored using row major layout,
ldc_array[i] must be at least n_array[i]. All entries must be positive.

group_count
Number of groups. Must be at least 0.

group_size
Array of size group_count. The element group_size[i] is the number of matrices in the group i. Each
element in group_size must be at least 0.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c_array
Output array of pointers to C matrices, overwritten by total_batch_count matrix addition operations of the
form alpha*op(A) + beta*op(B).

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event omatadd_batch(sycl::queue &queue,

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
value_or_pointer<T> beta,
T *b,
std::int64_t ldb,
std::int64_t stride_b,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {});

}

namespace oneapi::mkl::blas::row_major {
sycl::event omatadd_batch(sycl::queue &queue,

(continues on next page)

8.2. oneMKL Domains 1253

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::transpose transa,
oneapi::mkl::transpose transb,
std::int64_t m,
std::int64_t n,
value_or_pointer<T> alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
value_or_pointer<T> beta,
T *b,
std::int64_t ldb,
std::int64_t stride_b,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue
The queue where the routine should be executed.

transa
Specifies op(A), the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

transb
Specifies op(B), the transposition operation applied to the matrices B. See oneMKL defined datatypes for more
details.

m
Number of rows for the result matrix C. Must be at least zero.

n
Number of columns for the result matrix C. Must be at least zero.

alpha
Scaling factor for the matrices A. See Scalar Arguments in BLAS for more details.

a
Array holding the input matrices A. Must have size at least stride_a * batch_size.

lda
The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least n.
Row major lda must be at least n. lda must be at least m.

stride_a
Stride between the different A matrices within the array.

8.2. oneMKL Domains 1254

oneAPI Specification, Release 1.4-provisional-rev-1

A not transposed A transposed
Column major stride_a must be at least lda*n. stride_a must be at least lda*m.
Row major stride_a must be at least lda*m. stride_a must be at least lda*n.

beta
Scaling factor for the matrices B. See Scalar Arguments in BLAS for more details.

b
Array holding the input matrices B. Must have size at least stride_b * batch_size.

ldb
The leading dimension of the B matrices. It must be positive.

B not transposed B transposed
Column major ldb must be at least m. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least m.

stride_b
Stride between different B matrices.

B not transposed B transposed
Column major stride_b must be at least ldb x n. stride_b must be at least ldb x m.
Row major stride_b must be at least ldb x m. stride_b must be at least ldb x n.

c
Array holding the output matrices C. Must have size at least stride_c * batch_size.

ldc
Leading dimension of the C matrices. If matrices are stored using column major layout, ldc must be at least m.
If matrices are stored using row major layout, ldc must be at least n. Must be positive.

stride_c
Stride between the different C matrices. If matrices are stored using column major layout, stride_c must be at
least ldc*n. If matrices are stored using row major layout, stride_c must be at least ldc*m.

batch_size
Specifies the number of matrix transposition or copy operations to perform.

dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c
Output array, overwritten by batch_size matrix addition operations of the form alpha*op(A) +
beta*op(B). Must have size at least stride_c*batch_size.

8.2. oneMKL Domains 1255

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

Parent topic: BLAS Routines

Parent topic: Dense Linear Algebra

LAPACK Routines

oneMKL provides a DPC++ interface to select routines from the Linear Algebra PACKage (LAPACK), as well as
several LAPACK-like extension routines. LAPACK routines require column major layout of matrices.

LAPACK Linear Equation Routines

LAPACK Linear Equation routines are used for factoring a matrix, solving a system of linear equations, solving linear
least squares problems, and inverting a matrix. The following table lists the LAPACK Linear Equation routine groups.

8.2. oneMKL Domains 1256

oneAPI Specification, Release 1.4-provisional-rev-1

Rou-
tines

Scratchpad
Size Routines

Description

geqrf geqrf_scratchpad_sizeComputes the QR factorization of a general m-by-n matrix.
gerqf gerqf_scratchpad_sizeComputes the RQ factorization of a general m-by-n matrix.
getrf getrf_scratchpad_sizeComputes the LU factorization of a general m-by-n matrix.
getri getri_scratchpad_sizeComputes the inverse of an LU-factored general matrix.
getrs getrs_scratchpad_sizeSolves a system of linear equations with an LU-factored square coefficient matrix, with

multiple right-hand sides.
hetrf hetrf_scratchpad_sizeComputes the Bunch-Kaufman factorization of a complex Hermitian matrix.
orgqr orgqr_scratchpad_sizeGenerates the real orthogonal matrix 𝑄 of the QR factorization formed by geqrf.
or-
mqr

or-
mqr_scratchpad_size

Multiplies a real matrix by the orthogonal matrix 𝑄 of the QR factorization formed by
geqrf.

ormrq ormrq_scratchpad_sizeMultiplies a real matrix by the orthogonal matrix 𝑄 of the RQ factorization formed by
gerqf.

potrf potrf_scratchpad_sizeComputes the Cholesky factorization of a symmetric (Hermitian) positive-definite ma-
trix.

potri potri_scratchpad_sizeComputes the inverse of a Cholesky-factored symmetric (Hermitian) positive-definite
matrix.

potrs potrs_scratchpad_sizeSolves a system of linear equations with a Cholesky-factored symmetric (Hermitian)
positive-definite coefficient matrix, with multiple right-hand sides.

sytrf sytrf_scratchpad_sizeComputes the Bunch-Kaufman factorization of a symmetric matrix.
trtrs trtrs_scratchpad_sizeSolves a system of linear equations with a triangular coefficient matrix, with multiple

right-hand sides.
ungqr ungqr_scratchpad_sizeGenerates the complex unitary matrix 𝑄 of the QR factorization formed by geqrf.
un-
mqr

un-
mqr_scratchpad_size

Multiplies a complex matrix by the unitary matrix 𝑄 of the QR factorization formed by
geqrf.

un-
mrq

un-
mrq_scratchpad_size

Multiplies a complex matrix by the unitary matrix 𝑄 of the RQ factorization formed by
gerqf.

geqrf

Computes the QR factorization of a general 𝑚× 𝑛 matrix.

Description

geqrf supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

The routine forms the QR factorization of a general 𝑚× 𝑛 matrix 𝐴. No pivoting is performed.

The routine does not form the matrix 𝑄 explicitly. Instead, 𝑄 is represented as a product of min(𝑚,𝑛) elementary
reflectors. Routines are provided to work with 𝑄 in this representation.

8.2. oneMKL Domains 1257

oneAPI Specification, Release 1.4-provisional-rev-1

geqrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void geqrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T,

→˓1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad,
→˓ std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in 𝐴 (0 ≤ 𝑛).

a
Buffer holding input matrix 𝐴. Must have size at least lda · 𝑛.

lda
The leading dimension of 𝐴; at least max(1,𝑚).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by geqrf_scratchpad_size function.

Output Parameters

a
Output buffer, overwritten by the factorization data as follows:

The elements on and above the diagonal of the array contain the min(𝑚,𝑛)×𝑛 upper trapezoidal matrix 𝑅 (𝑅 is
upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array tau, represent the orthogonal matrix
𝑄 as a product of min(𝑚,𝑛) elementary reflectors.

tau
Output buffer, size at least max(1,min(𝑚,𝑛)). Contains scalars that define elementary reflectors for the matrix
𝑄 in its decomposition in a product of elementary reflectors.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1258

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

geqrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event geqrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in 𝐴 (0 ≤ 𝑛).

a
Pointer to memory holding input matrix 𝐴. Must have size at least lda · 𝑛.

lda
The leading dimension of 𝐴; at least max(1,𝑚).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by geqrf_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1259

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Overwritten by the factorization data as follows:

The elements on and above the diagonal of the array contain the min(𝑚,𝑛)×𝑛 upper trapezoidal matrix 𝑅 (𝑅 is
upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array tau, represent the orthogonal matrix
𝑄 as a product of min(𝑚,𝑛) elementary reflectors.

tau
Array, size at least max(1,min(𝑚,𝑛)). Contains scalars that define elementary reflectors for the matrix 𝑄 in its
decomposition in a product of elementary reflectors.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

geqrf_scratchpad_size

Computes size of scratchpad memory required for geqrf function.

8.2. oneMKL Domains 1260

oneAPI Specification, Release 1.4-provisional-rev-1

Description

geqrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to geqrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t geqrf_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by geqrf function will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1261

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to geqrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

gerqf

Computes the RQ factorization of a general 𝑚× 𝑛 matrix.

Description

gerqf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine forms the RQ factorization of a general 𝑚× 𝑛 matrix 𝐴. No pivoting is performed. The routine does not
form the matrix 𝑄 explicitly. Instead, 𝑄 is represented as a product of min(𝑚,𝑛) elementary reflectors. Routines are
provided to work with 𝑄 in this representation

gerqf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void gerqf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T>␣

→˓&a, std::int64_t lda, cl::sycl::buffer<T> &tau, cl::sycl::buffer<T> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a
Buffer holding input matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a, at least max(1,𝑚).

scratchpad
Buffer holding scratchpad memory to be used by the routine for storing intermediate results.

8.2. oneMKL Domains 1262

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the gerqf_scratchpad_size function.

Output Parameters

a
Output buffer, overwritten by the factorization data as follows:

If 𝑚 ≤ 𝑛, the upper triangle of the subarray a(1:m, n-m+1:n) contains the 𝑚×𝑚 upper triangular matrix 𝑅;
if 𝑚 ≥ 𝑛, the elements on and above the (𝑚− 𝑛)-th subdiagonal contain the 𝑚× 𝑛 upper trapezoidal matrix 𝑅

In both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix 𝑄 as a product
of min(𝑚,𝑛) elementary reflectors.

tau
Array, size at least min(𝑚,𝑛).

Contains scalars that define elementary reflectors for the matrix𝑄 in its decomposition in a product of elementary
reflectors.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

gerqf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event gerqf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

8.2. oneMKL Domains 1263

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
Device queue where calculations will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a
Buffer holding input matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a, at least max(1,𝑚).

scratchpad
Buffer holding scratchpad memory to be used by the routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the gerqf_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Output buffer, overwritten by the factorization data as follows:

If 𝑚 ≤ 𝑛, the upper triangle of the subarray a(1:m, n-m+1:n) contains the 𝑚×𝑚 upper triangular matrix 𝑅;
if 𝑚 ≥ 𝑛, the elements on and above the (𝑚− 𝑛)-th subdiagonal contain the 𝑚× 𝑛 upper trapezoidal matrix 𝑅

In both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix 𝑄 as a product
of min(𝑚,𝑛) elementary reflectors.

tau
Array, size at least min(𝑚,𝑛).

Contains scalars that define elementary reflectors for the matrix𝑄 in its decomposition in a product of elementary
reflectors.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

8.2. oneMKL Domains 1264

oneAPI Specification, Release 1.4-provisional-rev-1

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

gerqf_scratchpad_size

Computes size of scratchpad memory required for gerqf function.

Description

gerqf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to gerqf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

gerqf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t gerqf_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

8.2. oneMKL Domains 1265

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
Device queue where calculations by the gerqf (buffer or USM version) function will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a; at least max(1,𝑚).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to gerqf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

getrf

Computes the LU factorization of a general 𝑚× 𝑛 matrix.

Description

getrf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the LU factorization of a general 𝑚× 𝑛 matrix 𝐴 as 𝐴 = 𝑃𝐿𝑈 ,

where 𝑃 is a permutation matrix, 𝐿 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 > 𝑛) and
𝑈 is upper triangular (upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.

8.2. oneMKL Domains 1266

oneAPI Specification, Release 1.4-provisional-rev-1

getrf (BUFFER Version)

Syntax

namespace oneapi::mkl::lapack {
void getrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T,

→˓1> &a, std::int64_t lda, cl::sycl::buffer<std::int64_t,1> &ipiv, cl::sycl::buffer<T,1>␣
→˓&scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in 𝐴 (0 ≤ 𝑛).

a
Buffer holding input matrix 𝐴. The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1, 𝑛).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by getrf_scratchpad_size function.

Output Parameters

a
Overwritten by 𝐿 and 𝑈 . The unit diagonal elements of 𝐿 are not stored.

ipiv
Array, size at least max(1,min(𝑚,𝑛)). Contains the pivot indices; for 1 ≤ 𝑖 ≤ min(𝑚,𝑛), row 𝑖 was inter-
changed with row ipiv(𝑖).

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

8.2. oneMKL Domains 1267

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑢𝑖𝑖 is 0. The factorization has been completed, but 𝑈 is exactly singular. Division by 0 will
occur if you use the factor 𝑈 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

getrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, std::int64_t *ipiv, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in 𝐴 (0 ≤ 𝑛).

a
Pointer to array holding input matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by getrf_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1268

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Overwritten by 𝐿 and 𝑈 . The unit diagonal elements of 𝐿 are not stored.

ipiv
Array, size at least max(1,min(𝑚,𝑛)). Contains the pivot indices; for 1 ≤ 𝑖 ≤ min(𝑚,𝑛), row 𝑖 was inter-
changed with row ipiv(𝑖).

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑢𝑖𝑖 is 0. The factorization has been completed, but 𝑈 is exactly singular. Division by 0 will
occur if you use the factor 𝑈 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

getrf_scratchpad_size

Computes size of scratchpad memory required for getrf function.

8.2. oneMKL Domains 1269

oneAPI Specification, Release 1.4-provisional-rev-1

Description

getrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to getrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

getrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrf_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by getrf function will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1270

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to getrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

getri

Computes the inverse of an LU-factored general matrix determined by getrf .

Description

getri supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the inverse 𝐴−1 of a general matrix 𝐴. Before calling this routine, call getrf to factorize 𝐴.

getri (BUFFER Version)

Syntax

namespace oneapi::mkl::lapack {
void getri(cl::sycl::queue &queue, std::int64_t n, cl::sycl::buffer<T,1> &a,␣

→˓std::int64_t lda, cl::sycl::buffer<std::int64_t,1> &ipiv, cl::sycl::buffer<T,1> &
→˓scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

a
The buffer a as returned by getrf . Must be of size at least lda ·max(1, 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

ipiv
The buffer as returned by getrf . The dimension of ipiv must be at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by getri_scratchpad_size function.

8.2. oneMKL Domains 1271

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Overwritten by the 𝑛× 𝑛 matrix 𝐴.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

getri (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getri(cl::sycl::queue &queue, std::int64_t n, T *a, std::int64_t lda,␣

→˓std::int64_t *ipiv, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

a
The array as returned by getrf . Must be of size at least lda ·max(1, 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

8.2. oneMKL Domains 1272

oneAPI Specification, Release 1.4-provisional-rev-1

ipiv
The array as returned by getrf . The dimension of ipiv must be at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by getri_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Overwritten by the 𝑛× 𝑛 matrix 𝐴.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

getri_scratchpad_size

Computes size of scratchpad memory required for getri function.

8.2. oneMKL Domains 1273

oneAPI Specification, Release 1.4-provisional-rev-1

Description

getri_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to getri function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

getri_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getri_scratchpad_size(cl::sycl::queue &queue, std::int64_t n, std::int64_

→˓t lda)
}

Input Parameters

queue
Device queue where calculations by getri function will be performed.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1274

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to getri function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

getrs

Solves a system of linear equations with an LU-factored square coefficient matrix, with multiple right-hand sides.

Description

getrs supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine solves for 𝑋 the following systems of linear equations:

𝐴𝑋 = 𝐵 if trans=oneapi::mkl::transpose::nontrans
𝐴𝑇𝑋 = 𝐵 if trans=oneapi::mkl::transpose::trans
𝐴𝐻𝑋 = 𝐵 if trans=oneapi::mkl::transpose::conjtrans

Before calling this routine, you must call getrf to compute the LU factorization of 𝐴.

getrs (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void getrs(cl::sycl::queue &queue, oneapi::mkl::transpose trans, std::int64_t n,␣

→˓std::int64_t nrhs, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer
→˓<std::int64_t,1> &ipiv, cl::sycl::buffer<T,1> &b, std::int64_t ldb, cl::sycl::buffer<T,
→˓1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

trans
Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

8.2. oneMKL Domains 1275

oneAPI Specification, Release 1.4-provisional-rev-1

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

n
The order of the matrix 𝐴 and the number of rows in matrix 𝐵(0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ nrhs).

a
Buffer containing the factorization of the matrix 𝐴, as returned by getrf . The second dimension of a must be at
least max(1, 𝑛).

lda
The leading dimension of a.

ipiv
Array, size at least max(1, 𝑛). The ipiv array, as returned by getrf .

b
The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1, nrhs).

ldb
The leading dimension of b.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by getrs_scratchpad_size function.

Output Parameters

b
The buffer b is overwritten by the solution matrix 𝑋 .

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, the 𝑖-th diagonal element of 𝑈 is zero, and the solve could not be completed.

8.2. oneMKL Domains 1276

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

getrs (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrs(cl::sycl::queue &queue, oneapi::mkl::transpose trans, std::int64_

→˓t n, std::int64_t nrhs, T *a, std::int64_t lda, std::int64_t *ipiv, T *b, std::int64_t␣
→˓ldb, T *scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &
→˓events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

trans
Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

n
The order of the matrix 𝐴 and the number of rows in matrix 𝐵(0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ nrhs).

a
Pointer to array containing the factorization of the matrix 𝐴, as returned by getrf . The second dimension of a
must be at least max(1, 𝑛).

lda
The leading dimension of a.

ipiv
Array, size at least max(1, 𝑛). The ipiv array, as returned by getrf .

b
The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1, nrhs).

ldb
The leading dimension of b.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by getrs_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1277

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b
The array b is overwritten by the solution matrix 𝑋 .

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, the 𝑖-th diagonal element of 𝑈 is zero, and the solve could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

getrs_scratchpad_size

Computes size of scratchpad memory required for getrs function.

Description

getrs_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1278

oneAPI Specification, Release 1.4-provisional-rev-1

Computes the number of elements of type T the scratchpad memory to be passed to getrs function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

getrs_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrs_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::transpose␣

→˓trans, std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t ldb)
}

Input Parameters

queue
Device queue where calculations by getrs function will be performed.

trans
Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

n
The order of the matrix 𝐴 (0 ≤ 𝑛) and the number of rows in matrix 𝐵(0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ nrhs).

lda
The leading dimension of a.

ldb
The leading dimension of b.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1279

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to getrs function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

hetrf

Computes the Bunch-Kaufman factorization of a complex Hermitian matrix.

Description

hetrf supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine computes the factorization of a complex Hermitian matrix 𝐴 using the Bunch-Kaufman diagonal pivoting
method. The form of the factorization is:

• if upper_lower=uplo::upper, 𝐴 = 𝑈𝐷𝑈𝐻

• if upper_lower=uplo::lower, 𝐴 = 𝐿𝐷𝐿𝐻

where 𝐴 is the input matrix, 𝑈 and 𝐿 are products of permutation and triangular matrices with unit diagonal (upper
triangular for 𝑈 and lower triangular for 𝐿), and 𝐷 is a Hermitian block-diagonal matrix with 1× 1 and 2× 2 diagonal
blocks. 𝑈 and 𝐿 have 2× 2 unit diagonal blocks corresponding to the 2× 2 blocks of 𝐷.

hetrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void hetrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<int_64,1> &ipiv,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝐻 .

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝐻 .

8.2. oneMKL Domains 1280

oneAPI Specification, Release 1.4-provisional-rev-1

n
The order of matrix 𝐴 (0 ≤ 𝑛).

a
The buffer a, size max(1, lda ·𝑛). The buffer a contains either the upper or the lower triangular part of the matrix
𝐴 (see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a.

scratchpad
Buffer holding scratchpad memory to be used by the routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by hetrf_scratchpad_size function.

Output Parameters

a
The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv
Buffer, size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If ipiv(𝑖) =
𝑘 > 0, then 𝑑𝑖𝑖 is a 1 × 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row and
column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖-1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖+ 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+1, and (𝑖+1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -i, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

8.2. oneMKL Domains 1281

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

hetrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event hetrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, int_64 *ipiv, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝐻 .

If upper_lower=uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝐻 .

n
The order of matrix 𝐴 (0 ≤ 𝑛).

a
The pointer to 𝐴, size max(1, lda · 𝑛), containing either the upper or the lower triangular part of the matrix 𝐴
(see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a.

scratchpad
Pointer to scratchpad memory to be used by the routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by hetrf_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1282

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv
Pointer to array of size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If
ipiv(𝑖) = 𝑘 > 0, then 𝑑𝑖𝑖 is a 1× 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row
and column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖− 1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖+ 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+1, and (𝑖+1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -i, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

hetrf_scratchpad_size

Computes size of scratchpad memory required for hetrf function.

8.2. oneMKL Domains 1283

oneAPI Specification, Release 1.4-provisional-rev-1

Description

hetrf_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to hetrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

hetrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t hetrf_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by hetrf function will be performed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝑈𝐷𝑈𝐻 .

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝐿𝐷𝐿𝐻

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1284

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to hetrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

orgqr

Generates the real orthogonal matrix 𝑄 of the QR factorization formed by geqrf .

Description

orgqr supports the following precisions.

T
float
double

The routine generates the whole or part of 𝑚×𝑚 orthogonal matrix 𝑄 of the QR factorization formed by the routine
geqrf .

Usually 𝑄 is determined from the QR factorization of an m by p matrix 𝐴 with 𝑚 ≥ 𝑝. To compute the whole matrix
𝑄, use:

oneapi::mkl::lapack::orgqr(queue, m, m, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑝 columns of 𝑄 (which form an orthonormal basis in the space spanned by the columns of 𝐴):

oneapi::mkl::lapack::orgqr(queue, m, p, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the matrix 𝑄𝑘 of the QR factorization of leading 𝑘 columns of the matrix 𝐴:

oneapi::mkl::lapack::orgqr(queue, m, m, k, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑘 columns of 𝑄𝑘 (which form an orthonormal basis in the space spanned by leading 𝑘 columns
of the matrix 𝐴):

oneapi::mkl::lapack::orgqr(queue, m, k, k, a, lda, tau, scratchpad, scratchpad_size)

orgqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void orgqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t k,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

8.2. oneMKL Domains 1285

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛 ≤ 𝑚).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a
The buffer a as returned by geqrf .

lda
The leading dimension of a (lda ≤ 𝑚).

tau
The buffer tau as returned by geqrf .

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by orgqr_scratchpad_size function.

Output Parameters

a
Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1286

oneAPI Specification, Release 1.4-provisional-rev-1

orgqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛 ≤ 𝑚).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a
The pointer to a as returned by geqrf .

lda
The leading dimension of a (lda ≤ 𝑚).

tau
The pointer to tau as returned by geqrf .

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by orgqr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1287

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

orgqr_scratchpad_size

Computes size of scratchpad memory required for orgqr function.

Description

orgqr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to orgqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1288

oneAPI Specification, Release 1.4-provisional-rev-1

orgqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgqr_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t k, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by orgqr function will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛 ≤ 𝑚).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to orgqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

ormqr

Multiplies a real matrix by the orthogonal matrix 𝑄 of the QR factorization formed by geqrf .

8.2. oneMKL Domains 1289

oneAPI Specification, Release 1.4-provisional-rev-1

Description

ormqr supports the following precisions.

T
float
double

The routine multiplies a rectangular real 𝑚×𝑛 matrix 𝐶 by 𝑄 or 𝑄𝑇 , where 𝑄 is the complex unitary matrix defined as
a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝑇𝐻(2)𝑇 ...𝐻(𝑘)𝑇 as returned by the RQ factorization
routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or
𝐶𝑄𝑇 (overwriting the result over 𝐶).

ormqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ormqr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

8.2. oneMKL Domains 1290

oneAPI Specification, Release 1.4-provisional-rev-1

a
The buffer a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The buffer tau as returned by geqrf .

c
The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the ormqr_scratchpad_size function.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1291

oneAPI Specification, Release 1.4-provisional-rev-1

ormqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ormqr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a
The pointer to a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The pointer to tau as returned by geqrf .

c
The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the ormqr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1292

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

ormqr_scratchpad_size

Computes size of scratchpad memory required for ormqr function.

Description

ormqr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to ormqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1293

oneAPI Specification, Release 1.4-provisional-rev-1

ormqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ormqr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc, std::int64_t &scratchpad_size)
}

Input Parameters

queue
Device queue where calculations by ormqr function will be performed.

side
If side=oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side=oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans
If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda
The leading dimension of a.

ldc
The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1294

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to ormqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

ormrq

Multiplies a real matrix by the orthogonal matrix 𝑄 of the RQ factorization formed by gerqf .

Description

ormrq supports the following precisions.

T
float
double

The routine multiplies a rectangular real 𝑚×𝑛 matrix 𝐶 by 𝑄 or 𝑄𝑇 , where 𝑄 is the complex unitary matrix defined as
a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝑇𝐻(2)𝑇 ...𝐻(𝑘)𝑇 as returned by the RQ factorization
routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or
𝐶𝑄𝑇 (overwriting the result over 𝐶).

ormrq (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ormrq(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

8.2. oneMKL Domains 1295

oneAPI Specification, Release 1.4-provisional-rev-1

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a
The buffer a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The buffer tau as returned by gerqf .

c
The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the ormrq_scratchpad_size function.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1296

oneAPI Specification, Release 1.4-provisional-rev-1

ormrq (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ormrq(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a
The pointer to a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The pointer to tau as returned by gerqf .

c
The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the ormrq_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1297

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

ormrq_scratchpad_size

Computes size of scratchpad memory required for ormrq function.

Description

ormrq_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to ormrq function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1298

oneAPI Specification, Release 1.4-provisional-rev-1

ormrq_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ormrq_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc);
}

Input Parameters

queue
Device queue where calculations by the ormrq function will be performed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans
If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda
The leading dimension of a.

ldc
The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1299

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to ormrq function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

potrf

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite matrix.

Description

potrf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-
definite matrix 𝐴:

𝐴 = 𝑈𝑇𝑈 for real data, 𝐴 = 𝑈𝐻𝑈 for complex
data

if upper_lower=oneapi::mkl::uplo::upper

𝐴 = 𝐿𝐿𝑇 for real data, 𝐴 = 𝐿𝐿𝐻 for complex data if upper_lower=oneapi::mkl::uplo::lower

where 𝐿 is a lower triangular matrix and 𝑈 is upper triangular.

potrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void potrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

8.2. oneMKL Domains 1300

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=oneapi::mkl::uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and
the strictly lower triangular part of the matrix is not referenced.

If upper_lower=oneapi::mkl::uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and
the strictly upper triangular part of the matrix is not referenced.

n
Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a
Buffer holding input matrix 𝐴. The buffer a contains either the upper or the lower triangular part of the matrix
𝐴 (see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by potrf_scratchpad_size function.

Output Parameters

a
The buffer a is overwritten by the Cholesky factor 𝑈 or 𝐿, as specified by upper_lower.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, and detail() returns 0, then the leading minor of order 𝑖 (and therefore the matrix 𝐴 itself) is
not positive-definite, and the factorization could not be completed. This may indicate an error in forming
the matrix 𝐴.

8.2. oneMKL Domains 1301

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

potrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=oneapi::mkl::uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and
the strictly lower triangular part of the matrix is not referenced.

If upper_lower=oneapi::mkl::uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and
the strictly upper triangular part of the matrix is not referenced.

n
Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a
Pointer to input matrix 𝐴. The array a contains either the upper or the lower triangular part of the matrix 𝐴 (see
upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by potrf_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1302

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
The memory pointer to by pointer a is overwritten by the Cholesky factor 𝑈 or 𝐿, as specified by upper_lower.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, and detail() returns 0, then the leading minor of order 𝑖 (and therefore the matrix 𝐴 itself) is
not positive-definite, and the factorization could not be completed. This may indicate an error in forming
the matrix 𝐴.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

potrf_scratchpad_size

Computes size of scratchpad memory required for potrf function.

Description

potrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1303

oneAPI Specification, Release 1.4-provisional-rev-1

Computes the number of elements of type T the scratchpad memory to be passed to potrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

potrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrf_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by potrf function will be performed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower = oneapi::mkl::uplo::upper, the array a stores the upper triangular part of the matrix 𝐴,
and the strictly lower triangular part of the matrix is not referenced.

If upper_lower = oneapi::mkl::uplo::lower, the array a stores the lower triangular part of the matrix 𝐴,
and the strictly upper triangular part of the matrix is not referenced.

n
Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1304

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to potrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

potri

Computes the inverse of a symmetric (Hermitian) positive-definite matrix using the Cholesky factorization.

Description

potri supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the inverse 𝐴−1 of a symmetric positive definite or, for complex flavors, Hermitian positive-
definite matrix 𝐴. Before calling this routine, call potrf to factorize 𝐴.

potri (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void potri(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates how the input matrix 𝐴 has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle of 𝐴 is stored.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle of 𝐴 is stored.

n
Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a
Contains the factorization of the matrix 𝐴, as returned by potrf . The second dimension of a must be at least
max(1, 𝑛).

8.2. oneMKL Domains 1305

oneAPI Specification, Release 1.4-provisional-rev-1

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by potri_scratchpad_size function.

Output Parameters

a
Overwritten by the upper or lower triangle of the inverse of 𝐴. Specified by upper_lower.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and
the inversion could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

potri (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potri(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

8.2. oneMKL Domains 1306

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates how the input matrix 𝐴 has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle of 𝐴 is stored.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle of 𝐴 is stored.

n
Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a
Contains the factorization of the matrix 𝐴, as returned by potrf . The second dimension of a must be at least
max(1, 𝑛).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by potri_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Overwritten by the upper or lower triangle of the inverse of 𝐴. Specified by upper_lower.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and
the inversion could not be completed.

8.2. oneMKL Domains 1307

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

potri_scratchpad_size

Computes size of scratchpad memory required for potri function.

Description

potri_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to potri function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

potri_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potri_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by potri function will be performed.

upper_lower
Indicates how the input matrix 𝐴 has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle of 𝐴 is stored.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle of 𝐴 is stored.

n
Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

8.2. oneMKL Domains 1308

oneAPI Specification, Release 1.4-provisional-rev-1

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to potri function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

potrs

Solves a system of linear equations with a Cholesky-factored symmetric (Hermitian) positive-definite coefficient matrix.

Description

potrs supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine solves for 𝑋 the system of linear equations 𝐴𝑋 = 𝐵 with a symmetric positive-definite or, for complex
data, Hermitian positive-definite matrix 𝐴, given the Cholesky factorization of 𝐴:

𝐴 = 𝑈𝑇𝑈 for real data, 𝐴 = 𝑈𝐻𝑈 for complex data if upper_lower=oneapi::mkl::uplo::upper
𝐴 = 𝐿𝐿𝑇 for real data, 𝐴 = 𝐿𝐿𝐻 for complex data if upper_lower=oneapi::mkl::uplo::lower

where 𝐿 is a lower triangular matrix and 𝑈 is upper triangular. The system is solved with multiple right-hand sides
stored in the columns of the matrix 𝐵.

Before calling this routine, you must call potrf to compute the Cholesky factorization of 𝐴.

8.2. oneMKL Domains 1309

oneAPI Specification, Release 1.4-provisional-rev-1

potrs (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void potrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓std::int64_t nrhs, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &
→˓b, std::int64_t ldb, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates how the input matrix has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle 𝑈 of 𝐴 is stored, where 𝐴 = 𝑈𝑇 ‘𝑈 for
real data, 𝐴 = 𝑈𝐻𝑈 for complex data.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle 𝐿 of 𝐴 is stored, where 𝐴 = 𝐿𝐿𝑇 for
real data, 𝐴 = 𝐿𝐿𝐻 for complex data.

n
The order of matrix 𝐴 (0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ nrhs).

a
Buffer containing the factorization of the matrix A, as returned by potrf . The second dimension of a must be at
least max(1, 𝑛).

lda
The leading dimension of a.

b
The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1, nrhs).

ldb
The leading dimension of b.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by potrs_scratchpad_size function.

8.2. oneMKL Domains 1310

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b
Overwritten by the solution matrix 𝑋 .

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor is zero, and the solve could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

potrs (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, std::int64_t nrhs, T *a, std::int64_t lda, T *b, std::int64_t ldb, T␣
→˓*scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events␣
→˓= {})
}

8.2. oneMKL Domains 1311

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates how the input matrix has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle 𝑈 of 𝐴 is stored, where 𝐴 = 𝑈𝑇𝑈 for
real data, 𝐴 = 𝑈𝐻𝑈 for complex data.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle 𝐿 of 𝐴 is stored, where 𝐴 = 𝐿𝐿𝑇 for
real data, 𝐴 = 𝐿𝐿𝐻 for complex data.

n
The order of matrix 𝐴 (0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ nrhs).

a
Pointer to array containing the factorization of the matrix 𝐴, as returned by potrf . The second dimension of a
must be at least max(1, 𝑛).

lda
The leading dimension of a.

b
The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1, nrhs).

ldb
The leading dimension of b.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by potrs_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b
Overwritten by the solution matrix 𝑋 .

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1312

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor is zero, and the solve could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

potrs_scratchpad_size

Computes size of scratchpad memory required for potrs function.

Description

potrs_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to potrs function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1313

oneAPI Specification, Release 1.4-provisional-rev-1

potrs_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrs_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t ldb)
}

Input Parameters

queue
Device queue where calculations by potrs function will be performed.

upper_lower
Indicates how the input matrix has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle 𝑈 of 𝐴 is stored, where 𝐴 = 𝑈𝑇𝑈 for
real data, 𝐴 = 𝑈𝐻𝑈 for complex data.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle 𝐿 of 𝐴 is stored, where 𝐴 = 𝐿𝐿𝑇 for
real data, 𝐴 = 𝐿𝐿𝐻 for complex data.

n
The order of matrix 𝐴 (0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ 𝑛𝑟ℎ𝑠).

lda
The leading dimension of a.

ldb
The leading dimension of b.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1314

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to potrs function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

sytrf

Computes the Bunch-Kaufman factorization of a symmetric matrix.

Description

sytrf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the factorization of a real/complex symmetric matrix 𝐴 using the Bunch-Kaufman diagonal
pivoting method. The form of the factorization is:

• if upper_lower=uplo::upper, 𝐴 = 𝑈𝐷𝑈𝑇

• if upper_lower=uplo::lower, 𝐴 = 𝐿𝐷𝐿𝑇

where 𝐴 is the input matrix, 𝑈 and 𝐿 are products of permutation and triangular matrices with unit diagonal (upper
triangular for 𝑈 and lower triangular for 𝐿), and 𝐷 is a symmetric block-diagonal matrix with 1×1 and 2×2 diagonal
blocks. 𝑈 and 𝐿 have 2× 2 unit diagonal blocks corresponding to the 2× 2 blocks of 𝐷.

sytrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void sytrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<int_64,1> &ipiv,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝑇 .

8.2. oneMKL Domains 1315

oneAPI Specification, Release 1.4-provisional-rev-1

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝑇 .

n
The order of matrix 𝐴 (0 ≤ 𝑛).

a
The buffer a, size max(1, 𝑙𝑑𝑎 · 𝑛). The buffer a contains either the upper or the lower triangular part of the
matrix 𝐴 (see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by sytrf_scratchpad_size function.

Output Parameters

a
The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv
Buffer, size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If ipiv(𝑖) =
𝑘 > 0, then 𝑑𝑖𝑖 is a 1 × 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row and
column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖-1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖+ 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+1, and (𝑖+1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

8.2. oneMKL Domains 1316

oneAPI Specification, Release 1.4-provisional-rev-1

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

sytrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event sytrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, int_64 *ipiv, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝑇 .

If upper_lower=uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝑇 .

n
The order of matrix 𝐴 (0 ≤ 𝑛).

a
The pointer to 𝐴, size max(1, lda · 𝑛), containing either the upper or the lower triangular part of the matrix 𝐴
(see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by sytrf_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1317

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv
Pointer to array of size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If
ipiv(𝑖) = 𝑘 > 0, then 𝑑𝑖𝑖 is a 1× 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row
and column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖− 1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖+ 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+1, and (𝑖+1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1318

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

sytrf_scratchpad_size

Computes size of scratchpad memory required for sytrf function.

Description

sytrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to sytrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

sytrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t sytrf_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by sytrf function will be performed.

upper_lower
Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝑈𝐷𝑈𝑇 .

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝐿𝐷𝐿𝑇

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

8.2. oneMKL Domains 1319

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to sytrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

trtrs

Solves a system of linear equations with a triangular coefficient matrix, with multiple right-hand sides.

Description

trtrs supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine solves for 𝑋 the following systems of linear equations with a triangular matrix 𝐴, with multiple right-hand
sides stored in 𝐵:

𝐴𝑋 = 𝐵 if transa =transpose::nontrans,
𝐴𝑇𝑋 = 𝐵 if transa =transpose::trans,
𝐴𝐻𝑋 = 𝐵 if transa =transpose::conjtrans (for complex matrices only).

trtrs (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void trtrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓oneapi::mkl::transpose transa, oneapi::mkl::diag unit_diag, std::int64_t n, std::int64_
→˓t nrhs, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &b,␣
→˓std::int64_t ldb, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

8.2. oneMKL Domains 1320

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether 𝐴 is upper or lower triangular:

If upper_lower = uplo::upper, then 𝐴 is upper triangular.

If upper_lower = uplo::lower, then 𝐴 is lower triangular.

transa
If transa = transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

unit_diag
If unit_diag = diag::nonunit, then 𝐴 is not a unit triangular matrix.

If unit_diag = diag::unit, then 𝐴 is unit triangular: diagonal elements of 𝐴 are assumed to be 1 and not
referenced in the array a.

n
The order of 𝐴; the number of rows in 𝐵; 𝑛 ≥ 0.

nrhs
The number of right-hand sides; nrhs ≥ 0.

a
Buffer containing the matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; lda ≥ max(1, 𝑛).

b
Buffer containing the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b at least max(1, nrhs).

ldb
The leading dimension of b; ldb ≥ max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by trtrs_scratchpad_size function.

Output Parameters

b
Overwritten by the solution matrix 𝑋 .

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1321

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

trtrs (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event trtrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓oneapi::mkl::transpose transa, oneapi::mkl::diag unit_diag, std::int64_t n, std::int64_
→˓t nrhs, T *a, std::int64_t lda, T *b, std::int64_t ldb, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Indicates whether 𝐴 is upper or lower triangular:

If upper_lower = uplo::upper, then 𝐴 is upper triangular.

If upper_lower = uplo::lower, then 𝐴 is lower triangular.

transa
If transa = transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

unit_diag
If unit_diag = diag::nonunit, then 𝐴 is not a unit triangular matrix.

8.2. oneMKL Domains 1322

oneAPI Specification, Release 1.4-provisional-rev-1

If unit_diag = diag::unit, then 𝐴 is unit triangular: diagonal elements of 𝐴 are assumed to be 1 and not
referenced in the array a.

n
The order of 𝐴; the number of rows in 𝐵; 𝑛 ≥ 0.

nrhs
The number of right-hand sides; nrhs ≥ 0.

a
Array containing the matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; lda ≥ max(1, 𝑛).

b
Array containing the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b at least max(1, nrhs).

ldb
The leading dimension of b; ldb ≥ max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by trtrs_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b
Overwritten by the solution matrix 𝑋 .

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1323

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

trtrs_scratchpad_size

Computes size of scratchpad memory required for trtrs function.

Description

trtrs_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to trtrs function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

trtrs_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t trtrs_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, oneapi::mkl::transpose trans, oneapi::mkl::diag diag, std::int64_t n,␣
→˓std::int64_t nrhs, std::int64_t lda, std::int64_t ldb)
}

Input Parameters

queue
Device queue where calculations by trtrs function will be performed.

upper_lower
Indicates whether 𝐴 is upper or lower triangular:

If upper_lower = uplo::upper, then 𝐴 is upper triangular.

If upper_lower = uplo::lower, then 𝐴 is lower triangular.

trans
Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

8.2. oneMKL Domains 1324

oneAPI Specification, Release 1.4-provisional-rev-1

diag
If diag = oneapi::mkl::diag::nonunit, then 𝐴 is not a unit triangular matrix.

If unit_diag = diag::unit, then 𝐴 is unit triangular: diagonal elements of 𝐴 are assumed to be 1 and not
referenced in the array a.

n
The order of 𝐴; the number of rows in 𝐵; 𝑛 ≥ 0.

nrhs
The number of right-hand sides (0 ≤ nrhs).

lda
The leading dimension of a; lda ≥ max(1, 𝑛).

ldb
The leading dimension of b; ldb ≥ max(1, 𝑛).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to trtrs function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

ungqr

Generates the complex unitary matrix 𝑄 of the QR factorization formed by geqrf .

Description

ungqr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine generates the whole or part of 𝑚 × 𝑚 unitary matrix 𝑄 of the QR factorization formed by the routines
geqrf .

Usually 𝑄 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴 with 𝑚 ≥ 𝑝. To compute the whole matrix
𝑄, use:

8.2. oneMKL Domains 1325

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::lapack::ungqr(queue, m, m, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑝 columns of 𝑄 (which form an orthonormal basis in the space spanned by the columns of 𝐴):

oneapi::mkl::lapack::ungqr(queue, m, p, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the matrix 𝑄𝑘 of the QR factorization of the leading 𝑘 columns of the matrix 𝐴:

oneapi::mkl::lapack::ungqr(queue, m, m, k, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑘 columns of 𝑄𝑘 (which form an orthonormal basis in the space spanned by the leading 𝑘
columns of the matrix 𝐴):

oneapi::mkl::lapack::ungqr(queue, m, k, k, a, lda, tau, scratchpad, scratchpad_size)

ungqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ungqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t k,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a
The buffer a as returned by geqrf .

lda
The leading dimension of a (lda ≤ 𝑚).

tau
The buffer tau as returned by geqrf .

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by ungqr_scratchpad_size function.

8.2. oneMKL Domains 1326

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

ungqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

8.2. oneMKL Domains 1327

oneAPI Specification, Release 1.4-provisional-rev-1

a
The pointer to a as returned by geqrf .

lda
The leading dimension of a (lda ≤ 𝑚).

tau
The pointer to tau as returned by geqrf .

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by ungqr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1328

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

ungqr_scratchpad_size

Computes size of scratchpad memory required for ungqr function.

Description

ungqr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to ungqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

ungqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungqr_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t k, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by ungqr function will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns the matrix 𝐴 (0 ≤ 𝑛 ≤ 𝑚).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda
The leading dimension of a.

8.2. oneMKL Domains 1329

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ungqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

unmqr

Multiplies a complex matrix by the unitary matrix 𝑄 of the QR factorization formed by geqrf .

Description

unmqr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine multiplies a rectangular complex 𝑚 × 𝑛 matrix 𝐶 by 𝑄 or 𝑄𝐻 , where 𝑄 is the complex unitary matrix
defined as a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝐻𝐻(2)𝐻 ...𝐻(𝑘)𝐻 as returned by the RQ
factorization routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or
𝐶𝑄𝐻 (overwriting the result over 𝐶).

unmqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void unmqr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

8.2. oneMKL Domains 1330

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a
The buffer a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The buffer tau as returned by geqrf .

c
The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the unmqr_scratchpad_size function.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1331

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

unmqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event unmqr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

8.2. oneMKL Domains 1332

oneAPI Specification, Release 1.4-provisional-rev-1

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a
The pointer to a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The pointer to tau as returned by geqrf .

c
The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by unmqr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1333

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

unmqr_scratchpad_size

Computes size of scratchpad memory required for unmqr function.

Description

unmqr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to unmqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

unmqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t unmqr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc, std::int64_t &scratchpad_size)
}

Input Parameters

queue
Device queue where calculations by unmqr function will be performed.

side
If side=oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans
If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

8.2. oneMKL Domains 1334

oneAPI Specification, Release 1.4-provisional-rev-1

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda
The leading dimension of a.

ldc
The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to unmqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

unmrq

Multiplies a complex matrix by the unitary matrix 𝑄 of the RQ factorization formed by gerqf .

Description

unmrq supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine multiplies a rectangular complex 𝑚 × 𝑛 matrix 𝐶 by 𝑄 or 𝑄𝐻 , where 𝑄 is the complex unitary matrix
defined as a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝐻𝐻(2)𝐻 ...𝐻(𝑘)𝐻 as returned by the RQ
factorization routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or
𝐶𝑄𝐻 (overwriting the result over 𝐶).

8.2. oneMKL Domains 1335

oneAPI Specification, Release 1.4-provisional-rev-1

unmrq (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void unmrq(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a
The buffer a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The buffer tau as returned by gerqf .

c
The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by unmrq_scratchpad_size function.

8.2. oneMKL Domains 1336

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

unmrq (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event unmrq(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

8.2. oneMKL Domains 1337

oneAPI Specification, Release 1.4-provisional-rev-1

trans
If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k
The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a
The pointer to a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda
The leading dimension of a.

tau
The pointer to tau as returned by gerqf .

c
The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by unmrq_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

8.2. oneMKL Domains 1338

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

unmrq_scratchpad_size

Computes size of scratchpad memory required for unmrq function.

Description

unmrq_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to unmrq function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

unmrq_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t unmrq_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc)
}

8.2. oneMKL Domains 1339

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
Device queue where calculations by the unmrq function will be performed.

side
If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left. If side =
oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans
If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda
The leading dimension of a.

ldc
The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to unmrq function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

LAPACK Singular Value and Eigenvalue Problem Routines

LAPACK Singular Value and Eigenvalue Problem routines are used for singular value and eigenvalue problems, and
for performing a number of related computational tasks. The following table lists the LAPACK Singular Value and
Eigenvalue Problem routine groups.

8.2. oneMKL Domains 1340

oneAPI Specification, Release 1.4-provisional-rev-1

Rou-
tines

Scratchpad
Size Routines

Description

ge-
brd

ge-
brd_scratchpad_size

Reduces a general matrix to bidiagonal form.

gesvd gesvd_scratchpad_sizeComputes the singular value decomposition of a general rectangular matrix.
heevd heevd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian ma-

trix using divide and conquer algorithm.
hegvd hegvd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a complex generalized Her-

mitian definite eigenproblem using divide and conquer algorithm.
hetrd hetrd_scratchpad_sizeReduces a complex Hermitian matrix to tridiagonal form.
orgbr orgbr_scratchpad_sizeGenerates the real orthogonal matrix 𝑄 or 𝑃𝑇 determined by gebrd.
orgtr orgtr_scratchpad_sizeGenerates the real orthogonal matrix 𝑄 determined by sytrd.
ormtr ormtr_scratchpad_sizeMultiplies a real matrix by the orthogonal matrix 𝑄 determined by sytrd.
syevd syevd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a real symmetric matrix

using divide and conquer algorithm.
sygvd sygvd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a real generalized symmet-

ric definite eigenproblem using divide and conquer algorithm.
sytrd sytrd_scratchpad_sizeReduces a real symmetric matrix to tridiagonal form.
ungbr ungbr_scratchpad_sizeGenerates the complex unitary matrix 𝑄 or 𝑃𝑇 determined by gebrd.
ungtr ungtr_scratchpad_sizeGenerates the complex unitary matrix 𝑄 determined by hetrd.
un-
mtr

un-
mtr_scratchpad_size

Multiplies a complex matrix by the unitary matrix 𝑄 determined by hetrd.

gebrd

Reduces a general matrix to bidiagonal form.

Description

gebrd supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine reduces a general 𝑚× 𝑛 matrix 𝐴 to a bidiagonal matrix 𝐵 by an orthogonal (unitary) transformation.

If 𝑚 ≥ 𝑛, the reduction is given by 𝐴 = 𝑄𝐵𝑃𝐻 =

(︂
𝐵1

0

)︂
𝑃𝐻 = 𝑄1𝐵1𝑃𝐻

where 𝐵1 is an 𝑛×𝑛 upper diagonal matrix, 𝑄 and 𝑃 are orthogonal or, for a complex 𝐴, unitary matrices; 𝑄1 consists
of the first 𝑛 columns of 𝑄.

If 𝑚 < 𝑛, the reduction is given by

𝐴 = 𝑄𝐵𝑃𝐻 = 𝑄

(︂
𝐵1

0

)︂
𝑃𝐻 = 𝑄1𝐵1𝑃

𝐻
1 ,

where 𝐵1 is an 𝑚 × 𝑚 lower diagonal matrix, 𝑄 and 𝑃 are orthogonal or, for a complex 𝐴, unitary matrices; 𝑃1

consists of the first 𝑚 columns of 𝑃 .

8.2. oneMKL Domains 1341

oneAPI Specification, Release 1.4-provisional-rev-1

The routine does not form the matrices 𝑄 and 𝑃 explicitly, but represents them as products of elementary reflectors.
Routines are provided to work with the matrices 𝑄 and 𝑃 in this representation:

If the matrix 𝐴 is real,

• to compute 𝑄 and 𝑃 explicitly, call orgbr.

If the matrix 𝐴 is complex,

• to compute 𝑄 and 𝑃 explicitly, call ungbr

gebrd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void gebrd(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T,

→˓1> &a, std::int64_t lda, cl::sycl::buffer<realT,1> &d, cl::sycl::buffer<realT,1> &e,␣
→˓cl::sycl::buffer<T,1> &tauq, cl::sycl::buffer<T,1> &taup, cl::sycl::buffer<T,1> &
→˓scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a
The buffer 𝑎, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1,𝑚).

lda
The leading dimension of 𝑎.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by gebrd_scratchpad_size function.

Output Parameters

a
If 𝑚 ≥ 𝑛, the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix 𝐵. The
elements below the diagonal, with the buffer tauq, represent the orthogonal matrix 𝑄 as a product of elementary
reflectors, and the elements above the first superdiagonal, with the buffer taup, represent the orthogonal matrix
𝑃 as a product of elementary reflectors.

If𝑚 < 𝑛, the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix𝐵. The elements
below the first subdiagonal, with the buffer tauq, represent the orthogonal matrix 𝑄 as a product of elementary
reflectors, and the elements above the diagonal, with the buffer taup, represent the orthogonal matrix 𝑃 as a
product of elementary reflectors.

8.2. oneMKL Domains 1342

oneAPI Specification, Release 1.4-provisional-rev-1

d
Buffer, size at least max(1,min(𝑚,𝑛)). Contains the diagonal elements of 𝐵.

e
Buffer, size at least max(1,min(𝑚,𝑛)− 1). Contains the off-diagonal elements of 𝐵.

tauq
Buffer, size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which represent the
orthogonal or unitary matrix 𝑄.

taup
Buffer, size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which represent the
orthogonal or unitary matrix 𝑃 .

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the i-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

gebrd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event gebrd(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, RealT *d, RealT *e, T *tauq, T *taup, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

8.2. oneMKL Domains 1343

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a
Pointer to matrix 𝐴. The second dimension of a must be at least max(1,𝑚).

lda
The leading dimension of a.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by gebrd_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
If 𝑚 ≥ 𝑛, the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix 𝐵. The
elements below the diagonal, with the array tauq, represent the orthogonal matrix 𝑄 as a product of elementary
reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix
𝑃 as a product of elementary reflectors.

If𝑚 < 𝑛, the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix𝐵. The elements
below the first subdiagonal, with the array tauq, represent the orthogonal matrix 𝑄 as a product of elementary
reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix 𝑃 as a
product of elementary reflectors.

d
Pointer to memory of size at least max(1,min(𝑚,𝑛)). Contains the diagonal elements of 𝐵.

e
Pointer to memory of size at least max(1,min(𝑚,𝑛)− 1). Contains the off-diagonal elements of 𝐵.

tauq
Pointer to memory of size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which
represent the orthogonal or unitary matrix 𝑄.

taup
Pointer to memory of size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which
represent the orthogonal or unitary matrix 𝑃 .

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1344

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the i-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

gebrd_scratchpad_size

Computes size of scratchpad memory required for gebrd function.

Description

gebrd_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to gebrd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1345

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t gebrd_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by gebrd function will be performed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to gebrd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

gesvd

Computes the singular value decomposition of a general rectangular matrix.

8.2. oneMKL Domains 1346

oneAPI Specification, Release 1.4-provisional-rev-1

Description

gesvd supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

gesvd (Buffer Version)

Description

The routine computes the singular value decomposition (SVD) of a real/complex𝑚×𝑛matrix𝐴, optionally computing
the left and/or right singular vectors. The SVD is written as

𝐴 = 𝑈Σ𝑉 𝑇 for real routines

𝐴 = 𝑈Σ𝑉 𝐻 for complex routines

where Σ is an 𝑚×𝑛 diagonal matrix, 𝑈 is an 𝑚×𝑚 orthogonal/unitary matrix, and 𝑉 is an 𝑛×𝑛 orthogonal/unitary
matrix. The diagonal elements of Σ are the singular values of 𝐴; they are real and non-negative, and are returned in
descending order. The first min(𝑚,𝑛) columns of 𝑈 and 𝑉 are the left and right singular vectors of 𝐴.

Syntax

namespace oneapi::mkl::lapack {
void gesvd(cl::sycl::queue &queue, oneapi::mkl::job jobu, oneapi::mkl::job jobvt,␣

→˓std::int64_t m, std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t lda,␣
→˓cl::sycl::buffer<realT,1> &s, cl::sycl::buffer<T,1> &u, std::int64_t ldu,␣
→˓cl::sycl::buffer<T,1> &vt, std::int64_t ldvt, cl::sycl::buffer<T,1> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

jobu
Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for comput-
ing all or part of the matrix 𝑈 .

If jobu = job::allvec, all 𝑚 columns of 𝑈 are returned in the buffer u;

if jobu = job::somevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are returned in the buffer
u;

if jobu = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are overwritten
on the buffer a;

if jobu = job::novec, no columns of 𝑈 (no left singular vectors) are computed.

8.2. oneMKL Domains 1347

oneAPI Specification, Release 1.4-provisional-rev-1

jobvt
Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for com-
puting all or part of the matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::allvec, all 𝑛 columns of 𝑉 𝑇 /𝑉 𝐻 are returned in the buffer vt;

if jobvt = job::somevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are returned in
the buffer vt;

if jobvt = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are over-
written on the buffer a;

if jobvt = job::novec, no columns of 𝑉 𝑇 /𝑉 𝐻 (no left singular vectors) are computed.

jobvt and jobu cannot both be job::overwritevec.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

a
The buffer a, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1,𝑚).

lda
The leading dimension of a.

ldu
The leading dimension of u.

ldvt
The leading dimension of vt.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by gesvd_scratchpad_size function.

Output Parameters

a
On exit,

If jobu = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) columns of 𝑈 (the left singular
vectors stored columnwise);

If jobvt = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular
vectors stored rowwise);

If jobu ̸= job::overwritevec and jobvt ̸= job::overwritevec, the contents of a are destroyed.

s
Buffer containing the singular values, size at least max(1,min(𝑚,𝑛)). Contains the singular values of 𝐴 sorted
so that 𝑠(𝑖) ≥ 𝑠(𝑖+ 1).

u
Buffer containing 𝑈 ; the second dimension of u must be at least max(1,𝑚) if jobu = job::allvec, and at
least max(1,min(𝑚,𝑛)) if jobu = job::somevec.

If jobu = job::allvec, u contains the 𝑚×𝑚 orthogonal/unitary matrix 𝑈 .

If jobu = job::somevec, u contains the firstmin(𝑚,𝑛) columns of𝑈 (the left singular vectors stored column-
wise).

If jobu = job::novec or job::overwritevec, u is not referenced.

8.2. oneMKL Domains 1348

oneAPI Specification, Release 1.4-provisional-rev-1

vt
Buffer containing 𝑉 𝑇 ; the second dimension of vt must be at least max(1, 𝑛).

If jobvt = job::allvec, vt contains the 𝑛× 𝑛 orthogonal/unitary matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::somevec, vt contains the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular vectors stored
row-wise).

If jobvt = job::novec or job::overwritevec, vt is not referenced.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, then if bdsqr did not converge, 𝑖 specifies how many superdiagonals of the intermediate
bidiagonal form 𝐵 did not converge to zero, and scratchpad(2:min(m,n)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix 𝐵 whose diagonal is in s (not necessarily sorted).
𝐵 satisfies 𝐴 = 𝑈𝐵𝑉 𝑇 , so it has the same singular values as 𝐴, and singular vectors related by 𝑈 and
𝑉 𝑇 .

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

gesvd (USM Version)

Description

The routine computes the singular value decomposition (SVD) of a real/complex𝑚×𝑛matrix𝐴, optionally computing
the left and/or right singular vectors. The SVD is written as

𝐴 = 𝑈Σ𝑉 𝑇 for real routines

𝐴 = 𝑈Σ𝑉 𝐻 for complex routines

where Σ is an 𝑚×𝑛 diagonal matrix, 𝑈 is an 𝑚×𝑚 orthogonal/unitary matrix, and 𝑉 is an 𝑛×𝑛 orthogonal/unitary
matrix. The diagonal elements of Σ are the singular values of 𝐴; they are real and non-negative, and are returned in
descending order. The first min(𝑚,𝑛) columns of 𝑈 and 𝑉 are the left and right singular vectors of 𝐴.

8.2. oneMKL Domains 1349

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event gesvd(cl::sycl::queue &queue, oneapi::mkl::job jobu, oneapi::mkl::job␣

→˓jobvt, std::int64_t m, std::int64_t n, T *a, std::int64_t lda, RealT *s, T *u,␣
→˓std::int64_t ldu, T *vt, std::int64_t ldvt, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

jobu
Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for comput-
ing all or part of the matrix 𝑈 .

If jobu = job::allvec, all 𝑚 columns of 𝑈 are returned in the array u;

if jobu = job::somevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are returned in the array
u;

if jobu = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are overwritten
on the array a;

if jobu = job::novec, no columns of 𝑈 (no left singular vectors) are computed.

jobvt
Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for com-
puting all or part of the matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::allvec, all 𝑛 columns of 𝑉 𝑇 /𝑉 𝐻 are returned in the array vt;

if jobvt = job::somevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are returned in
the array vt;

if jobvt = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are over-
written on the array a;

if jobvt = job::novec, no columns of 𝑉 𝑇 /𝑉 𝐻 (no left singular vectors) are computed.

jobvt and jobu cannot both be job::overwritevec.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

a
Pointer to array a, size (lda,*), containing the matrix𝐴. The second dimension of amust be at leastmax(1,𝑚).

lda
The leading dimension of a.

ldu
The leading dimension of u.

ldvt
The leading dimension of vt.

8.2. oneMKL Domains 1350

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by gesvd_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
On exit,

If jobu = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) columns of 𝑈 (the left singular
vectors stored columnwise);

If jobvt = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular
vectors stored rowwise);

If jobu ̸= job::overwritevec and jobvt ̸= job::overwritevec, the contents of a are destroyed.

s
Array containing the singular values, size at least max(1,min(𝑚,𝑛)). Contains the singular values of 𝐴 sorted
so that 𝑠(𝑖) ≥ 𝑠(𝑖+ 1).

u
Array containing 𝑈 ; the second dimension of u must be at least max(1,𝑚) if jobu = job::allvec, and at
least max(1,min(𝑚,𝑛)) if jobu = job::somevec.

If jobu = job::allvec, u contains the 𝑚×𝑚 orthogonal/unitary matrix 𝑈 .

If jobu = job::somevec, u contains the firstmin(𝑚,𝑛) columns of𝑈 (the left singular vectors stored column-
wise).

If jobu = job::novec or job::overwritevec, u is not referenced.

vt
Array containing 𝑉 𝑇 ; the second dimension of vt must be at least max(1, 𝑛).

If jobvt = job::allvec, vt contains the 𝑛× 𝑛 orthogonal/unitary matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::somevec, vt contains the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular vectors stored
row-wise).

If jobvt = job::novec or job::overwritevec, vt is not referenced.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

8.2. oneMKL Domains 1351

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, then if bdsqr did not converge, 𝑖 specifies how many superdiagonals of the intermediate
bidiagonal form 𝐵 did not converge to zero, and scratchpad(2:min(m,n)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix 𝐵 whose diagonal is in s (not necessarily sorted).
𝐵 satisfies 𝐴 = 𝑈𝐵𝑉 𝑇 , so it has the same singular values as 𝐴, and singular vectors related by 𝑈 and
𝑉 𝑇 .

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

gesvd_scratchpad_size

Computes size of scratchpad memory required for gesvd function.

Description

gesvd_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to gesvd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

gesvd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t gesvd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::job jobu,␣

→˓oneapi::mkl::job jobvt, std::int64_t m, std::int64_t n, std::int64_t lda, std::int64_t␣
→˓ldu, std::int64_t ldvt)
}

8.2. oneMKL Domains 1352

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
Device queue where calculations by gesvd function will be performed.

jobu
Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for comput-
ing all or part of the matrix 𝑈 .

If jobu = job::allvec, all 𝑚 columns of 𝑈 are returned in the buffer u;

if jobu = job::somevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are returned in the buffer
v;

if jobu = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are overwritten
on the buffer a;

if jobu = job::novec, no columns of 𝑈 (no left singular vectors) are computed.

jobvt
Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for comput-
ing all or part of the matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::allvec, all 𝑛 columns of 𝑉 𝑇 /𝑉 𝐻 are returned in the buffer vt;

if jobvt = job::somevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are returned in
the buffer vt;

if jobvt = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are over-
written on the buffer a;

if jobvt = job::novec, no columns of 𝑉 𝑇 /𝑉 𝐻 (no left singular vectors) are computed.

m
The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n
The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

ldu
The leading dimension of u.

ldvt
The leading dimension of vt.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1353

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to gesvd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

heevd

Computes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian matrix using divide and conquer
algorithm.

Description

heevd supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix 𝐴. In
other words, it can compute the spectral factorization of 𝐴 as: 𝐴 = 𝑍Λ𝑍𝐻 .

Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues 𝜆𝑖, and 𝑍 is the (complex) unitary matrix
whose columns are the eigenvectors 𝑧𝑖. Thus,

𝐴𝑧𝑖 = 𝜆𝑖𝑧𝑖 for 𝑖 = 1, 2, ..., 𝑛.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and
eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the QL or QR
algorithm.

heevd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void heevd(cl::sycl::queue &queue, oneapi::mkl::job jobz, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, butter<T,1> &a, std::int64_t lda, cl::sycl::buffer<realT,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

8.2. oneMKL Domains 1354

oneAPI Specification, Release 1.4-provisional-rev-1

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

a
The buffer a, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1, 𝑛).

lda
The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by heevd_scratchpad_size function.

Output Parameters

a
If jobz = job::vec, then on exit this buffer is overwritten by the unitary matrix 𝑍 which contains the eigen-
vectors of 𝐴.

w
Buffer, size at least n. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info=i, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛+ 1) through mod(info, 𝑛+ 1).

8.2. oneMKL Domains 1355

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

heevd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event heevd(cl::sycl::queue &queue, oneapi::mkl::job jobz, oneapi::mkl::uplo␣

→˓upper_lower, std::int64_t n, butter<T,1> &a, std::int64_t lda, RealT *w, T *scratchpad,
→˓ std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

a
Pointer to array containing 𝐴, size (lda,*).The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by heevd_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1356

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
If jobz = job::vec, then on exit this array is overwritten by the unitary matrix 𝑍 which contains the eigen-
vectors of 𝐴.

w
Pointer to array of size at least 𝑛. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info=i, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛+ 1) through mod(info, 𝑛+ 1).

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

heevd_scratchpad_size

Computes size of scratchpad memory required for heevd function.

8.2. oneMKL Domains 1357

oneAPI Specification, Release 1.4-provisional-rev-1

Description

heevd_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to heevd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

heevd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t heevd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by heevd function will be performed.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

8.2. oneMKL Domains 1358

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to heevd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hegvd

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem using a
divide and conquer method.

Description

hegvd supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-
definite eigenproblem, of the form

𝐴𝑥 = 𝜆𝐵𝑥,𝐴𝐵𝑥 = 𝜆𝑥, or 𝐵𝐴𝑥 = 𝜆𝑥.

Here 𝐴 and 𝐵 are assumed to be Hermitian and 𝐵 is also positive definite.

It uses a divide and conquer algorithm.

hegvd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void hegvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t␣
→˓lda, cl::sycl::buffer<T,1> &b, std::int64_t ldb, cl::sycl::buffer<realT,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

8.2. oneMKL Domains 1359

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

itype
Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n
The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a
Buffer, size a(lda,*) contains the upper or lower triangle of the Hermitian matrix 𝐴, as specified by up-
per_lower.

The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛).

b
Buffer, size b(ldb,*) contains the upper or lower triangle of the Hermitian matrix 𝐵, as specified by up-
per_lower.

The second dimension of b must be at least max(1, 𝑛).

ldb
The leading dimension of b; at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by hegvd_scratchpad_size function.

8.2. oneMKL Domains 1360

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
On exit, if jobz = job::vec, then if info = 0, a contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1 or itype = 2, 𝑍𝐻𝐵𝑍 = 𝐼;

if itype = 3, 𝑍𝐻𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b
On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝐻𝑈or 𝐵 = 𝐿𝐿𝐻 .

w
Buffer, size at least 𝑛. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero;

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1)‘ through
mod(info, 𝑛+ 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1361

oneAPI Specification, Release 1.4-provisional-rev-1

hegvd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event hegvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job␣

→˓jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, T *a, std::int64_t lda, T *b,␣
→˓std::int64_t ldb, RealT *w, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

itype
Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n
The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a
Pointer to array of size a(lda,*) containing the upper or lower triangle of the Hermitian matrix 𝐴, as specified
by upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛).

b
Pointer to array of size b(ldb,*) containing the upper or lower triangle of the Hermitian matrix 𝐵, as specified
by upper_lower. The second dimension of b must be at least max(1, 𝑛).

ldb
The leading dimension of b; at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by hegvd_scratchpad_size function.

8.2. oneMKL Domains 1362

oneAPI Specification, Release 1.4-provisional-rev-1

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
On exit, if jobz = job::vec, then if info = 0, a contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1‘ or itype = 2, 𝑍𝐻𝐵𝑍 = 𝐼;

if itype = 3, 𝑍𝐻𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b
On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝐻𝑈or 𝐵 = 𝐿𝐿𝐻 .

w
Pointer to array of size at least n. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero;

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1) through
mod(info, 𝑛+ 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

8.2. oneMKL Domains 1363

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hegvd_scratchpad_size

Computes size of scratchpad memory required for hegvd function.

Description

hegvd_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to hegvd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

hegvd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t hegvd_scratchpad_size(cl::sycl::queue &queue, std::int64_t itype,␣

→˓oneapi::mkl::job jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda,
→˓ std::int64_t ldb)
}

Input Parameters

queue
Device queue where calculations by hegvd function will be performed.

itype
Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

8.2. oneMKL Domains 1364

oneAPI Specification, Release 1.4-provisional-rev-1

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a and b store the lower triangular part of 𝐴 and 𝐵.

n
The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

lda
The leading dimension of a. Currently lda is not referenced in this function.

ldb
The leading dimension of b. Currently ldb is not referenced in this function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to hegvd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hetrd

Reduces a complex Hermitian matrix to tridiagonal form.

Description

hetrd supports the following precisions.

Routine name T
chetrd std::complex<float>
zhetrd std::complex<double>

8.2. oneMKL Domains 1365

oneAPI Specification, Release 1.4-provisional-rev-1

The routine reduces a complex Hermitian matrix 𝐴 to symmetric tridiagonal form 𝑇 by a unitary similarity transfor-
mation: 𝐴 = 𝑄𝑇𝑄𝐻 . The unitary matrix 𝑄 is not formed explicitly but is represented as a product of 𝑛−1 elementary
reflectors. Routines are provided to work with 𝑄 in this representation.

hetrd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void hetrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<realT,1> &d,␣
→˓cl::sycl::buffer<realT,1> &e, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &
→˓scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrices 𝐴 (0 ≤ 𝑛).

a
Buffer, size (lda,*). The buffer a contains either the upper or lower triangle of the Hermitian matrix 𝐴, as
specified by upper_lower.

The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛)

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by hetrd_scratchpad_size function.

Output Parameters

a
On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the buffer tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the buffer tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

8.2. oneMKL Domains 1366

oneAPI Specification, Release 1.4-provisional-rev-1

d
Buffer containing the diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e
Buffer containing the off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau
Buffer, size at least max(1, 𝑛− 1). Stores (𝑛− 1) scalars that define elementary reflectors in decomposition of
the unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

hetrd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event hetrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, RealT *d, RealT *e, T *tau, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

8.2. oneMKL Domains 1367

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrices 𝐴 (0 ≤ 𝑛).

a
The pointer to matrix 𝐴, size (lda,*). Contains either the upper or lower triangle of the Hermitian matrix 𝐴,
as specified by upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛)

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by hetrd_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the array tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the array tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

d
Pointer to diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e
Pointer to off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau
Pointer to array of size at least max(1, 𝑛− 1). Stores (𝑛− 1) scalars that define elementary reflectors in decom-
position of the unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1368

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hetrd_scratchpad_size

Computes size of scratchpad memory required for hetrd function.

Description

hetrd_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to hetrd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1369

oneAPI Specification, Release 1.4-provisional-rev-1

hetrd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t hetrd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by hetrd function will be performed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

lda
The leading dimension of a. Currently, lda is not referenced in this function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to hetrd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgbr

Generates the real orthogonal matrix 𝑄 or 𝑃𝑇 determined by gebrd.

orgbr supports the following precisions.

8.2. oneMKL Domains 1370

oneAPI Specification, Release 1.4-provisional-rev-1

T
float
double

Description

The routine generates the whole or part of the orthogonal matrices 𝑄 and 𝑃𝑇 formed by the routines gebrd. All valid
combinations of arguments are described in Input parameters. In most cases you need the following:

To compute the whole 𝑚×𝑚 matrix 𝑄:

orgbr(queue, generate::q, m, m, n, a, ...)

(note that the array a must have at least 𝑚 columns).

To form the 𝑛 leading columns of 𝑄 if 𝑚 > 𝑛:

orgbr(queue, generate::q, m, n, n, a, ...)

To compute the whole 𝑛× 𝑛 matrix 𝑃𝑇 :

orgbr(queue, generate::p, n, n, m, a, ...)

(note that the array a must have at least 𝑛 rows).

To form the 𝑚 leading rows of 𝑃𝑇 if 𝑚 < 𝑛:

orgbr(queue, generate::p, m, n, m, a, ...)

orgbr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void orgbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a, std::int64_t lda,␣
→˓cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_
→˓size)
}

Input Parameters

queue
The queue where the routine should be executed.

gen
Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

8.2. oneMKL Domains 1371

oneAPI Specification, Release 1.4-provisional-rev-1

m
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≤ 𝑛 ≤ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≤ 𝑚 ≤ min(𝑛, 𝑘).

n
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k
If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix reduced by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix reduced by gebrd.

a
The buffer a as returned by gebrd.

lda
The leading dimension of a.

tau
Buffer, size min(𝑚, 𝑘) if gen = generate::q, size min(𝑛, 𝑘) if gen = generate::p. Scalar factor of the
elementary reflectors, as returned by gebrd in the array tauq or taup.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by orgbr_scratchpad_size function.

Output Parameters

a
Overwritten by n leading columns of the 𝑚 ×𝑚 orthogonal matrix 𝑄 or 𝑃𝑇 (or the leading rows or columns
thereof) as specified by gen, m, and n.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

8.2. oneMKL Domains 1372

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

orgbr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t␣

→˓m, std::int64_t n, std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

gen
Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≤ 𝑛 ≤ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≤ 𝑚 ≤ min(𝑛, 𝑘).

n
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k
If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix reduced by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix reduced by gebrd.

a
Pointer to array a as returned by gebrd.

lda
The leading dimension of a.

tau
Pointer to array of size min(𝑚, 𝑘) if gen = generate::q, size min(𝑛, 𝑘) if gen = generate::p. Scalar
factor of the elementary reflectors, as returned by gebrd in the array tauq or taup.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by orgbr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1373

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Overwritten by n leading columns of the 𝑚 ×𝑚 orthogonal matrix 𝑄 or 𝑃𝑇 (or the leading rows or columns
thereof) as specified by gen, m, and n.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgbr_scratchpad_size

Computes size of scratchpad memory required for orgbr function.

orgbr_scratchpad_size supports the following precisions.

T
float
double

8.2. oneMKL Domains 1374

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Computes the number of elements of type T the scratchpad memory to be passed to orgbr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

orgbr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgbr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::generate gen,␣

→˓std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t &
→˓scratchpad_size)
}

Input Parameters

queue
Device queue where calculations by orgbr function will be performed.

gen
Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≤ 𝑛 ≤ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≤ 𝑚 ≤ min(𝑛, 𝑘).

n
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k
If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix returned by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix returned by gebrd.

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

8.2. oneMKL Domains 1375

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to orgbr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgtr

Generates the real orthogonal matrix 𝑄 determined by sytrd.

Description

orgtr supports the following precisions.

T
float
double

The routine explicitly generates the 𝑛×𝑛 orthogonal matrix 𝑄 formed by sytrd when reducing a real symmetric matrix
𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝑇 . Use this routine after a call to sytrd.

orgtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void orgtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

n
The order of the matrix 𝑄 (0 ≤ 𝑛).

a
The buffer a as returned by sytrd. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

tau
The buffer tau as returned by sytrd. The dimension of tau must be at least max(1, 𝑛− 1).

8.2. oneMKL Domains 1376

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by orgtr_scratchpad_size function.

Output Parameters

a
Overwritten by the orthogonal matrix 𝑄.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

orgtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

8.2. oneMKL Domains 1377

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

n
The order of the matrix 𝑄 (0 ≤ 𝑛).

a
The pointer to a as returned by sytrd. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

tau
The pointer to tau as returned by sytrd. The dimension of tau must be at least max(1, 𝑛− 1).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by orgtr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Overwritten by the orthogonal matrix 𝑄.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1378

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgtr_scratchpad_size

Computes size of scratchpad memory required for orgtr function.

Description

orgtr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to orgtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

orgtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by orgtr function will be performed.

upper_lower
Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

n
The order of the matrix 𝑄 (0 ≤ 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

8.2. oneMKL Domains 1379

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to orgtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ormtr

Multiplies a real matrix by the real orthogonal matrix 𝑄 determined by sytrd.

Description

ormtr supports the following precisions.

T
float
double

The routine multiplies a real matrix 𝐶 by 𝑄 or 𝑄𝑇 , where 𝑄 is the orthogonal matrix 𝑄 formed
by:ref:onemkl_lapack_sytrd when reducing a real symmetric matrix 𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝑇 . Use this
routine after a call to sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇

(overwriting the result on 𝐶).

ormtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ormtr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::uplo upper_

→˓lower, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, cl::sycl::buffer
→˓<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c,␣
→˓std::int64_t ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

8.2. oneMKL Domains 1380

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟 = 𝑚 if side = side::left

𝑟 = 𝑛 if side = side::right

queue
The queue where the routine should be executed.

side
Must be either side::left or side::right.

If side = side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

upper_lower
Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

trans
Must be either transpose::nontrans or transpose::trans.

If trans = transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n
The number of columns in the matrix 𝐶 (𝑛 ≥ 0).

a
The buffer a as returned by sytrd.

lda
The leading dimension of a (max(1, 𝑟) ≤ lda).

tau
The buffer tau as returned by a sytrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c
The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by ormtr_scratchpad_size function.

8.2. oneMKL Domains 1381

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

ormtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ormtr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟 = 𝑚 if side = side::left

𝑟 = 𝑛 if side = side::right

queue
The queue where the routine should be executed.

8.2. oneMKL Domains 1382

oneAPI Specification, Release 1.4-provisional-rev-1

side
Must be either side::left or side::right.

If side = side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

upper_lower
Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

trans
Must be either transpose::nontrans or transpose::trans.

If trans = transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n
The number of columns in the matrix 𝐶 (𝑛 ≥ 0).

a
The pointer to a as returned by sytrd.

lda
The leading dimension of a (max(1, 𝑟) ≤ lda).

tau
The buffer tau as returned by sytrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c
The pointer to memory containing the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by ormtr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1383

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ormtr_scratchpad_size

Computes size of scratchpad memory required for ormtr function.

Description

ormtr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to ormtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1384

oneAPI Specification, Release 1.4-provisional-rev-1

ormtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ormtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, std::int64_t lda, std::int64_t ldc)
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟 = 𝑚 if side = side::left

𝑟 = 𝑛 if side = side::right

queue
Device queue where calculations by ormtr function will be performed.

side
Must be either side::left or side::right.

If side = side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

upper_lower
Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

trans
Must be either transpose::nontrans or transpose::trans.

If trans = transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m
The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n
The number of rows in the matrix 𝐶 (𝑛 ≥ 0).

lda
The leading dimension of a (max(1, 𝑟) ≤ lda).

ldc
The leading dimension of c (max(1, 𝑛) ≤ ldc).

8.2. oneMKL Domains 1385

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ormtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

syevd

Computes all eigenvalues and, optionally, all eigenvectors of a real symmetric matrix using divide and conquer algo-
rithm.

Description

syevd supports the following precisions.

T
float
double

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix 𝐴. In other
words, it can compute the spectral factorization of 𝐴 as: 𝐴 = 𝑍𝜆𝑍𝑇 .

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues 𝜆𝑖, and 𝑍 is the orthogonal matrix whose
columns are the eigenvectors 𝑧𝑖. Thus,

𝐴𝑧𝑖 = 𝜆𝑖𝑧𝑖 for 𝑖 = 1, 2, ..., 𝑛.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and
eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the QL or QR
algorithm.

8.2. oneMKL Domains 1386

oneAPI Specification, Release 1.4-provisional-rev-1

syevd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void syevd(cl::sycl::queue &queue, jobz jobz, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

a
The buffer a, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1, 𝑛).

lda
The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by syevd_scratchpad_size function.

Output Parameters

a
If jobz = job::vec, then on exit this buffer is overwritten by the orthogonal matrix 𝑍 which contains the
eigenvectors of 𝐴.

w
Buffer, size at least 𝑛. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1387

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛+ 1) through mod(info, 𝑛+ 1).

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

syevd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event syevd(cl::sycl::queue &queue, jobz jobz, oneapi::mkl::uplo upper_lower,

→˓ std::int64_t n, T *a, std::int64_t lda, T *w, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

8.2. oneMKL Domains 1388

oneAPI Specification, Release 1.4-provisional-rev-1

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

a
Pointer to array containing 𝐴, size (lda,*). The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by syevd_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
If jobz = job::vec, then on exit this array is overwritten by the orthogonal matrix 𝑍 which contains the
eigenvectors of 𝐴.

w
Pointer to array of size at least 𝑛. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛+ 1) through mod(info, 𝑛+ 1).

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1389

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

syevd_scratchpad_size

Computes size of scratchpad memory required for syevd function.

Description

syevd_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to syevd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

syevd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t syevd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by syevd function will be performed.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrix 𝐴 (0 ≤ 𝑛).

8.2. oneMKL Domains 1390

oneAPI Specification, Release 1.4-provisional-rev-1

lda
The leading dimension of a. Currently lda is not referenced in this function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to syevd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sygvd

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem using a
divide and conquer method.

Description

sygvd supports the following precisions.

T
float
double

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form

𝐴𝑥 = 𝜆𝐵𝑥, 𝐴𝐵𝑥 = 𝜆𝑥, or 𝐵𝐴𝑥 = 𝜆𝑥 .

Here 𝐴 and 𝐵 are assumed to be symmetric and 𝐵 is also positive definite.

It uses a divide and conquer algorithm.

8.2. oneMKL Domains 1391

oneAPI Specification, Release 1.4-provisional-rev-1

sygvd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void sygvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t␣
→˓lda, cl::sycl::buffer<T,1> &b, std::int64_t ldb, cl::sycl::buffer<T,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

itype
Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = job::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n
The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a
Buffer, size a(lda,*) contains the upper or lower triangle of the symmetric matrix 𝐴, as specified by
upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛).

b
Buffer, size b (ldb,*) contains the upper or lower triangle of the symmetric matrix 𝐵, as specified by
upper_lower. The second dimension of b must be at least max(1, 𝑛).

ldb
The leading dimension of b; at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by sygvd_scratchpad_size function.

8.2. oneMKL Domains 1392

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
On exit, if jobz = job::vec, then if info = 0, a contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1 or 2 , 𝑍𝑇𝐵𝑍 = 𝐼;

if itype = 3 , 𝑍𝑇𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b
On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝑇𝑈 or 𝐵 = 𝐿𝐿𝑇 .

w
Buffer, size at least 𝑛. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1) through
mod(info, 𝑛+ 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1393

oneAPI Specification, Release 1.4-provisional-rev-1

sygvd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event sygvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job␣

→˓jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, T *a, std::int64_t lda, T *b,␣
→˓std::int64_t ldb, T *w, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

itype
Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = job::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n
The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a
Pointer to array of size a(lda,*) containing the upper or lower triangle of the symmetric matrix 𝐴, as specified
by upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛).

b
Pointer to array of size b (ldb,*) contains the upper or lower triangle of the symmetric matrix 𝐵, as specified
by upper_lower. The second dimension of b must be at least max(1, 𝑛).

ldb
The leading dimension of b; at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by sygvd_scratchpad_size function.

8.2. oneMKL Domains 1394

oneAPI Specification, Release 1.4-provisional-rev-1

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
On exit, if jobz = job::vec, then if info = 0, 𝑎 contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1 or 2, 𝑍𝑇𝐵𝑍 = 𝐼;

if itype = 3, 𝑍𝑇𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b
On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝑇𝑈 or 𝐵 = 𝐿𝐿𝑇 .

w
Pointer to array of size at least n. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1) through
mod(info, 𝑛+ 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

8.2. oneMKL Domains 1395

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sygvd_scratchpad_size

Computes size of scratchpad memory required for sygvd function.

Description

sygvd_scratchpad_size` supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to sygvd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

sygvd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t sygvd_scratchpad_size(cl::sycl::queue &queue, std::int64_t itype,␣

→˓oneapi::mkl::job jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda,
→˓ std::int64_t ldb)
}

Input Parameters

queue
Device queue where calculations by sygvd function will be performed.

itype
Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

8.2. oneMKL Domains 1396

oneAPI Specification, Release 1.4-provisional-rev-1

jobz
Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = job::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n
The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

lda
The leading dimension of a.

ldb
The leading dimension of b.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to sygvd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sytrd

Reduces a real symmetric matrix to tridiagonal form.

Description

sytrd supports the following precisions.

T
float
double

8.2. oneMKL Domains 1397

oneAPI Specification, Release 1.4-provisional-rev-1

The routine reduces a real symmetric matrix 𝐴 to symmetric tridiagonal form 𝑇 by an orthogonal similarity trans-
formation: 𝐴 = 𝑄𝑇𝑄𝑇 . The orthogonal matrix 𝑄 is not formed explicitly but is represented as a product of 𝑛 − 1
elementary reflectors. Routines are provided for working with 𝑄 in this representation .

sytrd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void sytrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &d, cl::sycl::buffer
→˓<T,1> &e, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad, std::int64_t␣
→˓scratchpad_size)
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrices 𝐴 (0 ≤ 𝑛).

a
The buffer a, size (lda,*). Contains the upper or lower triangle of the symmetric matrix 𝐴, as specified by
upper_lower.

The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by sytrd_scratchpad_size function.

Output Parameters

a
On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the buffer tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the buffer tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

8.2. oneMKL Domains 1398

oneAPI Specification, Release 1.4-provisional-rev-1

d
Buffer containing the diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e
Buffer containing the off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau
Buffer, size at least max(1, 𝑛). Stores (𝑛− 1) scalars that define elementary reflectors in decomposition of the
unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors. 𝜏(𝑛) is used as workspace.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

sytrd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event sytrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *d, T *e, T *tau, T *scratchpad, std::int64_
→˓t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

8.2. oneMKL Domains 1399

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrices 𝐴 (0 ≤ 𝑛).

a
The pointer to matrix 𝐴, size (lda,*). Contains the upper or lower triangle of the symmetric matrix 𝐴, as
specified by upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a; at least max(1, 𝑛).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by sytrd_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the array tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the array tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

d
Pointer to diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e
Pointer to off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau
Pointer to array of size at least max(1, 𝑛). Stores (𝑛− 1) scalars that define elementary reflectors in decompo-
sition of the unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors. 𝜏(𝑛) is used as workspace.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1400

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sytrd_scratchpad_size

Computes size of scratchpad memory required for sytrd function.

Description

sytrd_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to sytrd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1401

oneAPI Specification, Release 1.4-provisional-rev-1

sytrd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t sytrd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by sytrd function will be performed.

upper_lower
Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n
The order of the matrices 𝐴 (0 ≤ 𝑛).

lda
The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to sytrd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungbr

Generates the complex unitary matrix 𝑄 or 𝑃 𝑡 determined by gebrd.

8.2. oneMKL Domains 1402

oneAPI Specification, Release 1.4-provisional-rev-1

Description

ungbr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine generates the whole or part of the unitary matrices 𝑄 and 𝑃𝐻 formed by the routines gebrd. All valid
combinations of arguments are described in Input Parameters; in most cases you need the following:

To compute the whole 𝑚×𝑚 matrix 𝑄, use:

oneapi::mkl::lapack::ungbr(queue, generate::q, m, m, n, a, ...)

(note that the buffer a must have at least 𝑚 columns).

To form the 𝑛 leading columns of 𝑄 if 𝑚 > 𝑛, use:

oneapi::mkl::lapack::ungbr(queue, generate::q, m, n, n, a, ...)

To compute the whole 𝑛× 𝑛 matrix 𝑃𝑇 , use:

oneapi::mkl::lapack::ungbr(queue, generate::p, n, n, m, a, ...)

(note that the array a must have at least 𝑛 rows).

To form the 𝑚 leading rows of 𝑃𝑇 if 𝑚 < 𝑛, use:

oneapi::mkl::lapack::ungbr(queue, generate::p, m, n, m, a, ...)

ungbr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ungbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a, std::int64_t lda,␣
→˓cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_
→˓size)
}

Input Parameters

queue
The queue where the routine should be executed.

gen
Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

8.2. oneMKL Domains 1403

oneAPI Specification, Release 1.4-provisional-rev-1

m
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≥ 𝑛 ≥ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≥ 𝑚 ≥ min(𝑛, 𝑘).

n
The number of columns in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k
If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix returned by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix returned by gebrd.

a
The buffer a as returned by gebrd.

lda
The leading dimension of a.

tau
For gen = generate::q, the array tauq as returned by gebrd. For gen = generate::p, the array taup as
returned by gebrd.

The dimension of tau must be at least max(1,min(𝑚, 𝑘)) for gen = generate::q, or max(1,min(𝑚, 𝑘)) for
gen = generate::p.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type 𝑇 . Size should not be less than the
value returned by ungbr_scratchpad_size function.

Output Parameters

a
Overwritten by 𝑛 leading columns of the𝑚×𝑚 unitary matrix𝑄 or𝑃𝑇 , (or the leading rows or columns thereof)
as specified by gen, m, and n.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

8.2. oneMKL Domains 1404

oneAPI Specification, Release 1.4-provisional-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

ungbr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t␣

→˓m, std::int64_t n, std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

gen
Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≥ 𝑚).

If gen = generate::q, 𝑚 ≥ 𝑛 ≥ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≥ 𝑚 ≥ min(𝑛, 𝑘).

n
The number of columns in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k
If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix returned by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix returned by gebrd.

a
The pointer to a as returned by gebrd.

lda
The leading dimension of a.

tau
For gen = generate::q, the array tauq as returned by gebrd. For gen = generate::p, the array taup as
returned by gebrd.

The dimension of tau must be at least max(1,min(𝑚, 𝑘)) for gen = generate::q, or max(1,min(𝑚, 𝑘)) for
gen = generate::p.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type 𝑇 . Size should not be less than the
value returned by ungbr_scratchpad_size function.

8.2. oneMKL Domains 1405

oneAPI Specification, Release 1.4-provisional-rev-1

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Overwritten by 𝑛 leading columns of the𝑚×𝑚 unitary matrix𝑄 or𝑃𝑇 , (or the leading rows or columns thereof)
as specified by gen, m, and n.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungbr_scratchpad_size

Computes size of scratchpad memory required for ungbr function.

8.2. oneMKL Domains 1406

oneAPI Specification, Release 1.4-provisional-rev-1

Description

ungbr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type 𝑇 the scratchpad memory to be passed to ungbr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

ungbr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungbr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::generate gen,␣

→˓std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t &
→˓scratchpad_size)
}

Input Parameters

queue
Device queue where calculations by ungbr function will be performed.

gen
Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m
The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≥ 𝑛 ≥ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≥ 𝑚 ≥ min(𝑛, 𝑘).

n
The number of columns in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k
If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix reduced by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix reduced by gebrd.

lda
The leading dimension of a.

8.2. oneMKL Domains 1407

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ungbr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungtr

Generates the complex unitary matrix 𝑄 determined by hetrd.

Description

ungtr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine explicitly generates the 𝑛×𝑛 unitary matrix𝑄 formed by hetrd when reducing a complex Hermitian matrix
𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝐻 . Use this routine after a call to hetrd.

ungtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ungtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

8.2. oneMKL Domains 1408

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

n
The order of the matrix 𝑄 (0 ≤ 𝑛).

a
The buffer a as returned by hetrd. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

tau
The buffer tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑛− 1).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by ungtr_scratchpad_size function.

Output Parameters

a
Overwritten by the unitary matrix 𝑄.

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1409

oneAPI Specification, Release 1.4-provisional-rev-1

ungtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
The queue where the routine should be executed.

upper_lower
Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

n
The order of the matrix 𝑄 (0 ≤ 𝑛).

a
The pointer to a as returned by hetrd. The second dimension of a must be at least max(1, 𝑛).

lda
The leading dimension of a (𝑛 ≤ lda).

tau
The pointer to tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑛− 1).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by ungtr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Overwritten by the unitary matrix 𝑄.

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1410

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungtr_scratchpad_size

Computes size of scratchpad memory required for ungtr function.

Description

ungtr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to ungtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

8.2. oneMKL Domains 1411

oneAPI Specification, Release 1.4-provisional-rev-1

ungtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue
Device queue where calculations by ungtr function will be performed.

upper_lower
Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

n
The order of the matrix 𝑄 (0 ≤ 𝑛).

lda
The leading dimension of a (𝑛 ≤ 𝑙𝑑𝑎).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ungtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

unmtr

Multiplies a complex matrix by the complex unitary matrix Q determined by hetrd.

8.2. oneMKL Domains 1412

oneAPI Specification, Release 1.4-provisional-rev-1

Description

unmtr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine multiplies a complex matrix 𝐶 by 𝑄 or 𝑄𝐻 , where 𝑄 is the unitary matrix 𝑄 formed by hetrd when
reducing a complex Hermitian matrix 𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝐻 . Use this routine after a call to hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or
𝐶𝑄𝐻 (overwriting the result on 𝐶).

unmtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void unmtr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::uplo upper_

→˓lower, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, cl::sycl::buffer
→˓<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c,␣
→˓std::int64_t ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟=𝑚 if side = side::left

𝑟=𝑛 if side = side::right

queue
The queue where the routine should be executed.

side
Must be either side::left or side::right.

If side=side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

upper_lower
Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

trans
Must be either transpose::nontrans or transpose::conjtrans.

If trans=transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

8.2. oneMKL Domains 1413

oneAPI Specification, Release 1.4-provisional-rev-1

n
The number of columns the matrix 𝐶 (𝑛 ≥ 0).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a
The buffer a as returned by hetrd.

lda
The leading dimension of a (max(1, 𝑟) ≤ lda).

tau
The buffer tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c
The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc
The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by unmtr_scratchpad_size function.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

8.2. oneMKL Domains 1414

oneAPI Specification, Release 1.4-provisional-rev-1

unmtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event unmtr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟=𝑚 if side = side::left

𝑟=𝑛 if side = side::right

queue
The queue where the routine should be executed.

side
Must be either side::left or side::right.

If side=side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

upper_lower
Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

trans
Must be either transpose::nontrans or transpose::conjtrans.

If trans=transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n
The number of columns the matrix 𝐶 (𝑛 ≥ 0).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a
The pointer to a as returned by hetrd.

lda
The leading dimension of a (max(1, 𝑟) ≤ lda).

tau
The pointer to tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c
The array c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

8.2. oneMKL Domains 1415

oneAPI Specification, Release 1.4-provisional-rev-1

ldc
The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by unmtr_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

c
Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

unmtr_scratchpad_size

Computes size of scratchpad memory required for unmtr function.

8.2. oneMKL Domains 1416

oneAPI Specification, Release 1.4-provisional-rev-1

Description

unmtr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to unmtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

unmtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t unmtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, std::int64_t lda, std::int64_t ldc)
}

Input Parameters

queue
Device queue where calculations by unmtr function will be performed.

side
Must be either side::left or side::right.

If side=side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

upper_lower
Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

trans
Must be either transpose::nontrans or transpose::conjtrans.

If trans=transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m
The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n
The number of columns the matrix 𝐶 (𝑛 ≥ 0).

k
The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda
The leading dimension of 𝑎 (max(1, 𝑟) ≤ lda).

8.2. oneMKL Domains 1417

oneAPI Specification, Release 1.4-provisional-rev-1

ldc
The leading dimension of 𝑐 (max(1, 𝑛) ≤ ldc).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to unmtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

LAPACK-like Extensions Routines

oneAPI Math Kernel Library DPC++ provides additional routines to extend the functionality of the LAPACK rou-
tines. These include routines to compute many independent factorizations, linear equation solutions, and similar. The
following table lists the LAPACK-like Extensions routine groups.

Rou-
tines

Scratchpad
Size Routines

Description

geqrf_batchgeqrf_batch_scratchpad_sizeComputes the QR factorizations of a batch of general matrices.
getrf_batchgetrf_batch_scratchpad_sizeComputes the LU factorizations of a batch of general matrices.
getri_batchgetri_batch_scratchpad_sizeComputes the inverses of a batch of LU-factored general matrices.
getrs_batchgetrs_batch_scratchpad_sizeSolves systems of linear equations with a batch of LU-factored square coefficient ma-

trices, with multiple right-hand sides.
orgqr_batchorgqr_batch_scratchpad_sizeGenerates the real orthogonal/complex unitary matrix 𝑄𝑖 of the QR factorization

formed by geqrf_batch.
potrf_batchpotrf_batch_scratchpad_sizeComputes the Cholesky factorization of a batch of symmetric (Hermitian) positive-

definite matrices.
potrs_batchpotrs_batch_scratchpad_sizeSolves systems of linear equations with a batch of Cholesky-factored symmetric (Her-

mitian) positive-definite coefficient matrices, with multiple right-hand sides.
ungqr_batchungqr_batch_scratchpad_sizeGenerates the complex unitary matrix 𝑄𝑖 with the QR factorization formed by

geqrf_batch.

8.2. oneMKL Domains 1418

oneAPI Specification, Release 1.4-provisional-rev-1

geqrf_batch

Computes the QR factorizations of a batch of general matrices.

Description

geqrf_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

geqrf_batch (Buffer Version)

Description

The buffer version of geqrf_batch supports only the strided API.

Strided API

Syntax

namespace oneapi::mkl::lapack {
void geqrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<T> &
→˓tau, std::int64_t stride_tau, std::int64_t batch_size, cl::sycl::buffer<T> &scratchpad,
→˓ std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a
Array holding input matrices 𝐴𝑖.

lda
Leading dimension of matrices 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

8.2. oneMKL Domains 1419

oneAPI Specification, Release 1.4-provisional-rev-1

stride_tau
Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as the number of floating point elements of type T. Size should not be less than the
value returned by the Strided API of the geqrf_batch_scratchpad_size function.

Output Parameters

a
Factorization data as follows: The elements on and above the diagonal of 𝐴𝑖 contain the min(𝑚,𝑛) × 𝑛 upper
trapezoidal matrices 𝑅𝑖 (𝑅𝑖 is upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array 𝜏𝑖,
contain the orthogonal matrix 𝑄𝑖 as a product of min(𝑚,𝑛) elementary reflectors.

tau
Array to store batch of 𝜏𝑖, each of size min(𝑚,𝑛), containing scalars that define elementary reflectors for the
matrices 𝑄𝑖 in its decomposition in a product of elementary reflectors.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

8.2. oneMKL Domains 1420

oneAPI Specification, Release 1.4-provisional-rev-1

geqrf_batch (USM Version)

Description

The USM version of geqrf_batch supports the group API and strided API.

Group API

The routine forms the 𝑄𝑖𝑅𝑖 factorizations of a general 𝑚× 𝑛 matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}, where batch_size
is the sum of all parameter group sizes as provided with group_sizes array. No pivoting is performed during factor-
ization. The routine does not form the matrices 𝑄𝑖 explicitly. Instead, 𝑄𝑖 is represented as a product of min(𝑚,𝑛)
elementary reflectors. Routines are provided to work with 𝑄𝑖 in this representation. The total number of problems to
solve, batch_size, is a sum of sizes of all of the groups of parameters as provided by group_sizes array.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event geqrf_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓T **a, std::int64_t *lda, T **tau, std::int64_t group_count, std::int64_t *group_sizes,
→˓ T *scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &
→˓events = {})
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Array of group_count 𝑚𝑔 parameters. Each 𝑚𝑔 specifies the number of rows in matrices 𝐴𝑖 from array a,
belonging to group 𝑔.

n
Array of group_count 𝑛𝑔 parameters. Each 𝑛𝑔 specifies the number of columns in matrices 𝐴𝑖 from array a,
belonging to group 𝑔.

a
Array of batch_size pointers to input matrices 𝐴𝑖, each of size lda𝑔 · 𝑛𝑔 (𝑔 is an index of group to which 𝐴𝑖

belongs)

lda
Array of group_count lda𝑔‘ parameters, each representing the leading dimensions of input matrices 𝐴𝑖 from
array a, belonging to group 𝑔.

group_count
Specifies the number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1421

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as the number of floating point elements of type T. Size should not be less than the
value returned by the Group API of the geqrf_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Factorization data as follows: The elements on and above the diagonal of 𝐴𝑖 contain the min(𝑚𝑔, 𝑛𝑔)×𝑛𝑔 upper
trapezoidal matrices 𝑅𝑖 (𝑅𝑖 is upper triangular if 𝑚𝑔 ≥ 𝑛𝑔); the elements below the diagonal, with the array 𝜏𝑖,
contain the orthogonal matrix 𝑄𝑖 as a product of min(𝑚𝑔, 𝑛𝑔) elementary reflectors. Here 𝑔 is the index of the
parameters group corresponding to the 𝑖-th decomposition.

tau
Array of pointers to store arrays 𝜏𝑖, each of size min(𝑚𝑔, 𝑛𝑔), containing scalars that define elementary reflec-
tors for the matrices 𝑄𝑖 in its decomposition in a product of elementary reflectors. Here 𝑔 is the index of the
parameters group corresponding to the 𝑖-th decomposition.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API

The routine forms the 𝑄𝑖𝑅𝑖 factorizations of general 𝑚 × 𝑛 matrices 𝐴𝑖. No pivoting is performed. The routine
does not form the matrices 𝑄𝑖 explicitly. Instead, 𝑄𝑖 is represented as a product of min(𝑚,𝑛) elementary reflectors.
Routines are provided to work with 𝑄𝑖 in this representation.

8.2. oneMKL Domains 1422

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
sycl::event geqrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, std::int64_t stride_a, T *tau, std::int64_t stride_tau, std::int64_t␣
→˓batch_size, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a
Array holding input matrices 𝐴𝑖.

lda
Leading dimensions of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau
Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as the number of floating point elements of type T. Size should not be less than the
value returned by the Strided API of the geqrf_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Factorization data as follows: The elements on and above the diagonal of 𝐴𝑖 contain the min(𝑚,𝑛) × 𝑛 upper
trapezoidal matrices 𝑅𝑖 (𝑅𝑖 is upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array 𝜏𝑖,
contain the orthogonal matrix 𝑄𝑖 as a product of min(𝑚,𝑛) elementary reflectors.

tau
Array to store batch of 𝜏𝑖, each of size min(𝑚,𝑛), containing scalars that define elementary reflectors for the
matrices 𝑄𝑖 in its decomposition in a product of elementary reflectors.

8.2. oneMKL Domains 1423

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

geqrf_batch_scratchpad_size

Computes size of scratchpad memory required for the geqrf_batch function.

Description

geqrf_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the geqrf_batch function.

8.2. oneMKL Domains 1424

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t geqrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_
→˓sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

m

Array of group_count𝑚𝑔 parameters.
Each of 𝑚𝑔 specifies the number of rows in the matrices 𝐴𝑖 belonging to group 𝑔.

n

Array of group_count 𝑛𝑔 parameters.
Each of 𝑛𝑔 specifies the number of columns in the matrices 𝐴𝑖 belonging to group 𝑔.

lda
Array of group_count 𝑙𝑑𝑎𝑔 parameters, each representing the leading dimensions of input matrices belonging
to group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
geqrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

8.2. oneMKL Domains 1425

oneAPI Specification, Release 1.4-provisional-rev-1

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the geqrf_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t geqrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t lda, std::int64_t stride_a, std::int64_t stride_tau,␣
→˓std::int64_t batch_size)
};

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in 𝐴𝑖 (0 ≤ 𝑛).

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau
Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size
Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
geqrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

8.2. oneMKL Domains 1426

oneAPI Specification, Release 1.4-provisional-rev-1

getrf_batch

Computes the LU factorizations of a batch of general matrices.

Description

getrf_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

getrf_batch (Buffer Version)

Description

The buffer version of getrf_batch supports only the strided API.

Strided API

The routine computes the LU factorizations of general 𝑚× 𝑛 matrices 𝐴𝑖 as 𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖, where 𝑃𝑖 is a permutation
matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 > 𝑛) and 𝑈𝑖 is upper triangular
(upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.

Syntax

namespace oneapi::mkl::lapack {
void getrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer
→˓<std::int64_t> &ipiv, std::int64_t stride_ipiv, std::int64_t batch_size,␣
→˓cl::sycl::buffer<T> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a
Array holding input matrices 𝐴𝑖.

lda
Leading dimension of matrices 𝐴𝑖.

8.2. oneMKL Domains 1427

oneAPI Specification, Release 1.4-provisional-rev-1

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv
Stride between the beginnings of arrays 𝑖𝑝𝑖𝑣𝑖 inside the array ipiv.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the Strided API of the getrf_batch_scratchpad_size function.

Output Parameters

a
𝐿𝑖 and 𝑈𝑖. The unit diagonal elements of 𝐿𝑖 are not stored.

ipiv
Array containing batch of the pivot indices ipiv𝑖 each of size at leastmax(1,min(𝑚,𝑛)); for 1 ≤ 𝑘 ≤ min(𝑚,𝑛),
where row 𝑘 of 𝐴𝑖 was interchanged with row ipiv𝑖(𝑘).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is positive, then the factorization has been completed, but some of 𝑈𝑖 are exactly sin-
gular. Division by 0 will occur if you use the factor 𝑈𝑖 for solving a system of linear equations.

The indices of such matrices in the batch can be obtained with ids() method of the exception
object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by
exceptions() method of exception object.

8.2. oneMKL Domains 1428

oneAPI Specification, Release 1.4-provisional-rev-1

getrf_batch (USM Version)

Description

The USM version of getrf_batch supports the group API and strided API.

Group API

The routine computes the batch of LU factorizations of general 𝑚 × 𝑛 matrices 𝐴𝑖 (𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}) as 𝐴𝑖 =
𝑃𝑖𝐿𝑖𝑈𝑖, where 𝑃𝑖 is a permutation matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 >
𝑛) and 𝑈𝑖 is upper triangular (upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.
Total number of problems to solve, batch_size, is a sum of sizes of all of the groups of parameters as provided by
group_sizes array.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrf_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓T **a, std::int64_t *lda, std::int64_t **ipiv, std::int64_t group_count, std::int64_t␣
→˓*group_sizes, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Array of group_count parameters 𝑚𝑔 specifying the number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚𝑔) belonging to
group 𝑔.

n
Array of group_count parameters 𝑛𝑔 specifying the number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛𝑔) belonging to
group 𝑔.

a
Array holding batch_size pointers to input matrices 𝐴𝑖.

lda
Array of group_count parameters 𝑙𝑑𝑎𝑔 specifying the leading dimensions of 𝐴𝑖 belonging to group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Group API of the getrf_batch_scratchpad_size function.

8.2. oneMKL Domains 1429

oneAPI Specification, Release 1.4-provisional-rev-1

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
𝐿𝑖 and 𝑈𝑖. The unit diagonal elements of 𝐿𝑖 are not stored.

ipiv
Arrays of batch_size pointers to arrays containing pivot indices ipiv𝑖 each of size at least max(1,min(𝑚𝑔, 𝑛𝑔));
for 1 ≤ 𝑘 ≤ min(𝑚𝑔, 𝑛𝑔), where row 𝑘 of 𝐴𝑖 was interchanged with row ipiv𝑖(𝑘).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is positive, then the factorization has been completed, but some of𝑈𝑖 are exactly singular. Division
by 0 will occur if you use the factor 𝑈𝑖 for solving a system of linear equations.

The indices of such matrices in the batch can be obtained with ids() method of the exception object. The
indices of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by exceptions() method of
exception object.

Strided API

The routine computes the LU factorizations of general 𝑚× 𝑛 matrices 𝐴𝑖 as 𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖, where 𝑃𝑖 is a permutation
matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 > 𝑛) and 𝑈𝑖 is upper triangular
(upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.

8.2. oneMKL Domains 1430

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T␣

→˓*a, std::int64_t lda, std::int64_t stride_a, std::int64_t *ipiv, std::int64_t stride_
→˓ipiv, std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a
Array holding input matrices 𝐴𝑖.

lda
Leading dimension of matrices 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv
Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the getrf_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
𝐿𝑖 and 𝑈𝑖. The unit diagonal elements of 𝐿𝑖 are not stored.

ipiv
Array containing batch of the pivot indices ipiv𝑖 each of size at leastmax(1,min(𝑚,𝑛)); for 1 ≤ 𝑘 ≤ min(𝑚,𝑛),
where row 𝑘 of 𝐴𝑖 was interchanged with row ipiv𝑖(𝑘).

8.2. oneMKL Domains 1431

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is positive, then the factorization has been completed, but some of 𝑈𝑖 are exactly sin-
gular. Division by 0 will occur if you use the factor 𝑈𝑖 for solving a system of linear equations.

The indices of such matrices in the batch can be obtained with ids() method of the exception
object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by
exceptions() method of exception object.

Parent topic: LAPACK-like Extensions Routines

getrf_batch_scratchpad_size

Computes size of scratchpad memory required for the getrf_batch function.

Description

getrf_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the getrf_batch function.

8.2. oneMKL Domains 1432

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_
→˓sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Array of group_count parameters 𝑚𝑔 specifying the number of rows in the matrices belonging to group 𝑔.

n
Array of group_count parameters 𝑛𝑔 specifying the number of columns in matrices belonging to group 𝑔.

lda
Array of group_count parameters lda𝑔 specifying the leading dimensions of matrices belonging to group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
getrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the getrf_batch function.

8.2. oneMKL Domains 1433

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t lda, std::int64_t stride_a, std::int64_t stride_ipiv,␣
→˓std::int64_t batch_size)
};

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in 𝐴𝑖 (0 ≤ 𝑛).

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv
Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size
Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
getrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

8.2. oneMKL Domains 1434

oneAPI Specification, Release 1.4-provisional-rev-1

getri_batch

Computes the inverses of a batch of LU-factored matrices determined by getrf_batch.

Description

getri_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

getri_batch (Buffer Version)

Description

The buffer version of getri_batch supports only the strided API.

Strided API

The routine computes the inverses 𝐴−1𝑖 of general matrices 𝐴𝑖. Before calling this routine, call the Strided API of the
getrf_batch (Buffer Version) function to factorize 𝐴𝑖.

Syntax

namespace oneapi::mkl::lapack {
void getri_batch(cl::sycl::queue &queue, std::int64_t n, cl::sycl::buffer<T> &a,␣

→˓std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<std::int64_t> &ipiv,␣
→˓std::int64_t stride_ipiv, std::int64_t batch_size, cl::sycl::buffer<T> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

n
Order of the matrices 𝐴𝑖 (0 ≤ 𝑛).

a
Result of the Strided API of the getrf_batch (Buffer Version) function.

lda
Leading dimension of 𝐴𝑖 (𝑛 ≤ lda).

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

8.2. oneMKL Domains 1435

oneAPI Specification, Release 1.4-provisional-rev-1

ipiv
Arrays returned by the Strided API of the getrf_batch (Buffer Version) function.

stride_ipiv
Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the Strided API of the getri_batch_scratchpad_size function.

Output Parameters

a
Inverse 𝑛× 𝑛 matrices 𝐴−1𝑖 .

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

getri_batch (USM Version)

Description

The USM version of getri_batch supports the group API and strided API.

Group API

The routine computes the inverses 𝐴−1𝑖 of general matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}. Before calling this routine,
call the Group API of the getrf_batch (USM Version) function to factorize 𝐴𝑖. Total number of problems to solve,
batch_size, is a sum of sizes of all of the groups of parameters as provided by group_sizes array.

8.2. oneMKL Domains 1436

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getri_batch(cl::sycl::queue &queue, std::int64_t *n, T **a, std::int64_

→˓t *lda, std::int64_t **ipiv, std::int64_t group_count, std::int64_t *group_sizes, T␣
→˓*scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events␣
→˓= {})
}

Input Parameters

queue
Device queue where calculations will be performed.

n
Array of group_count 𝑛𝑔 parameters specifying the order of the matrices 𝐴𝑖 (0 ≤ 𝑛𝑔) belonging to group 𝑔.

a
Result of the Group API of the getrf_batch (USM Version) function.

lda
Array of group_count lda𝑔 parameters specifying the leading dimensions of the matrices 𝐴𝑖 (𝑛𝑔 ≤ lda𝑔)
belonging to group 𝑔.

ipiv
Arrays returned by the Group API of the getrf_batch (USM Version) function.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the Group API of the getri_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Inverse 𝑛𝑔 × 𝑛𝑔 matrices 𝐴−1𝑖 .

8.2. oneMKL Domains 1437

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API

The routine computes the inverses 𝐴−1𝑖 of general matrices 𝐴𝑖. Before calling this routine, call the Strided API of the
getrf_batch (USM Version) function to factorize 𝐴𝑖.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getri_batch(cl::sycl::queue &queue, std::int64_t n, T *a, std::int64_t␣

→˓lda, std::int64_t stride_a, std::int64_t *ipiv, std::int64_t stride_ipiv, std::int64_t␣
→˓batch_size, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
};

Input Parameters

queue
Device queue where calculations will be performed.

n
Order of the matrices 𝐴𝑖 (0 ≤ 𝑛).

a
Result of the Strided API of the getrf_batch (USM Version) function.

lda
Leading dimension of 𝐴𝑖 (𝑛 ≤ lda).

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

8.2. oneMKL Domains 1438

oneAPI Specification, Release 1.4-provisional-rev-1

ipiv
Arrays returned by the Strided API of the getrf_batch (USM Version) function.

stride_ipiv
Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less than the
value returned by the Strided API of the getri_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Inverse 𝑛× 𝑛 matrices 𝐴−1𝑖 .

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

8.2. oneMKL Domains 1439

oneAPI Specification, Release 1.4-provisional-rev-1

getri_batch_scratchpad_size

Computed size of scratchpad memory required for the getri_batch function.

Description

getri_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the getri_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getri_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *n,␣

→˓std::int64_t *lda, std::int64_t group_count, std::int64_t *group_sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

n
Array of group_count 𝑛𝑔 parameters specifying the order of the matrices belonging to group 𝑔.

lda
Array of group_count lda𝑔 parameters specifying the leading dimensions of the matrices belonging to group
𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

8.2. oneMKL Domains 1440

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
getri_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the getri_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getri_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t n,␣

→˓std::int64_t lda, std::int64_t stride_a, std::int64_t stride_ipiv, std::int64_t batch_
→˓size)
};

Input Parameters

queue
Device queue where calculations will be performed.

n
The order of the matrices 𝐴𝑖 (0 le n).

lda
Leading dimension of 𝐴𝑖 (𝑛 ≤ lda).

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv
Stride between the beginnings of arrays 𝑖𝑝𝑖𝑣𝑖 inside the array ipiv.

batch_size
Specifies the number of problems in a batch.

8.2. oneMKL Domains 1441

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
getri_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

getrs_batch

Solves a system of linear equations with a batch of LU-factored square coefficient matrices, with multiple right-hand
sides.

Description

getrs_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

getrs_batch (Buffer Version)

Description

The buffer version of getrs_batch supports only the strided API.

Strided API

The routine solves for the following systems of linear equations 𝑋𝑖:
𝐴𝑖𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::nontrans
𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::trans
𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::conjtrans
Before calling this routine, the Strided API of the getrf_batch (Buffer Version) function should be called
to compute the LU factorizations of 𝐴𝑖.

8.2. oneMKL Domains 1442

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
void getrs_batch(cl::sycl::queue &queue, mkl::transpose trans, std::int64_t n,␣

→˓std::int64_t nrhs, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a,␣
→˓cl::sycl::buffer<std::int64_t> &ipiv, std::int64_t stride_ipiv, cl::sycl::buffer<T> &b,
→˓ std::int64_t ldb, std::int64_t stride_b, std::int64_t batch_size, cl::sycl::buffer<T>␣
→˓&scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

trans

Form of the equations:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n
Order of the matrices 𝐴𝑖 and the number of rows in matrices 𝐵𝑖 (0 ≤ 𝑛).

nrhs
Number of right-hand sides (0 ≤ nrhs).

a
Array containing the factorizations of the matrices 𝐴𝑖, as returned the Strided API of the getrf_batch (Buffer
Version) function.

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

ipiv
ipiv array, as returned by the Strided API of the getrf_batch (Buffer Version) function.

stride_ipiv
Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

b
Array containing the matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb
Leading dimension of 𝐵𝑖.

stride_b
Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size
Specifies the number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1443

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the getrs_batch_scratchpad_size function.

Output Parameters

b
Solution matrices 𝑋𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then diagonal element of some of 𝑈𝑖 is zero, and the solve could not be com-
pleted. The indices of such matrices in the batch can be obtained with ids() method of the
exception object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be ob-
tained by exceptions() method of exception object.

getrs_batch (USM Version)

Description

The USM version of getrs_batch supports the group API and strided API.

Group API

The routine solves the following systems of linear equations for 𝑋𝑖 (𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}):
𝐴𝑖𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::nontrans
𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::trans
𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::conjtrans
Before calling this routine, call the Group API of the getrf_batch (USM Version) function to compute the
LU factorizations of 𝐴𝑖.
Total number of problems to solve, batch_size, is a sum of sizes of all of the groups of parameters as
provided by group_sizes array.

8.2. oneMKL Domains 1444

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrs_batch(cl::sycl::queue &queue, mkl::transpose *trans, std::int64_

→˓t *n, std::int64_t *nrhs, T **a, std::int64_t *lda, std::int64_t **ipiv, T **b,␣
→˓std::int64_t *ldb, std::int64_t group_count, std::int64_t *group_sizes, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
Device queue where calculations will be performed.

trans

Array of group_count parameters 𝑡𝑟𝑎𝑛𝑠𝑔 indicating the form of the equations for the group 𝑔:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n
Array of group_count parameters 𝑛𝑔 specifying the order of the matrices𝐴𝑖 and the number of rows in matrices
𝐵𝑖 (0 ≤ 𝑛𝑔) belonging to group 𝑔.

nrhs
Array of group_count parameters nrhs𝑔 specifying the number of right-hand sides (0 ≤ nrhs𝑔) for group 𝑔.

a
Array of batch_size pointers to factorizations of the matrices 𝐴𝑖, as returned by the Group API of
the:ref:onemkl_lapack_getrf_batch_usm function.

lda
Array of group_count parameters lda𝑔 specifying the leading dimensions of 𝐴𝑖 from group 𝑔.

ipiv
ipiv array, as returned by the Group API of the getrf_batch (USM Version) function.

b
The array containing batch_size pointers to the matrices 𝐵𝑖 whose columns are the right-hand sides for the
systems of equations.

ldb
Array of group_count parameters ldb𝑔 specifying the leading dimensions of 𝐵𝑖 in the group 𝑔.

group_count
Specifies the number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Group API of the getrs_batch_scratchpad_size function.

8.2. oneMKL Domains 1445

oneAPI Specification, Release 1.4-provisional-rev-1

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b
Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then diagonal element of some of 𝑈𝑖 is zero, and the solve could not be com-
pleted. The indices of such matrices in the batch can be obtained with ids() method of the
exception object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be ob-
tained by exceptions() method of exception object.

Strided API

The routine solves the following systems of linear equations for 𝑋𝑖:
𝐴𝑖𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::nontrans
𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::trans
𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::conjtrans
Before calling this routine, the Strided API of the getrf_batch function should be called to compute the
LU factorizations of 𝐴𝑖.

8.2. oneMKL Domains 1446

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrs_batch(cl::sycl::queue &queue, mkl::transpose trans, std::int64_t␣

→˓n, std::int64_t nrhs, T *a, std::int64_t lda, std::int64_t stride_a, std::int64_t␣
→˓*ipiv, std::int64_t stride_ipiv, T *b, std::int64_t ldb, std::int64_t stride_b,␣
→˓std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
};

Input Parameters

queue
Device queue where calculations will be performed.

trans

Form of the equations:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n
Order of the matrices 𝐴𝑖 and the number of rows in matrices 𝐵𝑖 (0 ≤ 𝑛).

nrhs
Number of right-hand sides (0 ≤ nrhs).

a
Array containing the factorizations of the matrices 𝐴𝑖, as returned by the Strided API of
the:ref:onemkl_lapack_getrf_batch_usm function.

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

ipiv
ipiv array, as returned by getrf_batch (USM) function.

stride_ipiv
Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

b
Array containing the matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb
Leading dimensions of 𝐵𝑖.

stride_b
Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1447

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the getrs_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b
Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then diagonal element of some of 𝑈𝑖 is zero, and the solve could not be completed. The
indices of such matrices in the batch can be obtained with ids() method of the exception object. The indices
of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by exceptions() method of exception
object.

Parent topic: LAPACK-like Extensions Routines

getrs_batch_scratchpad_size

Computes size of scratchpad memory required for the getrs_batch function.

8.2. oneMKL Domains 1448

oneAPI Specification, Release 1.4-provisional-rev-1

Description

getrs_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the getrs_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::transpose *trans,

→˓ std::int64_t *n, std::int64_t *nrhs, std::int64_t *lda, std::int64_t *ldb, std::int64_
→˓t group_count, std::int64_t *group_sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

trans

Array of group_count parameters trans𝑔 indicating the form of the equations for the group 𝑔:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝑖𝐻𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n
Array of group_count parameters 𝑛𝑔 specifying the order of the matrices𝐴𝑖 and the number of rows in matrices
𝐵𝑖 (0 ≤ 𝑛𝑔) belonging to group 𝑔.

nrhs
Array of group_count parameters nrhsg specifying the number of right-hand sides (0 ≤ nrhs𝑔) for group 𝑔.

lda
Array of group_count parameters lda𝑔 specifying the leading dimensions of 𝐴𝑖 from group 𝑔.

ldb
Array of group_count parameters ldb𝑔 specifying the leading dimensions of 𝐵𝑖 in the group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each

8.2. oneMKL Domains 1449

oneAPI Specification, Release 1.4-provisional-rev-1

of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
getrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the getrs_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::transpose trans,␣

→˓std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t stride_a, std::int64_
→˓t stride_ipiv, std::int64_t ldb, std::int64_t stride_b, std::int64_t batch_size)
};

Input Parameters

queue
Device queue where calculations will be performed.

trans

Indicates the form of the equations:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n
Order of the matrices 𝐴𝑖 and the number of rows in matrices 𝐵𝑖 (0 ≤ 𝑛).

nrhs
Number of right-hand sides (0 ≤ nrhs).

lda
Leading dimension of 𝐴𝑖.

8.2. oneMKL Domains 1450

oneAPI Specification, Release 1.4-provisional-rev-1

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv
Stride between the beginnings of arrays 𝑖𝑝𝑖𝑣𝑖 inside the array ipiv.

ldb
Leading dimension of 𝐵𝑖.

stride_b
Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size
Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
getrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

orgqr_batch

Generates the orthogonal/unitary matrix 𝑄𝑖 of the QR factorizations for a group of general matrices.

Description

orgqr_batch supports the following precisions.

T
float
double

8.2. oneMKL Domains 1451

oneAPI Specification, Release 1.4-provisional-rev-1

orgqr_batch (Buffer Version)

Description

The buffer version of orgqr_batch supports only the strided API.

Strided API

The routine generates the wholes or parts of 𝑚× 𝑛 orthogonal matrices 𝑄𝑖 of the batch of QR
factorizations formed by the Strided API of the geqrf_batch (Buffer Version) function.
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with 𝑚 ≥ 𝑝.
To compute the whole matrices 𝑄𝑖, use:
orgqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
orgqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑘
𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

orgqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
orgqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
void orgqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t␣

→˓k, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<T>
→˓ &tau, std::int64_t stride_tau, std::int64_t batch_size, cl::sycl::buffer<T> &
→˓scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛 ≤ 𝑚).

k
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a
Array resulting after call to the Strided API of the geqrf_batch (Buffer Version) function.

lda
Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a
The stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

8.2. oneMKL Domains 1452

oneAPI Specification, Release 1.4-provisional-rev-1

tau
Array resulting from call to the Strided API of the geqrf_batch (Buffer Version) function.

stride_tau
Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size
Specifies the number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the orgqr_batch_scratchpad_size function.

Output Parameters

a
Batch of 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrices 𝑄𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

orgqr_batch (USM Version)

Description

The USM version of orgqr_batch supports the group API and strided API.

Group API

The routine generates the wholes or parts of 𝑚× 𝑛 orthogonal matrices 𝑄𝑖 of the batch of QR
factorizations formed by the Group API of the geqrf_batch (USM Version) function.
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with 𝑚 ≥ 𝑝.
To compute the whole matrices 𝑄𝑖, use:
orgqr_batch(queue, m, m, p, a, ...)

8.2. oneMKL Domains 1453

oneAPI Specification, Release 1.4-provisional-rev-1

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
orgqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑘
𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

orgqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
orgqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgqr_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓std::int64_t *k, T **a, std::int64_t *lda, T **tau, std::int64_t group_count,␣
→˓std::int64_t *group_sizes, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Array of group_count𝑚𝑔 parameters as previously supplied to group version of geqrf_batch function.

n
Array of group_count 𝑛𝑔 parameters as previously supplied to group version of geqrf_batch function.

k
Array of group_count 𝑘𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM Version)
function. The number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

a
Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

lda
Array of leading dimensions of 𝐴𝑖 as previously supplied to the Group API of the geqrf_batch (USM Version)
function.

tau
Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1454

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by Group API of the orgqr_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
𝑛𝑔 leading columns of the 𝑚𝑔 ×𝑚𝑔 orthogonal matrices 𝑄𝑖, where 𝑔 is an index of group of parameters corre-
sponding to 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API

The routine generates the wholes or parts of 𝑚× 𝑛 orthogonal matrices 𝑄𝑖 of the batch of QR
factorizations formed by the Strided API of the geqrf_batch (USM Version) function.
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with 𝑚 ≥ 𝑝.
To compute the whole matrices 𝑄𝑖, use:
orgqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
orgqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑘
𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

orgqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
orgqr_batch(queue, m, k, k, a, ...)

8.2. oneMKL Domains 1455

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, std::int64_t stride_a, T *tau, std::int64_t␣
→˓stride_tau, std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛 ≤ 𝑚).

k
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a
Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

lda
Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a
The stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

tau
Array resulting from call to the Strided API of the geqrf_batch (USM Version) function.

stride_tau
Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size
Specifies the number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the orgqr_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1456

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Batch of 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrices 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

orgqr_batch_scratchpad_size

Computes size of scratchpad memory required for the orgqr_batch function.

Description

orgqr_batch_scratchpad_size supports the following precisions.

T
float
double

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the orgqr_batch function.

8.2. oneMKL Domains 1457

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *k, std::int64_t *lda, std::int64_t group_count,␣
→˓std::int64_t *group_sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Array of group_count𝑚𝑔 parameters.

n
Array of group_count 𝑛𝑔 parameters.

k
Array of group_count kg parameters. The number of elementary reflectors whose product defines the matrices
𝑄𝑖 (0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

lda
Array of leading dimensions of 𝐴𝑖.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
orgqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the orgqr_batch function.

8.2. oneMKL Domains 1458

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t stride_a, std::int64_t␣
→˓stride_tau, std::int64_t batch_size)
};

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in the matrices Ai (0 ≤ 𝑛).

k
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

lda
Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau
Stride between the beginnings of arrays 𝑡𝑎𝑢𝑖 inside the array tau.

batch_size
Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
orgqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

8.2. oneMKL Domains 1459

oneAPI Specification, Release 1.4-provisional-rev-1

potrf_batch

Computes the LU factorizations of a batch of general matrices.

Description

potrf_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

potrf_batch (Buffer Version)

Description

The buffer version of potrf_batch supports only the strided API.

Strided API

The routine forms the Cholesky factorizations of a symmetric positive-definite or, for complex data,
Hermitian positive-definite matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.

Syntax

namespace oneapi::mkl::lapack {
void potrf_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n,␣

→˓cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, std::int64_t batch_
→˓size, cl::sycl::buffer<T> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Indicates whether the upper or lower triangular part of 𝐴𝑖 is stored and how 𝐴𝑖 is factored:
If uplo = mkl::uplo::upper, the array a stores the upper triangular parts of the matrices 𝐴𝑖,
If uplo = mkl::uplo::lower, the array a stores the lower triangular parts of the matrices 𝐴𝑖.

n
Order of the matrices 𝐴𝑖, (0 ≤ 𝑛).

8.2. oneMKL Domains 1460

oneAPI Specification, Release 1.4-provisional-rev-1

a
Array containing batch of input matrices 𝐴𝑖, each of 𝐴𝑖 being of size lda · 𝑛 and holding either upper or lower
triangular parts of the matrices 𝐴𝑖 (see uplo).

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the potrf_batch_scratchpad_size function.

Output Parameters

a
Cholesky factors 𝑈𝑖 or 𝐿𝑖, as specified by uplo.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then the leading minors of some of matrices (and therefore some matrices 𝐴𝑖 themselves)
are not positive-definite, and the factorizations could not be completed for these matrices from the batch.
The indices of such matrices in the batch can be obtained with ids() method of the exception object. The
orders of corresponding not positive-definite leading minors of these matrices can be obtained by excep-
tions() method of exception object.

8.2. oneMKL Domains 1461

oneAPI Specification, Release 1.4-provisional-rev-1

potrf_batch (USM Version)

Description

The USM version of potrf_batch supports the group API and strided API.

Group API

The routine forms the Cholesky factorizations of symmetric positive-definite or, for complex data,
Hermitian positive-definite matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data (𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex), if uplo𝑔 is mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data (𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex), if uplo𝑔 is mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular, 𝑔 is an index of group of parameters
corresponding to 𝐴𝑖, and total number of problems to solve, batch_size, is a sum of sizes of all of the
groups of parameters as provided by group_sizes array

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrf_batch(cl::sycl::queue &queue, mkl::uplo *uplo, std::int64_t *n,␣

→˓T **a, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_sizes, T␣
→˓*scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events␣
→˓= {})
}

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Array of group_count uplo𝑔 parameters. Each uplo𝑔 indicates whether the upper or lower triangular parts of
the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n
Array of group_count 𝑛𝑔 parameters. Each 𝑛𝑔 specifies the order of the input matrices from array a belonging
to group 𝑔.

a
Array of batch_size pointers to input matrices 𝐴𝑖, each being of size lda𝑔 ·𝑛𝑔 (𝑔 is an index of group to which
𝐴𝑖 belongs to) and holding either upper or lower triangular part as specified by uplo𝑔 .

lda
Array of group_count lda𝑔 parameters. Each lda𝑔 specifies the leading dimensions of the matrices from a
belonging to group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

8.2. oneMKL Domains 1462

oneAPI Specification, Release 1.4-provisional-rev-1

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Group API of the potrf_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a
Cholesky factors 𝑈𝑖 or 𝐿𝑖, as specified by uplo𝑔 from corresponding group of parameters.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then the leading minors of some of the input matrices (and therefore some matrices them-
selves) are not positive-definite, and the factorizations could not be completed for these matrices from the
batch. The indices of such matrices in the batch can be obtained with ids() method of the exception ob-
ject. The orders of corresponding not positive-definite leading minors of these matrices can be obtained
by exceptions() method of the exception object.

Strided API

The routine forms the Cholesky factorizations of a symmetric positive-definite or, for complex data,
Hermitian positive-definite matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

8.2. oneMKL Domains 1463

oneAPI Specification, Release 1.4-provisional-rev-1

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrf_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n, T␣

→˓*a, std::int64_t lda, std::int64_t stride_a, std::int64_t batch_size, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Indicates whether the upper or lower triangular part of 𝐴𝑖 is stored and how 𝐴𝑖 is factored:
If uplo = mkl::uplo::upper, the array a stores the upper triangular parts of the matrices 𝐴𝑖,
If uplo = mkl::uplo::lower, the array a stores the lower triangular parts of the matrices 𝐴𝑖.

n
Order of the matrices 𝐴𝑖, (0 ≤ 𝑛).

a
Array containing batch of input matrices 𝐴𝑖, each of 𝐴𝑖 being of size lda · 𝑛 and holding either upper or lower
triangular parts of the matrices 𝐴𝑖 (see uplo).

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the potrf_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1464

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Cholesky factors 𝑈𝑖 or 𝐿𝑖, as specified by uplo.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then the leading minors of some of matrices (and therefore some matrices 𝐴𝑖 themselves)
are not positive-definite, and the factorizations could not be completed for these matrices from the batch.
The indices of such matrices in the batch can be obtained with ids() method of the exception object. The
orders of corresponding not positive-definite leading minors of these matrices can be obtained by excep-
tions() method of exception object.

Parent topic: LAPACK-like Extensions Routines

potrf_batch_scratchpad_size

Computes size of scratchpad memory required for the potrf_batch function.

Description

potrf_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1465

oneAPI Specification, Release 1.4-provisional-rev-1

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the potrf_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrf_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo *uplo,␣

→˓std::int64_t *n, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_
→˓sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Array of group_count uplo𝑔 parameters.
Each of uplo𝑔 indicates whether the upper or lower triangular parts of the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n

Array of group_count 𝑛𝑔 parameters.
Each ng specifies the order of the input matrices belonging to group 𝑔.

lda

Array of group_count lda𝑔 parameters.
Each ldag specifies the leading dimensions of the matrices belonging to group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

8.2. oneMKL Domains 1466

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
potrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the potrf_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrf_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo uplo,␣

→˓std::int64_t n, std::int64_t lda, std::int64_t stride_a, std::int64_t batch_size)
};

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Indicates whether the upper or lower triangular part of 𝐴𝑖 is stored and how 𝐴𝑖 is factored:
If uplo = mkl::uplo::upper, the array a stores the upper triangular parts of the matrices 𝐴𝑖,
If uplo = mkl::uplo::lower, the array a stores the lower triangular parts of the matrices 𝐴𝑖.

n
Order of the matrices 𝐴𝑖, (0 ≤ 𝑛).

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch.

batch_size
Number of problems in a batch.

8.2. oneMKL Domains 1467

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
potrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

potrs_batch

Computes the LU factorizations of a batch of general matrices.

Description

potrs_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

potrs_batch (Buffer Version)

Description

The buffer version of potrs_batch supports only the strided API.

Strided API

The routine solves for 𝑋𝑖 the systems of linear equations 𝐴𝑖𝑋𝑖 = 𝐵𝑖 with a symmetric positive-definite
or, for complex data, Hermitian positive-definite matrices 𝐴𝑖, given the Cholesky factorization of 𝐴𝑖,
𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.
The systems are solved with multiple right-hand sides stored in the columns of the matrices 𝐵𝑖.
Before calling this routine, matrices 𝐴𝑖 should be factorized by call to the Strided API of the potrf_batch
(Buffer Version) function.

8.2. oneMKL Domains 1468

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
void potrs_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n, std::int64_t␣

→˓nrhs, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer
→˓<T> &b, std::int64_t ldb, std::int64_t stride_b, std::int64_t batch_size,␣
→˓cl::sycl::buffer<T> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Indicates how the input matrices have been factored:
If uplo = mkl::uplo::upper, the upper triangle 𝑈𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data,
𝐴𝑖 = 𝑈𝐻

𝑖 𝑈𝑖 for complex data.
If uplo = mkl::uplo::lower, the upper triangle 𝐿𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝐿𝑖𝐿

𝑇
𝑖 for real data,

𝐴𝑖 = 𝐿𝑖𝐿
𝐻
𝑖 for complex data.

n
The order of matrices 𝐴𝑖 (0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ nrhs).

a
Array containing batch of factorizations of the matrices 𝐴𝑖, as returned by the Strided API of the potrf_batch
(Buffer Version) function.

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices inside the batch array a.

b
Array containing batch of matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb
Leading dimension of 𝐵𝑖.

stride_b
Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the potrs_batch_scratchpad_size function.

8.2. oneMKL Domains 1469

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b
Solution matrices 𝑋𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then for some of the matrices diagonal element of the Cholesky factor is zero, and the
solve could not be completed. The indices of such matrices in the batch can be obtained with ids() method
of the exception object. The indices of first zero diagonal elements in these matrices can be obtained by
exceptions() method of exception object.

potrs_batch (USM Version)

Description

The USM version of potrs_batch supports the group API and strided API.

Group API

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrs_batch(cl::sycl::queue &queue, mkl::uplo *uplo, std::int64_t *n,␣

→˓std::int64_t *nrhs, T **a, std::int64_t *lda, T **b, std::int64_t *ldb, std::int64_t␣
→˓group_count, std::int64_t *group_sizes, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

8.2. oneMKL Domains 1470

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Array of group_count uplo𝑔 parameters.
Each of uplo𝑔 indicates whether the upper or lower triangular parts of the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n

Array of group_count 𝑛𝑔 parameters.
Each 𝑛𝑔 specifies the order of the input matrices from array a belonging to group 𝑔.

nrhs

Array of group_count nrhs𝑔 parameters.
Each nrhs𝑔 specifies the number of right-hand sides supplied for group 𝑔 in corresponding part of array b.

a
Array of batch_size pointers to Cholesky factored matrices𝐴𝑖 as returned by the Group API of the potrf_batch
(USM Version) function.

lda

Array of group_count lda𝑔 parameters.
Each lda𝑔 specifies the leading dimensions of the matrices from a belonging to group 𝑔.

b
Array of batch_size pointers to right-hand side matrices 𝐵𝑖, each of size ldb𝑔 · nrhs𝑔 , where 𝑔 is an index of
group corresponding to 𝐵𝑖.

ldb

Array of group_count ldb𝑔 parameters.
Each ldb𝑔 specifies the leading dimensions of the matrices from b belonging to group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Group API of the potrs_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1471

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b
Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the n-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then for some of the matrices diagonal element of the Cholesky factor is zero, and the
solve could not be completed. The indices of such matrices in the batch can be obtained with ids() method
of the exception object. The indices of first zero diagonal elements in these matrices can be obtained by
exceptions() method of exception object.

Strided API

The routine solves for 𝑋𝑖 the systems of linear equations 𝐴𝑖𝑋𝑖 = 𝐵𝑖 with a symmetric positive-definite
or, for complex data, Hermitian positive-definite matrices 𝐴𝑖, given the Cholesky factorization of 𝐴𝑖,
𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.
The systems are solved with multiple right-hand sides stored in the columns of the matrices 𝐵𝑖.
Before calling this routine, matrices 𝐴𝑖 should be factorized by call to the Strided API of the potrf_batch
(USM Version) function.

8.2. oneMKL Domains 1472

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrs_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n,␣

→˓std::int64_t nrhs, T *a, std::int64_t lda, std::int64_t stride_a, T *b, std::int64_t␣
→˓ldb, std::int64_t stride_b, std::int64_t batch_size, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Indicates how the input matrices have been factored:
If uplo = mkl::uplo::upper, the upper triangle 𝑈𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data,
𝐴𝑖 = 𝑈𝐻

𝑖 𝑈𝑖 for complex data.
If uplo = mkl::uplo::lower, the upper triangle 𝐿𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝐿𝑖𝐿

𝑇
𝑖 for real data,

𝐴𝑖 = 𝐿𝑖𝐿
𝐻
𝑖 for complex data.

n
The order of matrices 𝐴𝑖 (0 ≤ 𝑛).

nrhs
The number of right-hand sides (0 ≤ 𝑛𝑟ℎ𝑠).

a
Array containing batch of factorizations of the matrices 𝐴𝑖, as returned by the Strided API of the potrf_batch
(USM Version) function.

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices inside the batch array a.

b
Array containing batch of matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb
Leading dimension of 𝐵𝑖.

stride_b
Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by the Strided API of the potrs_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1473

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

b
Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then for some of the matrices diagonal element of the Cholesky factor is zero, and the
solve could not be completed. The indices of such matrices in the batch can be obtained with ids() method
of the exception object. The indices of first zero diagonal elements in these matrices can be obtained by
exceptions() method of exception object.

Parent topic: LAPACK-like Extensions Routines

potrs_batch_scratchpad_size

Computes size of scratchpad memory required for the potrs_batch function.

Description

potrs_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1474

oneAPI Specification, Release 1.4-provisional-rev-1

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the potrs_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo *uplo,␣

→˓std::int64_t *n, std::int64_t *nrhs, std::int64_t *lda, std::int64_t *ldb, std::int64_
→˓t group_count, std::int64_t *group_sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Array of group_count uplo𝑔 parameters.
Each of uplo𝑔 indicates whether the upper or lower triangular parts of the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n

Array of group_count 𝑛𝑔 parameters.
Each 𝑛𝑔 specifies the order of the input matrices belonging to group 𝑔.

nrhs

Array of group_count nrhs𝑔 parameters.
Each 𝑟ℎ𝑠𝑔 specifies the number of right-hand sides supplied for group 𝑔.

lda

Array of group_count lda𝑔 parameters.
Each lda𝑔 specifies the leading dimensions of the matrices belonging to group 𝑔.

ldb

Array of group_count ldb𝑔 parameters.
Each ldb𝑔 specifies the leading dimensions of the matrices belonging to group 𝑔.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for
each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

8.2. oneMKL Domains 1475

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
potrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the potrs_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo uplo,␣

→˓std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t stride_a, std::int64_
→˓t ldb, std::int64_t stride_b, std::int64_t batch_size)
};

Input Parameters

queue
Device queue where calculations will be performed.

uplo

Indicates how the input matrices have been factored:
If uplo = mkl::uplo::upper, the upper triangle 𝑈𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data,
𝐴𝑖 = 𝑈𝐻

𝑖 𝑈𝑖 for complex data.
If uplo = mkl::uplo::lower, the upper triangle 𝐿𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝐿𝑖𝐿

𝑇
𝑖 for real data,

𝐴𝑖 = 𝐿𝑖𝐿
𝐻
𝑖 for complex data.

n
Order of matrices 𝐴𝑖 (0 ≤ 𝑛).

nrhs
Number of right-hand sides (0 ≤ nrhs).

lda
Leading dimension of 𝐴𝑖.

stride_a
Stride between the beginnings of matrices inside the batch array a.

8.2. oneMKL Domains 1476

oneAPI Specification, Release 1.4-provisional-rev-1

ldb
Leading dimensions of 𝐵𝑖.

stride_b
Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size
Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
potrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

ungqr_batch

Generates the complex unitary matrices 𝑄𝑖 of the batch of QR factorizations formed by the geqrf_batch function.

Description

ungqr_batch supports the following precisions.

T
std::complex<float>
std::complex<double>

ungqr_batch (Buffer Version)

Description

The buffer version of ungqr_batch supports only the strided API.

Strided API

The routine generates the wholes or parts of :math`m times m` unitary matrices 𝑄𝑖 of the batch of QR
factorization formed by the Strided API of the geqrf_batch (Buffer Version).
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with :math`m ge p`.
To compute the whole matrices 𝑄𝑖, use:

8.2. oneMKL Domains 1477

oneAPI Specification, Release 1.4-provisional-rev-1

ungqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
ungqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑖‘
𝑘 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

ungqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
ungqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
void ungqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t␣

→˓k, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<T>
→˓ &tau, std::int64_t stride_tau, std::int64_t batch_size, cl::sycl::buffer<T> &
→˓scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a
Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

lda
Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

tau
Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

stride_tau
Stride between the beginnings of arrays 𝑡𝑎𝑢𝑖 inside the array tau.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

8.2. oneMKL Domains 1478

oneAPI Specification, Release 1.4-provisional-rev-1

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by strided version of the Strided API of the ungqr_batch_scratchpad_size function.

Output Parameters

a
Array data is overwritten by a batch of n leading columns of the 𝑚×𝑚 unitary matrices 𝑄𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

ungqr_batch (USM Version)

Description

The USM version of ungqr_batch supports the group API and strided API.

Group API

The routine generates the wholes or parts of :math`m times m` unitary matrices 𝑄𝑖 of the batch of QR
factorization formed by the Group API of the geqrf_batch (Buffer Version).
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with :math`m ge p`.
To compute the whole matrices 𝑄𝑖, use:
ungqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
ungqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑖‘
𝑘 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

ungqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
ungqr_batch(queue, m, k, k, a, ...)

8.2. oneMKL Domains 1479

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungqr_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓std::int64_t *k, T **a, std::int64_t *lda, T **tau, std::int64_t group_count,␣
→˓std::int64_t *group_sizes, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Array of group_count 𝑚𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM Ver-
sion) function.

n
Array of group_count𝑛𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM Version)
function.

k

Array of group_count 𝑘𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM
Version) function.
The number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

a
Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

lda
Array of leading dimensions of 𝐴𝑖 as previously supplied to the Group API of the geqrf_batch (USM Version)
function.

tau
Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by Group API of the ungqr_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1480

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Matrices pointed to by array a are overwritten by 𝑛𝑔 leading columns of the 𝑚𝑔 ×𝑚𝑔 orthogonal matrices 𝑄𝑖,
where 𝑔 is an index of group of parameters corresponding to 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value. If info equals to value passed as
scratchpad size, and detail() returns non zero, then passed scratchpad is of insufficient size, and
required size should be not less then value returned by detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API

The routine generates the wholes or parts of :math`m times m` unitary matrices 𝑄𝑖 of the batch of QR
factorization formed by the Strided API of the geqrf_batch (USM Version).
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with :math`m ge p`.
To compute the whole matrices 𝑄𝑖, use:
ungqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
ungqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑖‘
𝑘 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

ungqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
ungqr_batch(queue, m, k, k, a, ...)

8.2. oneMKL Domains 1481

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, std::int64_t stride_a, T *tau, std::int64_t␣
→˓stride_tau, std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a
Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

lda
Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

tau
Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

stride_tau
Stride between the beginnings of arrays 𝑡𝑎𝑢𝑖 inside the array tau.

batch_size
Number of problems in a batch.

scratchpad
Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size
Size of scratchpad memory as a number of floating point elements of type T. Size should not be less then the
value returned by strided version of the Strided API of the ungqr_batch_scratchpad_size function.

events
List of events to wait for before starting computation. Defaults to empty list.

8.2. oneMKL Domains 1482

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

a
Array data is overwritten by a batch of n leading columns of the 𝑚×𝑚 unitary matrices 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

ungqr_batch_scratchpad_size

Computes size of scratchpad memory required for the ungqr_batch function.

Description

ungqr_batch_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Group API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the ungqr_batch function.

8.2. oneMKL Domains 1483

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *k, std::int64_t *lda, std::int64_t group_count,␣
→˓std::int64_t *group_sizes)
}

Input Parameters

queue
Device queue where calculations will be performed.

m
Array of group_count𝑚𝑔 parameters.

n
Array of group_count 𝑛𝑔 parameters.

k

Array of group_count 𝑘𝑔 parameters.
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

lda
Array of leading dimensions of 𝐴𝑖.

group_count
Number of groups of parameters. Must be at least 0.

group_sizes
Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for each
of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
ungqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API

Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the ungqr_batch function.

8.2. oneMKL Domains 1484

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t stride_a, std::int64_t␣
→˓stride_tau, std::int64_t batch_size)
};

Input Parameters

queue
Device queue where calculations will be performed.

m
Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n
Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

lda
Leading dimensions of 𝐴𝑖 (lda ≤ 𝑚).

stride_a
Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau
Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size
Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
ungqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

8.2. oneMKL Domains 1485

oneAPI Specification, Release 1.4-provisional-rev-1

Note

Different arrays used as parameters to oneMKL LAPACK routines must not overlap.

Warning

LAPACK routines assume that input matrices do not contain IEEE 754 special values such as INF or NaN values.
Using these special values may cause LAPACK to return unexpected results or become unstable.

Parent topic: Dense Linear Algebra

8.2.2 Sparse Linear Algebra

The oneAPI Math Kernel Library provides a C++ interface to a set of Sparse Linear Algebra routines using SYCL.

Sparse BLAS provides basic operations on sparse vectors and matrices. Most operations are split into three stages:
query of the external workspace size, optimization stage and execution. For a given configuration, the first two stages
would typically be called once for a set of input arguments and the execution stage may be called multiple times.
During the optimization stage, the API may inspect the matrix properties including size, sparsity pattern and available
parallelism, and may apply matrix format or structure changes to enable a more optimized algorithm. User-provided
matrix data remain unmodified if such optimizations are made. In the execution stage, multiple routine calls can take
advantage of the optimization stage data in order to improve performance. Each operation has a descriptor type that is
used to carry information across the different stages.

Sparse BLAS

Sparse BLAS routines provide basic operations on sparse vectors and matrices.

Routines and Objects Description
Data handles Matrix and vector handle types
spmm Compute the product of a sparse matrix with a dense matrix
spmv Compute the product of a sparse matrix with a dense vector
spsv Solve a triangular sparse linear system

Data handles

Dense vector handle

Definition

namespace oneapi::mkl::sparse {

struct dense_vector_handle;
using dense_vector_handle_t = dense_vector_handle*;

}

8.2. oneMKL Domains 1486

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Defines dense_vector_handle_t as an opaque pointer to the incomplete type dense_vector_handle. Each back-
end may provide a different implementation of the type dense_vector_handle.

See related functions:

• init_dense_vector

• set_dense_vector_data

• release_dense_vector

Dense matrix handle

Definition

namespace oneapi::mkl::sparse {

struct dense_matrix_handle;
using dense_matrix_handle_t = dense_matrix_handle*;

}

Description

Defines dense_matrix_handle_t as an opaque pointer to the incomplete type dense_matrix_handle. Each back-
end may provide a different implementation of the type dense_matrix_handle.

See related functions:

• init_dense_matrix

• set_dense_matrix_data

• release_dense_matrix

Sparse matrix handle

Definition

namespace oneapi::mkl::sparse {

struct matrix_handle;
using matrix_handle_t = matrix_handle*;

}

8.2. oneMKL Domains 1487

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Defines matrix_handle_t as an opaque pointer to the incomplete type matrix_handle. Each backend may provide
a different implementation of the type matrix_handle.

See related functions:

• init_coo_matrix

• init_csr_matrix

• set_coo_matrix_data

• set_csr_matrix_data

• set_matrix_property

• release_sparse_matrix

See a description of the supported sparse formats.

init_dense_vector

Initializes a dense_vector_handle_t object with the provided data.

Description and Assumptions

The oneapi::mkl::sparse::init_dense_vector function initializes the dense_vector_handle_t object with
the provided data.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of the
underlying buffer until the dense vector handle is destroyed with release_dense_vector or the data is reset with
set_dense_vector_data.

In the case of USM, the object does not take ownership of the data.

See Dense vector handle.

init_dense_vector (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void init_dense_vector (sycl::queue &queue,

oneapi::mkl::sparse::dense_vector_handle_t *p_dvhandle,
std::int64_t size,
sycl::buffer<dataType, 1> val);

}

8.2. oneMKL Domains 1488

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

dataType
See supported template types.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_dvhandle
The address of the p_dvhandle object to be initialized. Must only be called on an uninitialized
dense_vector_handle_t object.

size
Number of elements of the provided data val. Must be at least 1.

val
Buffer of length at least size. Holds the data to initialize p_dvhandle with.

Output parameters

p_dvhandle
On return, the address is updated to point to a newly allocated and initialized dense_vector_handle_t object
that can be filled and used to perform sparse BLAS operations.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

init_dense_vector (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void init_dense_vector (sycl::queue &queue,

oneapi::mkl::sparse::dense_vector_handle_t *p_dvhandle,
std::int64_t size,
dataType *val);

}

8.2. oneMKL Domains 1489

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

dataType
See supported template types.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_dvhandle
The address of the p_dvhandle object to be initialized. Must only be called on an uninitialized
dense_vector_handle_t object.

size
Number of elements of the provided data val. Must be at least 1.

val
USM pointer of length at least size. Holds the data to initialize p_dvhandle with. The data must be accessible
on the device. Using a USM pointer with a smaller allocated memory size is undefined behavior.

Output parameters

p_dvhandle
On return, the address is updated to point to a newly allocated and initialized dense_vector_handle_t object
that can be filled and used to perform sparse BLAS operations.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

Parent topic: Data handles

init_dense_matrix

Initializes a dense_matrix_handle_t object with the provided data.

8.2. oneMKL Domains 1490

oneAPI Specification, Release 1.4-provisional-rev-1

Description and Assumptions

The oneapi::mkl::sparse::init_dense_matrix function initializes the dense_matrix_handle_t object with
the provided data.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of the
underlying buffer until the dense matrix handle is destroyed with release_dense_matrix or the data is reset with
set_dense_matrix_data.

In the case of USM, the object does not take ownership of the data.

See Dense matrix handle.

init_dense_matrix (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void init_dense_matrix (sycl::queue &queue,

oneapi::mkl::sparse::dense_matrix_handle_t *p_dmhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t ld,
layout dense_layout,
sycl::buffer<dataType, 1> val);

}

Template parameters

dataType
See supported template types.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_dmhandle
The address of the p_dmhandle object to be initialized. Must only be called on an uninitialized
dense_matrix_handle_t object.

num_rows
Number of rows of the provided data val. Must be at least 1.

num_cols
Number of columns of the provided data val. Must be at least 1.

ld
Leading dimension of the provided data val. Must be at least num_rows if column major layout is used or at
least num_cols if row major layout is used.

8.2. oneMKL Domains 1491

oneAPI Specification, Release 1.4-provisional-rev-1

dense_layout
Specify whether the data uses row major or column major.

val
Buffer of length at least ld*num_cols if column major is used or ld*num_rows if row major is used. Holds the
data to initialize p_dmhandle with.

Output parameters

p_dmhandle
On return, the address is updated to point to a newly allocated and initialized dense_matrix_handle_t object
that can be filled and used to perform sparse BLAS operations.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

init_dense_matrix (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void init_dense_matrix (sycl::queue &queue,

oneapi::mkl::sparse::dense_matrix_handle_t *p_dmhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t ld,
layout dense_layout,
dataType *val);

}

8.2. oneMKL Domains 1492

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

dataType
See supported template types.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_dmhandle
The address of the p_dmhandle object to be initialized. Must only be called on an uninitialized
dense_matrix_handle_t object.

num_rows
Number of rows of the provided data val. Must be at least 1.

num_cols
Number of columns of the provided data val. Must be at least 1.

ld
Leading dimension of the provided data val. Must be at least num_rows if column major layout is used or at
least num_cols if row major layout is used.

dense_layout
Specify whether the data uses row major or column major.

val
USM pointer of length at least ld*num_cols if column major is used or ld*num_rows if row major is used.
Holds the data to initialize p_dmhandle with. The data must be accessible on the device. Using a USM pointer
with a smaller allocated memory size is undefined behavior.

Output parameters

p_dmhandle
On return, the address is updated to point to a newly allocated and initialized dense_matrix_handle_t object
that can be filled and used to perform sparse BLAS operations.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

Parent topic: Data handles

8.2. oneMKL Domains 1493

oneAPI Specification, Release 1.4-provisional-rev-1

init_coo_matrix

Initializes a matrix_handle_t object with the provided COO data.

Description and Assumptions

The oneapi::mkl::sparse::init_coo_matrix function initializes the matrix_handle_t object with the pro-
vided data.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of the
underlying buffer until the sparse matrix handle is destroyed with release_sparse_matrix or the data is reset with
set_coo_matrix_data.

In the case of USM, the object does not take ownership of the data.

The oneapi::mkl::sparse::init_coo_matrix function defined below takes in the number of non-zero elements
in the sparse matrix as an argument. However, in certain math operations where the output is a sparse matrix, e.g.,
sparse matrix addition (sparse matrix + sparse matrix = sparse matrix), and multiplication of two sparse matrices, the
number of non-zero elements in the output sparse matrix are not known in advance and must be calculated as part of
the operation API. Such APIs are currently not part of the oneMKL Specification, but will be added in the future. This
behavior is currently left to be implementation-defined, but may be clarified in the oneMKL Specification in the future.

See Sparse matrix handle.

init_coo_matrix (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void init_coo_matrix (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t *p_smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,
index_base index,
sycl::buffer<indexType, 1> row_ind,
sycl::buffer<indexType, 1> col_ind,
sycl::buffer<dataType, 1> val);

}

8.2. oneMKL Domains 1494

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

dataType
See supported template types.

indexType
See supported template types.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_smhandle
The address of the p_smhandle object to be initialized. Must only be called on an uninitialized
matrix_handle_t object.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ind
Buffer of length at least nnz containing the row indices in index-based numbering. Refer to COO format for
detailed description of row_ind.

col_ind
Buffer of length at least nnz containing the column indices in index-based numbering. Refer to COO format
for detailed description of col_ind.

val
Buffer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The remaining
input values are implicit zeros. Refer to COO format for detailed description of val.

Output parameters

p_smhandle
On return, the address is updated to point to a newly allocated and initialized matrix_handle_t object that can
be filled and used to perform sparse BLAS operations.

8.2. oneMKL Domains 1495

oneAPI Specification, Release 1.4-provisional-rev-1

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ind, col_ind and val are
zero-sized, otherwise they must be strictly greater than zero.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

init_coo_matrix (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void init_coo_matrix (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t *p_smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,
index_base index,
indexType *row_ind,
indexType *col_ind,
dataType *val);

}

Template parameters

dataType
See supported template types.

indexType
See supported template types.

8.2. oneMKL Domains 1496

oneAPI Specification, Release 1.4-provisional-rev-1

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_smhandle
The address of the p_smhandle object to be initialized. Must only be called on an uninitialized
matrix_handle_t object.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ind
USM pointer of length at least nnz containing the row indices in index-based numbering. Refer to COO format
for detailed description of row_ind. The data must be accessible on the device.

col_ind
USM pointer of length at least nnz containing the column indices in index-based numbering. Refer to COO
format for detailed description of col_ind. The data must be accessible on the device.

val
USM pointer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The
remaining input values are implicit zeros. Refer to COO format for detailed description of val. The data must
be accessible on the device. Using a USM pointer with a smaller allocated memory size is undefined behavior.

Output parameters

p_smhandle
On return, the address is updated to point to a newly allocated and initialized matrix_handle_t object that can
be filled and used to perform sparse BLAS operations.

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ind, col_ind and val are null
pointers, otherwise they must be strictly greater than zero.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

8.2. oneMKL Domains 1497

oneAPI Specification, Release 1.4-provisional-rev-1

Parent topic: Data handles

init_csr_matrix

Initializes a matrix_handle_t object with the provided Compressed Sparse Row (CSR) data.

Description and Assumptions

The oneapi::mkl::sparse::init_csr_matrix function initializes the matrix_handle_t object with the pro-
vided data.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of the
underlying buffer until the sparse matrix handle is destroyed with release_sparse_matrix or the data is reset with
set_csr_matrix_data.

In the case of USM, the object does not take ownership of the data.

The oneapi::mkl::sparse::init_csr_matrix function defined below takes in the number of non-zero elements
in the sparse matrix as an argument. However, in certain math operations where the output is a sparse matrix, e.g.,
sparse matrix addition (sparse matrix + sparse matrix = sparse matrix), and multiplication of two sparse matrices, the
number of non-zero elements in the output sparse matrix are not known in advance and must be calculated as part of
the operation API. Such APIs are currently not part of the oneMKL Specification, but will be added in the future. This
behavior is currently left to be implementation-defined, but may be clarified in the oneMKL Specification in the future.

See Sparse matrix handle.

init_csr_matrix (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void init_csr_matrix (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t *p_smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,
index_base index,
sycl::buffer<indexType, 1> row_ptr,
sycl::buffer<indexType, 1> col_ind,
sycl::buffer<dataType, 1> val);

}

8.2. oneMKL Domains 1498

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

dataType
See supported template types.

indexType
See supported template types.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_smhandle
The address of the p_smhandle object to be initialized. Must only be called on an uninitialized
matrix_handle_t object.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ptr
Buffer of length at least num_rows+1. Refer to CSR format for detailed description of row_ptr.

col_ind
Buffer of length at least nnz containing the column indices in index-based numbering. Refer to CSR format for
detailed description of col_ind.

val
Buffer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The remaining
input values are implicit zeros. Refer to CSR format for detailed description of val.

Output parameters

p_smhandle
On return, the address is updated to point to a newly allocated and initialized matrix_handle_t object that can
be filled and used to perform sparse BLAS operations.

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ptr, col_ind and val are
zero-sized, otherwise they must be strictly greater than zero.

8.2. oneMKL Domains 1499

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

init_csr_matrix (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void init_csr_matrix (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t *p_smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,
index_base index,
indexType *row_ptr,
indexType *col_ind,
dataType *val);

}

Template parameters

dataType
See supported template types.

indexType
See supported template types.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_smhandle
The address of the p_smhandle object to be initialized. Must only be called on an uninitialized
matrix_handle_t object.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

8.2. oneMKL Domains 1500

oneAPI Specification, Release 1.4-provisional-rev-1

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ptr
USM pointer of length at least num_rows+1. Refer to CSR format for detailed description of row_ptr. The data
must be accessible on the device.

col_ind
USM pointer of length at least nnz containing the column indices in index-based numbering. Refer to CSR
format for detailed description of col_ind. The data must be accessible on the device.

val
USM pointer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The
remaining input values are implicit zeros. Refer to CSR format for detailed description of val. The data must
be accessible on the device. Using a USM pointer with a smaller allocated memory size is undefined behavior.

Output parameters

p_smhandle
On return, the address is updated to point to a newly allocated and initialized matrix_handle_t object that can
be filled and used to perform sparse BLAS operations.

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ptr, col_ind and val are null
pointers, otherwise they must be strictly greater than zero.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

Parent topic: Data handles

8.2. oneMKL Domains 1501

oneAPI Specification, Release 1.4-provisional-rev-1

release_dense_vector

Destroys a dense_vector_handle_t object.

Description and Assumptions

The oneapi::mkl::sparse::release_dense_vector function frees the resources allocated for the handle.

If a buffer was provided, its reference count is decremented.

If a USM pointer was provided, the data is not free’d.

Syntax

namespace oneapi::mkl::sparse {

sycl::event release_dense_vector (sycl::queue &queue,
oneapi::mkl::sparse::dense_vector_handle_t␣

→˓dvhandle,
const std::vector<sycl::event> &

→˓dependencies = {});

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

dvhandle
Handle initialized with init_dense_vector.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Defaults to no
dependencies.

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

8.2. oneMKL Domains 1502

oneAPI Specification, Release 1.4-provisional-rev-1

Parent topic: Data handles

release_dense_matrix

Destroys a dense_matrix_handle_t object.

Description and Assumptions

The oneapi::mkl::sparse::release_dense_matrix function frees the resources allocated for the handle.

If a buffer was provided, its reference count is decremented.

If a USM pointer was provided, the data is not free’d.

Syntax

namespace oneapi::mkl::sparse {

sycl::event release_dense_matrix (sycl::queue &queue,
oneapi::mkl::sparse::dense_matrix_handle_t␣

→˓dmhandle,
const std::vector<sycl::event> &

→˓dependencies = {});

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

dmhandle
Handle initialized with init_dense_matrix.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Defaults to no
dependencies.

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function.

8.2. oneMKL Domains 1503

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

Parent topic: Data handles

release_sparse_matrix

Destroys a matrix_handle_t object.

Description and Assumptions

The oneapi::mkl::sparse::release_sparse_matrix function frees the resources allocated for the handle.

If a buffer was provided, its reference count is decremented.

If a USM pointer was provided, the data is not free’d.

Syntax

namespace oneapi::mkl::sparse {

sycl::event release_sparse_matrix (sycl::queue &queue,
oneapi::mkl::sparse::matrix_handle_t smhandle,
const std::vector<sycl::event> &

→˓dependencies = {});

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

smhandle
Handle initialized with init_csr_matrix or init_coo_matrix.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Defaults to no
dependencies.

8.2. oneMKL Domains 1504

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

Parent topic: Data handles

set_dense_vector_data

Reset the data of a dense_vector_handle_t object.

Description and Assumptions

The oneapi::mkl::sparse::set_dense_vector_data function sets new data to the dense_vector_handle_t
object.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of
the underlying buffer until the dvhandle is destroyed with release_dense_vector or the data is reset with
set_dense_vector_data.

In the case of USM, the object does not take ownership of the data.

Also see init_dense_vector.

set_dense_vector_data (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void set_dense_vector_data (sycl::queue &queue,

oneapi::mkl::sparse::dense_vector_handle_t dvhandle,
std::int64_t size,
sycl::buffer<dataType, 1> val);

}

8.2. oneMKL Domains 1505

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the dense_vector_handle_t.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

dvhandle
Handle already initialized with init_dense_vector.

size
Number of elements of the provided data val. Must be at least 0.

val
Buffer of length at least size.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

set_dense_vector_data (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void set_dense_vector_data (sycl::queue &queue,

oneapi::mkl::sparse::dense_vector_handle_t dvhandle,
std::int64_t size,
dataType *val);

}

8.2. oneMKL Domains 1506

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the dense_vector_handle_t.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

dvhandle
Handle already initialized with init_dense_vector.

size
Number of elements of the provided data val. Must be at least 1.

val
USM pointer of length at least size. The data must be accessible on the device. Using a USM pointer with a
smaller allocated memory size is undefined behavior.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Data handles

set_dense_matrix_data

Reset the data of a dense_matrix_handle_t object.

Description and Assumptions

The oneapi::mkl::sparse::set_dense_matrix_data function sets new data to the dense_matrix_handle_t
object with the provided data.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of
the underlying buffer until the dmhandle is destroyed with release_dense_matrix or the data is reset with
set_dense_matrix_data.

In the case of USM, the object does not take ownership of the data.

Also see init_dense_matrix.

8.2. oneMKL Domains 1507

oneAPI Specification, Release 1.4-provisional-rev-1

set_dense_matrix_data (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void set_dense_matrix_data (sycl::queue &queue,

oneapi::mkl::sparse::dense_matrix_handle_t dmhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t ld,
layout dense_layout,
sycl::buffer<dataType, 1> val);

}

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the dense_matrix_handle_t.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

dmhandle
Handle already initialized with init_dense_matrix.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

ld
Leading dimension of the provided data val. Must be at least num_rows if column major layout is used or at
least num_cols if row major layout is used.

dense_layout
Specify whether the data uses row major or column major.

val
Buffer of length at least ld*num_cols if column major is used or ld*num_rows if row major is used.

8.2. oneMKL Domains 1508

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

set_dense_matrix_data (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType>
void set_dense_matrix_data (sycl::queue &queue,

oneapi::mkl::sparse::dense_matrix_handle_t dmhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t ld,
layout dense_layout,
dataType *val);

}

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the dense_matrix_handle_t.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

dmhandle
Handle already initialized with init_dense_matrix.

num_rows
Number of rows of the provided data val. Must be at least 1.

num_cols
Number of columns of the provided data val. Must be at least 1.

ld
Leading dimension of the provided data val. Must be at least num_rows if column major layout is used or at
least num_cols if row major layout is used.

8.2. oneMKL Domains 1509

oneAPI Specification, Release 1.4-provisional-rev-1

dense_layout
Specify whether the data uses row major or column major.

val
USM pointer of length at least ld*num_cols if column major is used or ld*num_rows if row major is used. The
data must be accessible on the device. Using a USM pointer with a smaller allocated memory size is undefined
behavior.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Data handles

set_coo_matrix_data

Reset the data of a matrix_handle_t object with the provided COO data.

Description and Assumptions

The oneapi::mkl::sparse::set_coo_matrix_data function sets new data to the matrix_handle_t object with
the provided data.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of
the underlying buffer until the smhandle is destroyed with release_sparse_matrix or the data is reset with
set_coo_matrix_data.

In the case of USM, the object does not take ownership of the data.

Also see init_coo_matrix.

set_coo_matrix_data (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void set_coo_matrix_data (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,

(continues on next page)

8.2. oneMKL Domains 1510

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

index_base index,
sycl::buffer<indexType, 1> row_ind,
sycl::buffer<indexType, 1> col_ind,
sycl::buffer<dataType, 1> val);

}

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

indexType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

smhandle
Handle already initialized with init_coo_matrix.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ind
Buffer of length at least nnz containing the row indices in index-based numbering. Refer to COO format for
detailed description of row_ind.

col_ind
Buffer of length at least nnz containing the column indices in index-based numbering. Refer to COO format
for detailed description of col_ind.

val
Buffer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The remaining
input values are implicit zeros. Refer to COO format for detailed description of val.

8.2. oneMKL Domains 1511

oneAPI Specification, Release 1.4-provisional-rev-1

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ind, col_ind and val are
zero-sized, otherwise they must be strictly greater than zero.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

set_coo_matrix_data (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void set_coo_matrix_data (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,
index_base index,
indexType *row_ind,
indexType *col_ind,
dataType *val);

}

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

indexType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

8.2. oneMKL Domains 1512

oneAPI Specification, Release 1.4-provisional-rev-1

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

smhandle
Handle already initialized with init_coo_matrix.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ind
USM pointer of length at least nnz containing the row indices in index-based numbering. Refer to COO format
for detailed description of row_ind. The data must be accessible on the device.

col_ind
USM pointer of length at least nnz containing the column indices in index-based numbering. Refer to COO
format for detailed description of col_ind. The data must be accessible on the device.

val
USM pointer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The
remaining input values are implicit zeros. Refer to COO format for detailed description of val. The data must
be accessible on the device. Using a USM pointer with a smaller allocated memory size is undefined behavior.

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ind, col_ind and val are null
pointers, otherwise they must be strictly greater than zero.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Data handles

8.2. oneMKL Domains 1513

oneAPI Specification, Release 1.4-provisional-rev-1

set_csr_matrix_data

Reset the data of a matrix_handle_t object with the provided CSR data.

Description and Assumptions

The oneapi::mkl::sparse::set_csr_matrix_data function sets new data to the matrix_handle_t object with
the provided data.

In the case of buffers, the reference count of the provided buffer is incremented which extends the lifetime of
the underlying buffer until the smhandle is destroyed with release_sparse_matrix or the data is reset with
set_csr_matrix_data.

In the case of USM, the object does not take ownership of the data.

Also see init_csr_matrix.

set_csr_matrix_data (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void set_csr_matrix_data (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,
index_base index,
sycl::buffer<indexType, 1> row_ptr,
sycl::buffer<indexType, 1> col_ind,
sycl::buffer<dataType, 1> val);

}

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

indexType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

8.2. oneMKL Domains 1514

oneAPI Specification, Release 1.4-provisional-rev-1

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

smhandle
Handle already initialized with init_csr_matrix.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ptr
Buffer of length at least num_rows+1. Refer to CSR format for detailed description of row_ptr.

col_ind
Buffer of length at least nnz containing the column indices in index-based numbering. Refer to CSR format for
detailed description of col_ind.

val
Buffer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The remaining
input values are implicit zeros. Refer to CSR format for detailed description of val.

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ptr, col_ind and val are
zero-sized, otherwise they must be strictly greater than zero.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

8.2. oneMKL Domains 1515

oneAPI Specification, Release 1.4-provisional-rev-1

set_csr_matrix_data (USM version)

Syntax

namespace oneapi::mkl::sparse {

template <typename dataType, typename indexType>
void set_csr_matrix_data (sycl::queue &queue,

oneapi::mkl::sparse::matrix_handle_t smhandle,
std::int64_t num_rows,
std::int64_t num_cols,
std::int64_t nnz,
index_base index,
indexType *row_ptr,
indexType *col_ind,
dataType *val);

}

Template parameters

dataType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

indexType
See supported template types. Must be the same type as was used when creating the matrix_handle_t.

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

smhandle
Handle already initialized with init_csr_matrix.

num_rows
Number of rows of the provided data val. Must be at least 0.

num_cols
Number of columns of the provided data val. Must be at least 0.

nnz
The number of explicit entries, also known as Number of Non-Zero elements. Must be at least 0.

index
Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ptr
USM pointer of length at least num_rows+1. Refer to CSR format for detailed description of row_ptr. The data
must be accessible on the device.

col_ind
USM pointer of length at least nnz containing the column indices in index-based numbering. Refer to CSR
format for detailed description of col_ind. The data must be accessible on the device.

8.2. oneMKL Domains 1516

oneAPI Specification, Release 1.4-provisional-rev-1

val
USM pointer of length at least nnz. Contains the data of the input matrix which is not implicitly zero. The
remaining input values are implicit zeros. Refer to CSR format for detailed description of val. The data must
be accessible on the device. Using a USM pointer with a smaller allocated memory size is undefined behavior.

Notes

• The parameters num_rows, num_cols and nnz may be zero if and only if row_ptr, col_ind and val are null
pointers, otherwise they must be strictly greater than zero.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Data handles

set_matrix_property

Matrix properties

namespace oneapi::mkl::sparse {

enum class matrix_property {
symmetric,
sorted,

};

}

Matrix properties are optional and “strong” guarantees. Unlike matrix_view, the user must ensure that the handle’s
data holds all the given properties. A property can be set as a hint for backends to optimize some operations. Multiple
properties can be set to the same handle.

8.2. oneMKL Domains 1517

oneAPI Specification, Release 1.4-provisional-rev-1

Value Description
symmetric Guarantees that the user-provided matrix data are symmetric, meaning the matrix is square,

the user data contain both lower and upper triangular regions, and that its transpose is equal
to itself.

sorted

Guarantees that the user-provided matrix data has some sorting property.
For CSR this guarantees that the column indices are sorted in ascending order for a given
row.
For COO this guarantees that the indices are sorted by row then by column in ascending
order.

set_matrix_property

Set a property to a matrix_handle_t object.

Description and Assumptions

The oneapi::mkl::sparse::set_matrix_property function sets a property to a matrix handle.

Syntax

namespace oneapi::mkl::sparse {

bool set_matrix_property (sycl::queue &queue,
oneapi::mkl::sparse::matrix_handle_t smhandle,
matrix_property property);

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

smhandle
Initialized sparse matrix handle.

property
Matrix property to set.

8.2. oneMKL Domains 1518

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Return whether the property was set to the backend’s handle. A backend may not have an equivalent property.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Data handles

Sparse storage formats

There are a variety of matrix storage formats available for representing sparse matrices. Two popular formats are the
coordinate (COO) format, and the Compressed Sparse Row (CSR) format.

In this specification, “non-zero” elements or “non-zero” entries refer to explicitly defined elements or entries which
may take any value supported by the the :ref:data type<onemkl_sparse_supported_types>. Undefined elements or
entries are implicitly zeros.

COO

The COO format is the simplest sparse matrix format, represented by three arrays, row_ind, col_ind and val, and
an index parameter. The i-th defined element in the sparse matrix is represented by its row index, column index, and
value, that is, (row_ind[i], col_ind[i], val[i]). The entries need not be in a sorted order, though performance of
Sparse BLAS operations may be improved if they are sorted in some logical way, for instance by row index and then
column index subordinate to each row set.

num_rowsNumber of rows in the sparse matrix.
num_colsNumber of columns in the sparse matrix.
nnz Number of non-zero entries in the sparse matrix. This is also the length of the row_ind, col_ind and val

arrays.
in-
dex

Parameter that is used to specify whether the matrix has zero or one-based indexing.

val An array of length nnz that contains the non-zero elements of the sparse matrix not necessarily in any sorted
order.

row_indAn integer array of length nnz. Contains row indices for non-zero elements stored in the val array such
that row_ind[i] is the row number (using zero- or one-based indexing) of the element of the sparse matrix
stored in val[i].

col_indAn integer array of length nnz. Contains column indices for non-zero elements stored in the val array such
that col_ind[i] is the column number (using zero- or one-based indexing) of the element of the sparse
matrix stored in val[i].

8.2. oneMKL Domains 1519

oneAPI Specification, Release 1.4-provisional-rev-1

A sparse matrix can be represented in a COO format in a following way (assuming one-based indexing):

𝐴 =

⎛⎝1 0 2
0 −1 4
3 0 0

⎞⎠
num_rows 3
num_cols 3
nnz 5
index 1
row_ind 1 1 2 2 3
col_ind 1 3 2 3 1
val 1 2 -1 4 3

CSR

The CSR format is one of the most popular sparse matrix storage formats, represented by three arrays, row_ptr,
col_ind and val, and an index parameter.

num_rowsNumber of rows in the sparse matrix.
num_colsNumber of columns in the sparse matrix.
nnz Number of non-zero entries in the sparse matrix. This is also the length of the col_ind and val arrays.
in-
dex

Parameter that is used to specify whether the matrix has zero or one-based indexing.

val An array of length nnz that contains the non-zero elements of the sparse matrix stored row by row.
col_indAn integer array of length nnz. Contains column indices for non-zero elements stored in the val array such

that col_ind[i] is the column number (using zero- or one-based indexing) of the element of the sparse
matrix stored in val[i].

row_ptrAn integer array of size equal to num_rows + 1. Element j of this integer array gives the position of the
element in the val array that is first non-zero element in a row j of A. Note that this position is equal to
row_ptr[j] - index. Last element of the row_ptr array (row_ptr[num_rows]) stores the sum of, num-
ber of non-zero elements and index (nnz + index).

A sparse matrix can be represented in a CSR format in a following way (assuming zero-based indexing):

𝐴 =

⎛⎝1 0 2
0 −1 4
3 0 0

⎞⎠
num_rows 3
num_cols 3
nnz 5
index 0
row_ptr 0 2 4 5
col_ind 0 2 1 2 0
val 1 2 -1 4 3

Parent topic: Data handles

Parent topic: Sparse BLAS

8.2. oneMKL Domains 1520

oneAPI Specification, Release 1.4-provisional-rev-1

spmm

Computes a sparse matrix by dense matrix product.

Description and Assumptions

The oneapi::mkl::sparse::spmm routine computes a sparse matrix by dense matrix product defined as:

𝐶 ← 𝛼 · op(𝐴) · op(𝐵) + 𝛽 · 𝐶

where:
𝛼 and 𝛽 are scalars,
𝐶 is a dense matrix of size m-by-n,
op(𝐴) is a transformed sparse matrix of size m-by-k,
op(𝐵) is a transformed dense matrix of size k-by-n,
op() is the transform operation using the following description:

op(𝐴) =

⎧⎪⎨⎪⎩
𝐴, oneapi::mkl::transpose::nontrans
𝐴T, oneapi::mkl::transpose::trans
𝐴H, oneapi::mkl::transpose::conjtrans

spmm_descr

Definition

namespace oneapi::mkl::sparse {

struct spmm_descr;
using spmm_descr_t = spmm_descr*;

}

Description

Defines spmm_descr_t as an opaque pointer to the incomplete type spmm_descr. Each backend may provide a dif-
ferent implementation of the type spmm_descr. The spmm_descr_t object persists through the various stages of the
spmm operation to house relevant state, optimizations and workspaces.

init_spmm_descr

Syntax

namespace oneapi::mkl::sparse {

void init_spmm_descr (sycl::queue &queue,
oneapi::mkl::sparse::spmm_descr_t *p_spmm_descr);

}

8.2. oneMKL Domains 1521

oneAPI Specification, Release 1.4-provisional-rev-1

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_spmm_descr
The address of the p_spmm_descr object to be initialized. Must only be called on an uninitialized
spmm_descr_t object.

Output parameters

p_spmm_descr
On return, the address is updated to point to a newly allocated and initialized spmm_descr_t object that can be
used to perform spmm.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

release_spmm_descr

Syntax

namespace oneapi::mkl::sparse {

sycl::event release_spmm_descr (sycl::queue &queue,
oneapi::mkl::sparse::spmm_descr_t spmm_descr,
const std::vector<sycl::event> &dependencies = {}

→˓);

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

spmm_descr
Descriptor initialized with init_spmm_descr.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Defaults to no
dependencies.

8.2. oneMKL Domains 1522

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

spmm_alg

Syntax

namespace oneapi::mkl::sparse {

enum class spmm_alg {
default_alg,
no_optimize_alg,
coo_alg1,
coo_alg2,
coo_alg3,
coo_alg4,
csr_alg1,
csr_alg2,
csr_alg3,

};

}

Description

These algorithm enums are provided in case backends would like to implement various different algorithms for the
operation. Behavior of the algorithms (e.g., bitwise reproducibility, atomics usage) and the preconditions to using
specific algorithms (e.g. sortedness of matrix arrays) is implementation-defined and must be documented in the library
implementing the oneAPI specification.

8.2. oneMKL Domains 1523

oneAPI Specification, Release 1.4-provisional-rev-1

spmm

Syntax

namespace oneapi::mkl::sparse {

void spmm_buffer_size(
sycl::queue &queue,
oneapi::mkl::transpose opA,
oneapi::mkl::transpose opB,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_matrix_handle_t B_handle,
const void* beta,
oneapi::mkl::sparse::dense_matrix_handle_t C_handle,
oneapi::mkl::sparse::spmm_alg alg,
oneapi::mkl::sparse::spmm_descr_t spmm_descr,
std::size_t &temp_buffer_size);

void spmm_optimize(
sycl::queue &queue,
oneapi::mkl::transpose opA,
oneapi::mkl::transpose opB,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_matrix_handle_t B_handle,
const void* beta,
oneapi::mkl::sparse::dense_matrix_handle_t C_handle,
oneapi::mkl::sparse::spmm_alg alg,
oneapi::mkl::sparse::spmm_descr_t spmm_descr,
sycl::buffer<std::uint8_t, 1> workspace);

sycl::event spmm_optimize(
sycl::queue &queue,
oneapi::mkl::transpose opA,
oneapi::mkl::transpose opB,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_matrix_handle_t B_handle,
const void* beta,
oneapi::mkl::sparse::dense_matrix_handle_t C_handle,
oneapi::mkl::sparse::spmm_alg alg,
oneapi::mkl::sparse::spmm_descr_t spmm_descr,
void* workspace,
const std::vector<sycl::event> &dependencies = {});

sycl::event spmm(
sycl::queue &queue,
oneapi::mkl::transpose opA,

(continues on next page)

8.2. oneMKL Domains 1524

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::transpose opB,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_matrix_handle_t B_handle,
const void* beta,
oneapi::mkl::sparse::dense_matrix_handle_t C_handle,
oneapi::mkl::sparse::spmm_alg alg,
oneapi::mkl::sparse::spmm_descr_t spmm_descr,
const std::vector<sycl::event> &dependencies = {});

}

Notes

• spmm_buffer_size and spmm_optimize must be called at least once before spmm with the same arguments.
spmm can then be called multiple times. Calling spmm_optimize on the same descriptor can reset some of the
descriptor’s data such as the workspace.

• In the general case, not calling the functions in the order specified above is undefined behavior. Not
calling spmm_buffer_size or spmm_optimize at least once with a given descriptor will throw an
oneapi::mkl::uninitialized exception. Calling spmm with arguments not matching spmm_optimize will throw
an oneapi::mkl::invalid_argument exception, unless stated otherwise.

• The data of the dense handles B_handle and C_handle and the scalars alpha and beta can be reset before
each call to spmm. Changing the data of the sparse handle A_handle is undefined behavior.

• The data must be available on the device when calling spmm_optimize by using event dependencies if needed.

• spmm_optimize and spmm are asynchronous.

• The algorithm defaults to spmm_alg::default_alg if a backend does not support the provided algorithm.

• The container type of all the handles and workspace must be consistent and use either USM pointers or SYCL
buffers.

Input Parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

opA
Specifies operation op() on the input matrix A. The possible options are described in transpose enum class.

opB
Specifies operation op() on the input matrix B. The possible options are described in transpose enum class.

alpha
Host or USM pointer representing 𝛼. The USM allocation can be on the host or device. The requirements are:

• Must use the same kind of memory as beta.

• Must be a host pointer if SYCL buffers are used.

• Must be of the same type as the handles’ data type.

8.2. oneMKL Domains 1525

oneAPI Specification, Release 1.4-provisional-rev-1

A_view
Specifies which part of the handle should be read as described by matrix_view. The type_view field must be
matrix_descr::general and the uplo_view and diag_view fields are ignored.

A_handle
Sparse matrix handle object representing 𝐴.

B_handle
Dense matrix handle object representing 𝐵.

beta
Host or USM pointer representing 𝛽. The USM allocation can be on the host or device. The requirements are:

• Must use the same kind of memory as alpha.

• Must be a host pointer if SYCL buffers are used.

• Must be of the same type as the handles’ data type.

C_handle
Dense matrix handle object representing 𝐶.

alg
Specifies the spmm algorithm to use.

spmm_descr
Initialized spmm descriptor.

temp_buffer_size
Output buffer size in bytes.

workspace

Workspace buffer or USM pointer, must be at least of size temp_buffer_size bytes and the address aligned
on the size of the handles’ data type.
If it is a buffer, its lifetime is extended until the spmm descriptor is released or the workspace is reset by
spmm_optimize. The workspace cannot be a sub-buffer.
If it is a USM pointer, it must not be free’d until the corresponding spmm has completed. The data must be
accessible on the device.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Ignored if buffers
are used. Defaults to no dependencies.

Output Parameters

temp_buffer_size
Output buffer size in bytes. A temporary workspace of at least this size must be allocated to perform the specified
spmm.

C_handle
Dense matrix handle object representing 𝐶, result of the spmm operation.

8.2. oneMKL Domains 1526

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function. May be an empty
event if buffers are used.

Throws

These functions shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Sparse BLAS

spmv

Computes a sparse matrix by dense vector product.

Description and Assumptions

The oneapi::mkl::sparse::spmv routine computes a sparse matrix by dense vector product defined as:

𝑦 ← 𝛼 · op(𝐴) · 𝑥+ 𝛽 · 𝑦

where:
𝛼 and 𝛽 are scalars,
𝑥 is a dense vector of size n,
𝑦 is a dense vector of size m,
op(𝐴) is a transformed sparse matrix of size m-by-n,
op() is the transform operation using the following description:

op(𝐴) =

⎧⎪⎨⎪⎩
𝐴, oneapi::mkl::transpose::nontrans
𝐴T, oneapi::mkl::transpose::trans
𝐴H, oneapi::mkl::transpose::conjtrans

8.2. oneMKL Domains 1527

oneAPI Specification, Release 1.4-provisional-rev-1

spmv_descr

Definition

namespace oneapi::mkl::sparse {

struct spmv_descr;
using spmv_descr_t = spmv_descr*;

}

Description

Defines spmv_descr_t as an opaque pointer to the incomplete type spmv_descr. Each backend may provide a dif-
ferent implementation of the type spmv_descr. The spmv_descr_t object persists through the various stages of the
spmv operation to house relevant state, optimizations and workspaces.

init_spmv_descr

Syntax

namespace oneapi::mkl::sparse {

void init_spmv_descr (sycl::queue &queue,
oneapi::mkl::sparse::spmv_descr_t *p_spmv_descr);

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_spmv_descr
The address of the p_spmv_descr object to be initialized. Must only be called on an uninitialized
spmv_descr_t object.

Output parameters

p_spmv_descr
On return, the address is updated to point to a newly allocated and initialized spmv_descr_t object that can be
used to perform spmv.

8.2. oneMKL Domains 1528

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

release_spmv_descr

Syntax

namespace oneapi::mkl::sparse {

sycl::event release_spmv_descr (sycl::queue &queue,
oneapi::mkl::sparse::spmv_descr_t spmv_descr,
const std::vector<sycl::event> &dependencies = {}

→˓);

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

spmv_descr
Descriptor initialized with init_spmv_descr.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Defaults to no
dependencies.

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

8.2. oneMKL Domains 1529

oneAPI Specification, Release 1.4-provisional-rev-1

spmv_alg

Syntax

namespace oneapi::mkl::sparse {

enum class spmv_alg {
default_alg,
no_optimize_alg,
coo_alg1,
coo_alg2,
csr_alg1,
csr_alg2,
csr_alg3,

};

}

Description

These algorithm enums are provided in case backends would like to implement various different algorithms for the
operation. Behavior of the algorithms (e.g., bitwise reproducibility, atomics usage) and the preconditions to using
specific algorithms (e.g. sortedness of matrix arrays) is implementation-defined and must be documented in the library
implementing the oneAPI specification.

spmv

Syntax

namespace oneapi::mkl::sparse {

void spmv_buffer_size(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_vector_handle_t x_handle,
const void* beta,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,
oneapi::mkl::sparse::spmv_alg alg,
oneapi::mkl::sparse::spmv_descr_t spmv_descr,
std::size_t &temp_buffer_size);

void spmv_optimize(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,

(continues on next page)

8.2. oneMKL Domains 1530

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::sparse::dense_vector_handle_t x_handle,
const void* beta,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,
oneapi::mkl::sparse::spmv_alg alg,
oneapi::mkl::sparse::spmv_descr_t spmv_descr,
sycl::buffer<std::uint8_t, 1> workspace);

sycl::event spmv_optimize(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_vector_handle_t x_handle,
const void* beta,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,
oneapi::mkl::sparse::spmv_alg alg,
oneapi::mkl::sparse::spmv_descr_t spmv_descr,
void* workspace,
const std::vector<sycl::event> &dependencies = {});

sycl::event spmv(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_vector_handle_t x_handle,
const void* beta,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,
oneapi::mkl::sparse::spmv_alg alg,
oneapi::mkl::sparse::spmv_descr_t spmv_descr,
const std::vector<sycl::event> &dependencies = {});

}

Notes

• spmv_buffer_size and spmv_optimize must be called at least once before spmv with the same arguments.
spmv can then be called multiple times. Calling spmv_optimize on the same descriptor can reset some of the
descriptor’s data such as the workspace.

• In the general case, not calling the functions in the order specified above is undefined behavior. Not
calling spmv_buffer_size or spmv_optimize at least once with a given descriptor will throw an
oneapi::mkl::uninitialized exception. Calling spmv with arguments not matching spmv_optimize will throw
an oneapi::mkl::invalid_argument exception, unless stated otherwise.

• The data of the dense handles x_handle and y_handle and the scalars alpha and beta can be reset before
each call to spmv. Changing the data of the sparse handle A_handle is undefined behavior.

• The data must be available on the device when calling spmv_optimize by using event dependencies if needed.

• spmv_optimize and spmv are asynchronous.

8.2. oneMKL Domains 1531

oneAPI Specification, Release 1.4-provisional-rev-1

• The algorithm defaults to spmv_alg::default_alg if a backend does not support the provided algorithm.

• The container type of all the handles and workspace must be consistent and use either USM pointers or SYCL
buffers.

Input Parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

opA
Specifies operation op() on the input matrix. The possible options are described in transpose enum class.

alpha
Host or USM pointer representing 𝛼. The USM allocation can be on the host or device. The requirements are:

• Must use the same kind of memory as beta.

• Must be a host pointer if SYCL buffers are used.

• Must be of the same type as the handles’ data type.

A_view
Specifies which part of the handle should be read as described by matrix_view. The type_view field can-
not be matrix_descr::diagonal. The diag_view field can be diag::unit if and only if type_view is
matrix_descr::triangular.

A_handle
Sparse matrix handle object representing 𝐴.

x_handle
Dense vector handle object representing 𝑥.

beta
Host or USM pointer representing 𝛽. The USM allocation can be on the host or device. The requirements are:

• Must use the same kind of memory as alpha.

• Must be a host pointer if SYCL buffers are used.

• Must be of the same type as the handles’ data type.

y_handle
Dense vector handle object representing 𝑦.

alg
Specifies the spmv algorithm to use.

spmv_descr
Initialized spmv descriptor.

temp_buffer_size
Output buffer size in bytes.

workspace

Workspace buffer or USM pointer, must be at least of size temp_buffer_size bytes and the address aligned
on the size of the handles’ data type.
If it is a buffer, its lifetime is extended until the spmv descriptor is released or the workspace is reset by
spmv_optimize. The workspace cannot be a sub-buffer.
If it is a USM pointer, it must not be free’d until the corresponding spmv has completed. The data must be
accessible on the device.

8.2. oneMKL Domains 1532

oneAPI Specification, Release 1.4-provisional-rev-1

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Ignored if buffers
are used. Defaults to no dependencies.

Output Parameters

temp_buffer_size
Output buffer size in bytes. A temporary workspace of at least this size must be allocated to perform the specified
spmv.

y_handle
Dense vector handle object representing 𝑦, result of the spmv operation.

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function. May be an empty
event if buffers are used.

Throws

These functions shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Sparse BLAS

spsv

Solves a system of linear equations where the coefficients are described by a triangular sparse matrix.

Description and Assumptions

The oneapi::mkl::sparse::spsv routine solves a system of linear equations for a square matrix:

op(𝐴) · 𝑦 ← 𝛼 · 𝑥

where:
𝛼 is a scalar,
𝑥 and 𝑦 are dense vectors of size m,
op(𝐴) is a transformed sparse matrix of size m-by-m,
op() is the transform operation using the following description:

8.2. oneMKL Domains 1533

oneAPI Specification, Release 1.4-provisional-rev-1

op(𝐴) =

⎧⎪⎨⎪⎩
𝐴, oneapi::mkl::transpose::nontrans
𝐴T, oneapi::mkl::transpose::trans
𝐴H, oneapi::mkl::transpose::conjtrans

spsv_descr

Definition

namespace oneapi::mkl::sparse {

struct spsv_descr;
using spsv_descr_t = spsv_descr*;

}

Description

Defines spsv_descr_t as an opaque pointer to the incomplete type spsv_descr. Each backend may provide a differ-
ent implementation of the type spsv_descr. The spsv_descr_t object persists through the various stages of the spsv
operation to house relevant state, optimizations and workspaces.

init_spsv_descr

Syntax

namespace oneapi::mkl::sparse {

void init_spsv_descr (sycl::queue &queue,
oneapi::mkl::sparse::spsv_descr_t *p_spsv_descr);

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

p_spsv_descr
The address of the p_spsv_descr object to be initialized. Must only be called on an uninitialized
spsv_descr_t object.

8.2. oneMKL Domains 1534

oneAPI Specification, Release 1.4-provisional-rev-1

Output parameters

p_spsv_descr
On return, the address is updated to point to a newly allocated and initialized spsv_descr_t object that can be
used to perform spsv.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

release_spsv_descr

Syntax

namespace oneapi::mkl::sparse {

sycl::event release_spsv_descr (sycl::queue &queue,
oneapi::mkl::sparse::spsv_descr_t spsv_descr,
const std::vector<sycl::event> &dependencies = {}

→˓);

}

Input parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

spsv_descr
Descriptor initialized with init_spsv_descr.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Defaults to no
dependencies.

8.2. oneMKL Domains 1535

oneAPI Specification, Release 1.4-provisional-rev-1

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function.

Throws

This function shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::unsupported_device

spsv_alg

Syntax

namespace oneapi::mkl::sparse {

enum class spsv_alg {
default_alg,
no_optimize_alg,

};

}

Description

These algorithm enums are provided in case backends would like to implement various different algorithms for the
operation. Behavior of the algorithms (e.g., bitwise reproducibility, atomics usage) and the preconditions to using
specific algorithms (e.g. sortedness of matrix arrays) is implementation-defined and must be documented in the library
implementing the oneAPI specification.

spsv

Syntax

namespace oneapi::mkl::sparse {

void spsv_buffer_size(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_vector_handle_t x_handle,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,

(continues on next page)

8.2. oneMKL Domains 1536

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::sparse::spsv_alg alg,
oneapi::mkl::sparse::spsv_descr_t spsv_descr,
std::size_t &temp_buffer_size);

void spsv_optimize(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_vector_handle_t x_handle,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,
oneapi::mkl::sparse::spsv_alg alg,
oneapi::mkl::sparse::spsv_descr_t spsv_descr,
sycl::buffer<std::uint8_t, 1> workspace);

sycl::event spsv_optimize(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_vector_handle_t x_handle,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,
oneapi::mkl::sparse::spsv_alg alg,
oneapi::mkl::sparse::spsv_descr_t spsv_descr,
void* workspace,
const std::vector<sycl::event> &dependencies = {});

sycl::event spsv(
sycl::queue &queue,
oneapi::mkl::transpose opA,
const void* alpha,
oneapi::mkl::sparse::matrix_view A_view,
oneapi::mkl::sparse::matrix_handle_t A_handle,
oneapi::mkl::sparse::dense_vector_handle_t x_handle,
oneapi::mkl::sparse::dense_vector_handle_t y_handle,
oneapi::mkl::sparse::spsv_alg alg,
oneapi::mkl::sparse::spsv_descr_t spsv_descr,
const std::vector<sycl::event> &dependencies = {});

}

8.2. oneMKL Domains 1537

oneAPI Specification, Release 1.4-provisional-rev-1

Notes

• spsv_buffer_size and spsv_optimize must be called at least once before spsv with the same arguments.
spsv can then be called multiple times. Calling spsv_optimize on the same descriptor can reset some of the
descriptor’s data such as the workspace.

• In the general case, not calling the functions in the order specified above is undefined behavior. Not
calling spsv_buffer_size or spsv_optimize at least once with a given descriptor will throw an
oneapi::mkl::uninitialized exception. Calling spsv with arguments not matching spsv_optimize will throw
an oneapi::mkl::invalid_argument exception, unless stated otherwise.

• The data of the dense handle x_handle and scalar alpha can be reset before each call to spsv. Changing the
data of the sparse handle A_handle is undefined behavior.

• The data must be available on the device when calling spsv_optimize by using event dependencies if needed.

• spsv_optimize and spsv are asynchronous.

• The algorithm defaults to spsv_alg::default_alg if a backend does not support the provided algorithm.

• The container type of all the handles and workspace must be consistent and use either USM pointers or SYCL
buffers.

Input Parameters

queue
The SYCL command queue which will be used for SYCL kernels execution.

opA
Specifies operation op() on the input matrix. The possible options are described in transpose enum class.

alpha
Host or USM pointer representing 𝛼. The USM allocation can be on the host or device. Must be a host pointer
if SYCL buffers are used. Must be of the same type as the handles’ data type.

A_view
Specifies which part of the handle should be read as described by matrix_view. The type_view field must be
matrix_descr::triangular. The diag_view field can be diag::nonunit or diag::unit.

A_handle
Sparse matrix handle object representing 𝐴.

x_handle
Dense vector handle object representing 𝑥.

y_handle
Dense vector handle object representing 𝑦.

alg
Specifies the spsv algorithm to use.

spsv_descr
Initialized spsv descriptor.

temp_buffer_size
Output buffer size in bytes.

workspace

Workspace buffer or USM pointer, must be at least of size temp_buffer_size bytes and the address aligned
on the size of the handles’ data type.

8.2. oneMKL Domains 1538

oneAPI Specification, Release 1.4-provisional-rev-1

If it is a buffer, its lifetime is extended until the spsv descriptor is released or the workspace is reset by
spsv_optimize. The workspace cannot be a sub-buffer.
If it is a USM pointer, it must not be free’d until the corresponding spsv has completed. The data must be
accessible on the device.

dependencies
List of events to depend on before starting asynchronous tasks that access data on the device. Ignored if buffers
are used. Defaults to no dependencies.

Output Parameters

temp_buffer_size
Output buffer size in bytes. A temporary workspace of at least this size must be allocated to perform the specified
spsv.

y_handle
Dense vector handle object representing 𝑦, result of the spsv operation.

Return Values

Output event that can be waited upon or added as a dependency for the completion of the function. May be an empty
event if buffers are used.

Throws

These functions shall throw the following exceptions if the associated condition is detected. An implementation may
throw additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Sparse BLAS

Matrix view

matrix_descr

Definition

namespace oneapi::mkl::sparse {

enum class matrix_descr {
general,

(continues on next page)

8.2. oneMKL Domains 1539

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

symmetric,
hermitian,
triangular,
diagonal,

};

}

Description

The matrix descriptor describes how an operation should interpret the data.

Value Description
general General case, use complete data.
symmetric View as symmetric, use given triangular part.
hermitian View as hermitian, use given triangular part.
triangular View as triangular, use given triangular part.
diagonal View as diagonal, use only main diagonal values.

matrix_view

Definition

namespace oneapi::mkl::sparse {

struct matrix_view {
matrix_descr type_view = matrix_descr::general;
uplo uplo_view = uplo::lower;
diag diag_view = diag::nonunit;

matrix_view() = default;

matrix_view(matrix_descr type_view);
};

}

Description

The matrix view holds information to specify which part of the matrix should be read without changing the matrix’s
data.

See matrix_descr, uplo and diag for a description of the members.

Each operation documents which combination of type_view, uplo_view and diag_view are valid.

8.2. oneMKL Domains 1540

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::sparse {

matrix_view::matrix_view () = default;

}

Default Constructor

Initializes the matrix_view with the default values as shown in the class definition.

Syntax

namespace oneapi::mkl::sparse {

matrix_view::matrix_view(matrix_descr type_view);

}

Constructor from a matrix_descr

Initializes the matrix_view with the provided matrix_descr. By default the other members are initialized to the
same value as the default constructor.

Parent topic: Sparse BLAS

Supported template types

Data Types <dataType> Integer Types <indexType>

float std::int32_t
double std::int64_t
std::complex<float>
std::complex<double>

dataType is used to describe the precision (i.e. number of bits) and domain (i.e. real or complex) of the data handles
and the operations using them.

indexType is used to describe the range of integer types such as indices, offsets or sizes of the data handles and the
operations using them.

Parent topic: Sparse BLAS

Parent topic: Sparse Linear Algebra

8.2. oneMKL Domains 1541

oneAPI Specification, Release 1.4-provisional-rev-1

8.2.3 Discrete Fourier Transforms

The Discrete Fourier Transform Functions offer several options for computing Discrete Fourier Transforms (DFTs).

Discrete Fourier Transform Functions

oneMKL provides a DPC++ interface to 𝑑-dimensional (𝑑 ∈ Z>0) Discrete Fourier Transforms (DFTs).

Definitions

Let 𝑤𝑚
𝑘1,𝑘2,...,𝑘𝑑

be the entry of multi-index (𝑘1, 𝑘2, . . . , 𝑘𝑑) ∈ Z𝑑 in the 𝑚-th sequence of a set 𝑤 of 𝑀 𝑑-dimensional
periodic discrete sequences of period(s) (or “length(s)”) 𝑛1 × 𝑛2 × · · · × 𝑛𝑑 (𝑀 ∈ Z>0, 𝑚 ∈ {0, 1, . . . ,𝑀 − 1} and
𝑛ℓ ∈ Z>0,∀ℓ ∈ {1, . . . , 𝑑}).

For every 𝑚 ∈ {0, 1, . . . ,𝑀 − 1}, the DFT of sequence 𝑤𝑚 is the 𝑑-dimensional 𝑛1×𝑛2× · · ·×𝑛𝑑 periodic discrete
sequence 𝑧𝑚 whose entries are defined as

𝑧𝑚𝑘1,𝑘2,...,𝑘𝑑
= 𝜎

𝑛𝑑−1∑︁
𝑗𝑑=0

. . .

𝑛2−1∑︁
𝑗2=0

𝑛1−1∑︁
𝑗1=0

𝑤𝑚
𝑗1,𝑗2,...,𝑗𝑑

exp

[︃
𝛿2𝜋𝚤

(︃
𝑑∑︁

ℓ=1

𝑗ℓ𝑘ℓ
𝑛ℓ

)︃]︃
∀ (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑑 (8.1)

where 𝚤2 = −1 and 𝜎 is a scale factor. In (8.1), 𝛿 determines one of the two “directions” of the DFT: 𝛿 = −1 defines
the “forward DFT” while 𝛿 = +1 defines the “backward DFT”.

The domain of input (resp. output) discrete sequences for a forward (resp. backward) DFT is referred to as “forward
domain”. Conversely, the domain of output (resp. input) discrete sequences for forward (resp. backward) DFT is
referred to as “backward domain”.

oneMKL supports single-precision (fp32) and double-precision (fp64) floating-point arithmetic for the calculation of
DFTs, using two types of forward domains:

• the set of complex 𝑑-dimensional periodic sequences, referred to as “complex forward domain”;

• the set of real 𝑑-dimensional periodic sequences, referred to as “real forward domain”.

Similarly, we refer to DFTs of complex (resp. real) forward domain as “complex DFTs” (resp. “real DFTs”). Regardless
of the type of forward domain, the backward domain’s data sequences are always complex.

The calculation of the same DFT for several, i.e., 𝑀 > 1, data sets of the same type of forward domain, using the same
precision is referred to as a “batched DFT”.

Finite range of indices

In general, given the periodicity of the discrete data considered in any DFT, ranges of indices (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑑 such
that 0 ≤ 𝑘ℓ < 𝑛ℓ,∀ℓ ∈ {1, . . . , 𝑑} suffice to determine any relevant 𝑑-dimensional sequence unambiguously (for
any valid 𝑚). In case of real DFTs, the data sequences in backward domain can be fully determined from a smaller
range of indices. Indeed, if all entries of 𝑤 are real in (8.1), then the entries of 𝑧 are complex and, for any valid
𝑚,
(︁
𝑧𝑚𝑘1,𝑘2,...,𝑘𝑑

)︁*
= 𝑧𝑚𝑛1−𝑘1,𝑛2−𝑘2,...,𝑛𝑑−𝑘𝑑

∀ (𝑘1, 𝑘2, . . . , 𝑘𝑑) ∈ Z𝑑 where 𝜆* represents the conjugate of complex
number 𝜆. This conjugate symmetry relation makes roughly half the data redundant in backward domain: in case of
real DFTs, the data sequences in backward domain can be fully determined even if one of the 𝑑 indices 𝑘ℓ is limited to
the range 0 ≤ 𝑘ℓ ≤ ⌊𝑛ℓ

2 ⌋. In oneMKL, the index 𝑘𝑑, i.e., the last dimension’s index, is restricted as such for capturing
an elementary set of non-redundant entries of data sequences belonging to the backward domain of real DFTs.

8.2. oneMKL Domains 1542

oneAPI Specification, Release 1.4-provisional-rev-1

Elementary range of indices

In other words, oneMKL expects and produces a set of𝑀 𝑑-dimensional finite data sequences (·)𝑚𝑘1,𝑘2,...,𝑘𝑑
with integer

indices 𝑚 and 𝑘ℓ (ℓ ∈ {1, . . . , 𝑑}) in the elementary range

• 0 ≤ 𝑚 < 𝑀 ;

• 0 ≤ 𝑘𝑗 < 𝑛𝑗 , ∀𝑗 ∈ {1, . . . , 𝑑− 1}, if 𝑑 > 1;

• 0 ≤ 𝑘𝑑 < 𝑛𝑑, except for backward domain’s data sequences of real DFTs;

• 0 ≤ 𝑘𝑑 ≤ ⌊𝑛𝑑

2 ⌋, for backward domain’s data sequences of real DFTs.

Additional constraints for data in backward domain of real DFTs

Finally, note that the conjugate symmetry relation further constrains some of the entries (or pairs thereof) in the back-
ward domain’s data sequences for real DFTs. Specifically, for any of the 𝑀 sequences,

• the imaginary part must be 0 for any entry of multi-index (𝑘1, 𝑘2, . . . , 𝑘𝑑) such that 𝑘ℓ ≡ (𝑛ℓ − 𝑘ℓ)
(mod 𝑛ℓ),∀ℓ ∈ {1, . . . , 𝑑}, e.g., entry of multi-index (0, 0, . . . , 0);

• pairs of entries of multi-indices (𝑘1, 𝑘2, . . . , 𝑘𝑑) and (𝑗1, 𝑗2, . . . , 𝑗𝑑) such that 𝑘ℓ ≡ (𝑛ℓ − 𝑗ℓ) (mod 𝑛ℓ),∀ℓ ∈
{1, . . . , 𝑑} must be complex conjugates of one another, e.g., entries of multi-indices (1, 0, . . . , 0) and
(𝑛1 − 1, 0, . . . , 0) must be complex conjugates (note that this case falls back to the above constraint if 𝑛1 = 2).

Note: The behavior of oneMKL is undefined for real backward DFT if the input data does not satisfy those constraints.
oneMKL considers it the user’s responsibility to guarantee that these constraints are satisfied by the input data for real
backward DFTs.

Recommended usage

The desired (batched) DFT to be computed is entirely defined by an object desc of the descriptor class. The desired
type of forward domain and precision are determined at desc’s construction time by the specialization values chosen
for the self-explanatory template parameters prec (of type precision) and dom (of type domain), respectively. The
transform size 𝑛1×𝑛2×· · ·×𝑛𝑑 is also set at construction time as a required argument to the class constructor. Other
configuration details for the (batched) DFT under consideration may be specified by invoking the set_value member
function of desc for every relevant configuration setting (e.g., the number 𝑀 of sequences to consider in case of a
batched DFT). Once configured as desired, the commit member function of desc, requiring a sycl::queue object
Q, may be invoked. The successful completion of the latter makes desc committed to the desired (batched) DFT as
configured, for the particular device and context encapsulated by Q. The compute_forward (resp. compute_backward)
function may then be called and provided with desc to enqueue operations relevant to the desired forward (resp.
backward) DFT calculations with user-provided, device-accessible data.

Note: Objects of the descriptor class

• must be successfully committed prior to providing them to any compute function;

• must be re-committed to account for any change in configuration after it was already successfully committed;

• deliver best performance for DFT calculations when created, configured and committed outside applications’
hotpath(s) that use them multiple times for identically-configured (batched) DFTs. compute_forward and/or
compute_backward should be the only oneMKL DFT-related routines invoked in programs’ hotpaths.

8.2. oneMKL Domains 1543

oneAPI Specification, Release 1.4-provisional-rev-1

Summary table

The table below summarizes the object and functions relevant to computing DFTs (all defined in the
oneapi::mkl::dft namespace).

Routines and Objects Description
descriptor A class whose instances define a specific (batched) DFT(s) to be calculated.
descriptor::set_value A member function of the descriptor class to set (writable) configuration

parameters for an instance of that class.
descriptor::get_value A member function of the descriptor class to query configuration parame-

ters from any instance of that class.
descriptor::commit A member function of the descriptor class to commit an instance of that

class to the (batched) DFT calculations it defines, on a given queue.
compute_forward A function requiring a successfully-committed object of the descriptor class

to compute a forward (batched) DFT, as defined by that object.
compute_backward A function requiring a successfully-committed object of the descriptor class

to compute a backward (batched) DFT, as defined by that object.

Parent topic: oneMKL Domains

The descriptor class

Objects of the descriptor class define DFT(s) to be computed.

Description

Any desired (batched) DFT is to be fully determined by an object of the oneapi::mkl::dft::descriptor class,
defined in the oneapi::mkl::dft namespace. The scoped enumeration types precision, domain, config_param and
config_value defined in the same namespace (and the corresponding ranges of values) are relevant to the definition and
configurations of objects of the descriptor class. The descriptor class allows the user to set several (resp. query
all) configuration parameters for (resp. from) any of its instances by using their set_value (resp. get_value) member
function.

Invoking the member function commit of an object of the descriptor class effectively commits that object to the
desired DFT calculations, as configured and determined by that very object, on the specified device encapsulated by
the sycl::queue object required by that function.

The desired forward (resp. backward) DFT calculations may then be computed by passing such a committed
descriptor object to the compute_forward (resp. compute_backward) function (defined in the oneapi::mkl::dft
namespace as well), along with the relevant data containers (sycl::buffer object(s) or pointer(s) to a device-
accessible USM allocations) for the desired DFT(s). This function makes the descriptor object enqueue the op-
erations relevant for the desired calculations to the sycl::queue object it was given when committing it.

Note: The compute_forward and compute_backward functions may need to be able to access the internals of the
descriptor object to compute the desired transform(s), this could be done for instance, by labeling them as friend
functions of the descriptor class.

8.2. oneMKL Domains 1544

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

The descriptor class is defined in the oneapi::mkl::dft namespace.

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
class descriptor {
public:

// Constructor for 1-dimensional DFT
descriptor(std::int64_t length); // d = 1;

// Constructor for d-dimensional DFT
descriptor(std::vector<std::int64_t> lengths); // d = lengths.size();

descriptor(const descriptor&);

descriptor(descriptor&&);

descriptor& operator=(const descriptor&);

descriptor& operator=(descriptor&&);

~descriptor();

void set_value(oneapi::mkl::dft::config_param param, ...);

void get_value(oneapi::mkl::dft::config_param param, ...);

void set_workspace(sycl::buffer<scalar_type, 1> &workspaceBuf);
void set_workspace(scalar_type* workspaceUSM);

void commit(sycl::queue &queue);

};

}

Descriptor class template parameters

precision prec
Specifies the floating-point precision in which the user-provided data is to be provided, the trans-
form is to be carried out and the results are to be returned. The possible specialization values
are oneapi::mkl::dft::precision::SINGLE and oneapi::mkl::dft::precision::DOUBLE.
Objects of the descriptor class specialized with precision template parameter prec as value
oneapi::mkl::dft::precision::SINGLE (resp. oneapi::mkl::dft::precision::DOUBLE) are
referred to as “single-precision descriptors” (resp. “double-precision descriptors”).

domain dom
Specifies the forward domain of the transform. The possible specialization values are

8.2. oneMKL Domains 1545

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::dft::domain::COMPLEX and oneapi::mkl::dft::domain::REAL. Ob-
jects of the descriptor class specialized with domain template parameter dom as value
oneapi::mkl::dft::precision::COMPLEX (resp. oneapi::mkl::dft::precision::REAL) are re-
ferred to as “complex descriptors” (resp. “real descriptors”).

Descriptor class member functions

Routines Description
constructors Creates and default-initializes a descriptor object for a 𝑑-dimensional DFT of

user-defined length(s) {𝑛1, . . . , 𝑛𝑑}.
assignment operators Performs a deep copy of or moves the argument.
set_value Sets a configuration value for a specific configuration parameter.
get_value Queries the configuration value associated with a particular configuration pa-

rameter.
set_workspace Sets the external workspace to use when

config_param::WORKSPACE_PLACEMENT is set to
config_value::WORKSPACE_EXTERNAL.

commit Commits the descriptor object to enqueue the operations relevant to the
(batched) DFT(s) it determines to a given, user-provided sycl::queue object;
completes all initialization work relevant to and required by the chosen, device-
compliant implementation for the particular DFT, as defined by the descriptor
object.

Descriptor class constructors

The constructors for the descriptor object instantiate it with all the relevant default configuration settings (which
may depend on the specialization values used for the precision template parameter prec and for the domain template
parameter dom). The constructors do not perform any significant initialization work as changes in the object’s config-
uration(s) may be operated thereafter (via its set_value member function) and modify significantly the nature of that
work.

The copy constructor performs a deep copy of descriptor objects.

Syntax (one-dimensional transform)

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>(std::int64_t length);

}

8.2. oneMKL Domains 1546

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax (𝑑-dimensional transform with 𝑑 > 0)

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>(std::vector<std::int64_t> lengths);

}

Copy constructor

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>(const descriptor<prec,dom>& other);

}

Move constructor

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>(descriptor<prec,dom>&& other);

}

Input Parameters

length
Length 𝑛1 > 0 of the data sequence(s) for one-dimensional transform(s).

lengths
Vector of 𝑑 > 0 lengths {𝑛1, . . . , 𝑛𝑑} of the data sequence(s) for 𝑑-dimensional transform(s). The values are to
be provided in that order and such that 𝑛𝑗 > 0, ∀𝑗 ∈ {1, . . . , 𝑑}.

other
Another descriptor object of the same type to copy or move.

Throws

The descriptor::descriptor() constructors shall throw the following exception if the associated condition is
detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions
not covered here:

oneapi::mkl::host_bad_alloc()
If any memory allocations on host have failed, for instance due to insufficient memory.

oneapi::mkl::unimplemented()
If the dimension 𝑑, i.e., the size of vector lengths, is larger than what is supported by the library implementation.

Descriptor class member table: Descriptor class member functions

8.2. oneMKL Domains 1547

oneAPI Specification, Release 1.4-provisional-rev-1

Descriptor class assignment operators

The copy assignment operator results in a deep copy.

Copy assignment

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>& descriptor<prec,dom>::operator=(const descriptor<prec,dom>&␣

→˓other);

}

Move assignment

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>& descriptor<prec,dom>::operator=(descriptor<prec,dom>&& other);

}

Input Parameters

other
The descriptor object to copy or move from.

Throws

The assignment operators shall throw the following exceptions if the associated condition is detected. An implemen-
tation may throw additional implementation-specific exception(s) in case of error conditions not covered here:

oneapi::mkl::host_bad_alloc()
If any memory allocations on host have failed, for instance due to insufficient memory.

Descriptor class member table: Descriptor class member functions

set_value

The set_value member function of the descriptor class sets a configuration value corresponding to a (read-write)
configuration parameter for the DFT(s) that a descriptor object defines. This function is to be used as many times as
required for all the necessary configuration parameters to be set prior to committing the descriptor object (by calling
its member function commit).

This function requires and expects exactly two arguments: it sets the configuration value (second argument) cor-
responding to the configuration parameter (first argument) param of type oneapi::mkl::dft::config_param.
The type of the configuration value (second argument) to be set depends on the value of param: it can be
oneapi::mkl::dft::config_value or a native type like std::int64_t or float (more details available here).

8.2. oneMKL Domains 1548

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::set_value(oneapi::mkl::dft::config_param param, ...);

}

Input Parameters

param
One of the possible values of type config_param representing the (writable) configuration parameter to be set.

. . .
An element of the appropriate type for the configuration value corresponding to the targeted configuration pa-
rameter param (appropriate type defined here).

Throws

The descriptor::set_value() routine shall throw the following exceptions if the associated condition is detected.
An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered
here:

oneapi::mkl::invalid_argument()
If the provided config_param and/or configuration value is not valid.

oneapi::mkl::unimplemented()
If the provided config_param and configuration value are valid, but not supported by the library implementation.

Descriptor class member table: Descriptor class member functions

get_value

The get_value member function of the descriptor class queries the configuration value corresponding to any con-
figuration parameter for the DFT that a descriptor object defines.

This function requires and expects exactly two arguments: it returns the configuration value (into the element
pointed by the second argument) corresponding to the queried configuration parameter (first argument) param of
type oneapi::mkl::dft::config_param. The type of the second argument depends on the value of param:
it is a pointer to a writable element of type oneapi::mkl::dft::domain, oneapi::mkl::dft::precision,
oneapi::mkl::dft::config_value or a native type like std::int64_t or float (more details available here).

Note: The value returned by get_value corresponds to the latest value set for the corresponding configuration
parameter being queried or the corresponding default value if that parameter was not set or if it is not writable, even if
that value was set after the descriptor was committed.

8.2. oneMKL Domains 1549

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::get_value(oneapi::mkl::dft::config_param param, ...);

}

Input Parameters

param
One of the possible values of type config_param representing the configuration parameter being queried.

. . .
A pointer to a writable element of the appropriate type for the configuration value corresponding to the queried
configuration parameter param (appropriate type of pointed element defined here).

Throws

The descriptor::get_value() routine shall throw the following exceptions if the associated condition is detected.
An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered
here:

oneapi::mkl::invalid_argument()
If the requested config_param is not valid.

Descriptor class member table: Descriptor class member functions

set_workspace

Sets the workspace for when config_param::WORKSPACE_PLACEMENT is set to
config_value::WORKSPACE_EXTERNAL.

Description

This function sets the workspace to use when computing DFTs for when an external workspace is set.
This function may only be called after the descriptor has been committed. The size of the provided
workspace must be equal to or larger than the required workspace size obtained by calling descriptor<prec,
dom>::get_value(config_param::WORKSPACE_EXTERNAL_BYTES, &workspaceBytes).

A descriptor where config_value::WORKSPACE_EXTERNAL is specified for
config_param::WORKSPACE_PLACEMENT is not a valid descriptor for compute calls until this function has
been successfully called.

The type of workspace must match the compute calls for which it is used. That is, if the workspace is provided as
a sycl::buffer, the compute calls must also use sycl::buffer for their arguments. Likewise, a USM allocated
workspace must only be used with USM compute calls. Failing to do this will result in an invalid descriptor for compute
calls.

If the workspace is a USM allocation, the user must not use it for other purposes in parallel whilst the DFT
compute_forward or compute_backward are in progress.

8.2. oneMKL Domains 1550

oneAPI Specification, Release 1.4-provisional-rev-1

This function can be called on committed descriptors where the workspace placement is not
config_value::WORKSPACE_EXTERNAL. The provided workspace may or may not be used in compute calls.
However, the aforementioned restrictions will still apply.

Syntax (buffer workspace)

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::set_workspace(sycl::buffer<scalar_type, 1> &workspaceBuf);

}

Syntax (USM workspace)

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::set_workspace(scalar_type* workspaceUSM);

}

Input Parameters

workspaceBuf
A workspace buffer where scalar_type is the floating-point type according to prec. This buffer must be
sufficiently large or an exception will be thrown. A sub-buffer cannot be used.

workspaceUSM
A workspace USM allocation where scalar_type is the floating-point type according to prec. This allocation
must be accessible on the device on which the descriptor is committed. It is assumed that this USM allocation
is sufficiently large. The pointer is expected to be aligned to scalar_type.

Throws

The descriptor::set_workspace() routine shall throw the following exceptions if the associated condition is de-
tected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not
covered here:

oneapi::mkl::invalid_argument()
If the provided buffer workspaceBuf is not sufficiently large or is a sub-buffer, or if the provided USM allocation
workspaceUSM is nullptr when an external workspace of size greater than zero is required.

oneapi::mkl::uninitialized()
If set_workspace is called before the descriptor is committed.

Descriptor class member table: Descriptor class member functions

8.2. oneMKL Domains 1551

oneAPI Specification, Release 1.4-provisional-rev-1

commit

The commit member function commits a descriptor object to the DFT calculations it defines consistently with its
configuration settings, by completing all the initialization work (e.g., algorithm selection, algorithm tuning, choice of
factorization, memory allocations, calculation of twiddle factors, etc.) required by the chosen implementation for the
desired DFT(s) on the targeted device. Objects of the descriptor class must be committed prior to using them in
any call to compute_forward or compute_backward (which trigger actual DFT calculations).

As specified above, all required configuration parameters must be set before this function is called. Any change in
configuration operated on a descriptor object via a call to its set_value member function after it was committed
results in an undefined state not suitable for computation until this commit member function is called again.

Syntax

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::commit(sycl::queue& queue);

}

Input Parameters

queue
Valid sycl::queue object to which the operations relevant to the desired DFT(s) are to be enqueued.

Throws

The descriptor::commit() routine shall throw the following exceptions if the associated condition is detected. An
implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here
(if the descriptor object’s configuration was found to be inconsistent, for instance):

oneapi::mkl::invalid_argument()
If the queue is found to be invalid in any way.

oneapi::mkl::host_bad_alloc()
If any host side only memory allocations fail, for instance due to lack of memory.

oneapi::mkl::device_bad_alloc()
If any device or shared memory allocation fail.

Descriptor class member table: Descriptor class member functions

Parent topic: Discrete Fourier Transform Functions

8.2. oneMKL Domains 1552

oneAPI Specification, Release 1.4-provisional-rev-1

DFT-related scoped enumeration types

The following scoped enumeration types, defined in the oneapi::mkl::dft namespace, are used for constructing and
configuring objects of the descriptor class consistently with the DFT(s) they are meant to define.

Scoped enumeration
type

Description

precision Represents the precision of the floating-point data format and of the floating-point
arithmetic to be used for the desired DFT calculations. A template parameter prec
of this type is used for the descriptor class.

domain Represents the type of forward domain for the desired DFT(s). A template parameter
dom of this type is used for the descriptor class.

config_param Represents configuration parameters for objects of the descriptor class. The configu-
ration values associated with the configuration parameters can be retrieved (resp. set,
for writable parameters) via the object’s get_value (resp. set_value) member function.

config_value Represents the possible configuration values for some of the configuration parameters
that may take only a few determined, non-numeric values.

precision

This scoped enumeration type represents the precision of the floating-point format to be used for the desired DFT(s).
The same precision is to be used for the user-provided data, the computation being carried out by oneMKL and the
results delivered by oneMKL.

Syntax

enum class precision {
SINGLE,
DOUBLE

};

Value Description
SINGLE Single-precision floating-point format (FP32) is used for data representation and arith-

metic operations.
DOUBLE Double-precision floating-point format (FP64) is used for data representation and arith-

metic operations.

domain

This scoped enumeration type represents the type of forward domain for the desired DFTs (as explained in the intro-
duction, the backward domain type is always complex).

8.2. oneMKL Domains 1553

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

enum class domain {
REAL,
COMPLEX

};

Value Description
REAL The forward domain is the set of real 𝑑-dimensional periodic sequences.
COMPLEX The forward domain is the set of complex 𝑑-dimensional periodic sequences.

config_param

This scoped enumeration type represents configuration parameters for objects of the descriptor class.

enum class config_param {
// read-only parameters:
FORWARD_DOMAIN,
DIMENSION,
LENGTHS,
PRECISION,
COMMIT_STATUS,
// writable parameters:
FORWARD_SCALE,
BACKWARD_SCALE,

NUMBER_OF_TRANSFORMS,

COMPLEX_STORAGE,

PLACEMENT,

FWD_STRIDES,
BWD_STRIDES,
INPUT_STRIDES, // deprecated
OUTPUT_STRIDES, // deprecated

FWD_DISTANCE,
BWD_DISTANCE,

WORKSPACE_PLACEMENT,
WORKSPACE_EXTERNAL_BYTES

};

Configuration parameters represented by config_param::FORWARD_DOMAIN and config_param::PRECISION
are associated with configuration values of type domain and precision respectively. Other configuration pa-
rameters are associated with configuration values of type config_value or of a native type like std::int64_t,
std::vector<std::int64_t>, float or double. This is further specified in the following table.

8.2. oneMKL Domains 1554

oneAPI Specification, Release 1.4-provisional-rev-1

Value
of
config_param

Represented configuration parameter(s) Type of associated configuration value
[default value]

FOR-
WARD_DOMAIN

Type of forward domain, set at construction time as the
specialization value of domain template parameter dom.
This parameter is read-only. domain

[dom]

DI-
MEN-
SION

Value of the dimension 𝑑 of the desired DFTs, set at con-
struction time. This parameter is read-only.

std::int64_t

[𝑑]

LENGTHS Values {𝑛1, . . . , 𝑛𝑑} of the periods (or “lengths”) of the
desired DFT, set at construction time. This parameter is
read-only. std::vector<std::int64_t> of size 𝑑

or, if 𝑑 = 1, std::int64_t
[std::vector<int64_t>({n_1,...,
n_d})]

PRECI-
SION

Floating-point precision to be considered by and used
for the DFT calculation(s), set at construction time as
the specialization value of precision template parameter
prec. This parameter is read-only.

precision
[prec]

COM-
MIT_STATUS

Status flag indicating whether the object is ready for
computations after a successful call to commit. This pa-
rameter is read-only. config_value (possible values are

self-explanatory
config_value::COMMITTED or
config_value::UNCOMMITTED).
[config_value::UNCOMMITTED]

FOR-
WARD_SCALE

Value of 𝜎 for the forward DFT.

float (resp. double) for single-precision
(resp. double-precision) descriptors
[1.0]

BACK-
WARD_SCALE

Value of 𝜎 for the backward DFT.

float (resp. double) for single-precision
(resp. double-precision) descriptors
[1.0]

NUM-
BER_OF_TRANSFORMS

Value of 𝑀 . This is relevant (and must be set) for
batched DFT(s), i.e., if 𝑀 > 1.

std::int64_t

[1]

COM-
PLEX_STORAGE

Data storage type used (relevant for complex descriptors
only).

config_value (possible values are
config_value::COMPLEX_COMPLEX or
config_value::REAL_REAL)
[config_value::COMPLEX_COMPLEX]

PLACE-
MENT

Parameter specifying whether the DFT calculations
should be done in-place (results overwriting the input
data) or out-of-place (input and output in separate data
containers having no common elements).
Note: even for out-of-place configurations, some
implementations may not preserve the original input
data.

config_value (possible values are
self-explanatory
config_value::INPLACE or
config_value::NOT_INPLACE)
[config_value::INPLACE]

FWD_STRIDESOffset and strides defining the layout within a given data
sequence in the forward domain.

std::vector<std::int64_t> of size
(𝑑+ 1)

[defined here]

BWD_STRIDESOffset and strides defining the layout within a given data
sequence in the backward domain.

std::vector<std::int64_t> of size
(𝑑+ 1)

[defined here]

IN-
PUT_STRIDES
(depre-
cated)

Offset and strides defining the layout within a given input
data sequence.

std::vector<std::int64_t> of size
(𝑑+ 1)

[std::vector<std::int64_t>(d+1,
0)]

OUT-
PUT_STRIDES
(depre-
cated)

Offset and strides defining the layout within a given out-
put data sequence.

std::vector<std::int64_t> of size
(𝑑+ 1)

[std::vector<std::int64_t>(d+1,
0)]

FWD_DISTANCEDistance in number of elements of implicitly-assumed
data type between forward-domain entries (·)𝑚𝑘1,𝑘2,...,𝑘𝑑

and (·)𝑚+1
𝑘1,𝑘2,...,𝑘𝑑

for all 0 ≤ 𝑚 < 𝑀 − 1 and
(𝑘1, 𝑘2, . . . , 𝑘𝑑) in valid range. This is relevant (and
must be set) for batched DFT(s), i.e., if 𝑀 > 1.

std::int64_t

[0]

BWD_DISTANCEDistance in number of elements of implicitly-
assumed data type between backward-domain entries
(·)𝑚𝑘1,𝑘2,...,𝑘𝑑

and (·)𝑚+1
𝑘1,𝑘2,...,𝑘𝑑

for all 0 ≤ 𝑚 < 𝑀 − 1
and (𝑘1, 𝑘2, . . . , 𝑘𝑑) in valid range. This is relevant (and
must be set) for batched DFT(s), i.e., if 𝑀 > 1.

std::int64_t

[0]

WORKSPACE_PLACEMENTSome FFT algorithm computation steps require a scratch
space for permutations or other purposes. This param-
eter controls whether this scratch space is automatically
allocated or provided by the user.

config_value (possible values are
config_value::WORKSPACE_AUTOMATIC
or
config_value::WORKSPACE_EXTERNAL).

[config_value::WORKSPACE_AUTOMATIC]

WORKSPACE_EXTERNAL_BYTESThe required minimum external workspace size for use
by set_workspace. A read-only value, on committed de-
scriptors only. std::int64_t

8.2. oneMKL Domains 1555

oneAPI Specification, Release 1.4-provisional-rev-1

config_value

This scoped enumeration type represents possible non-numeric configuration values associated with some configuration
parameters.

enum class config_value {
// for config_param::COMMIT_STATUS
COMMITTED,
UNCOMMITTED,

// for config_param::COMPLEX_STORAGE,
COMPLEX_COMPLEX,
REAL_REAL,

// for config_param::PLACEMENT
INPLACE,
NOT_INPLACE

// For config_param::WORKSPACE_PLACEMENT
WORKSPACE_AUTOMATIC,
WORKSPACE_EXTERNAL,

};

Parent topic: Discrete Fourier Transform Functions

Configuration of Data Layouts

The DFT interface provides the configuration parameters config_param::FWD_STRIDES (resp.
config_param::BWD_STRIDES) to define the data layout locating entries of relevant data sequences in
the forward (resp. backward) domain. In case of batched transforms, i.e., if 𝑀 > 1 is configured
by setting config_param::NUMBER_OF_TRANSFORMS accordingly, config_param::FWD_DISTANCE (resp.
config_param::BWD_DISTANCE) completes the description of the data layout by specifying the distances between
successive data sequences in the forward (resp. backward) domain.

Using the notations from the introduction and the superscript fwd (resp. bwd) for data sequences belonging to forward
(resp. backward) domain, for any 𝑚 and multi-index (𝑘1, 𝑘2, . . . , 𝑘𝑑) within valid range, the corresponding entry
(·)𝑚𝑘1,𝑘2,...,𝑘𝑑

- or the real or imaginary part thereof - of the relevant data sequence is located at index

𝑠xwd
0 + 𝑘1 𝑠

xwd
1 + 𝑘2 𝑠

xwd
2 + · · ·+ 𝑘𝑑 𝑠xwd

𝑑 +𝑚 𝑙xwd (8.2)

of the corresponding data container (sycl::buffer object or device-accessible USM allocation) provided to the com-
pute function, the base data type of which is (possibly implicitly re-interpreted) as documented in the table below. In
the index expression (8.2), x = f (resp. x = b) for entries of forward-domain (resp. backward-domain) data sequences
and

• 𝑠xwd
𝑗 , ∀𝑗 ∈ {0, . . . , 𝑑} represents the offset and generalized strides defining the locations of entries within each
𝑑-dimensional data sequence in the forward (resp. backward) domain if x = f (resp. if x = b), counted in
number of elements of the relevant implicitly-assumed elementary data type;

• 𝑙xwd represents the distance between successive 𝑑-dimensional data sequences in the forward (resp. backward)
domain if x = f (resp. if x = b), counted in number of elements of the relevant implicitly-assumed elementary
data type.

8.2. oneMKL Domains 1556

oneAPI Specification, Release 1.4-provisional-rev-1

Note: All data sequences (or respective real and imaginary parts thereof if separately stored) must belong to the same
block allocation, as a consequence of the generalized index (8.2).

Implicitly-assumed elementary data type

When reading or writing an element at index (8.2) of any user-provided data container used at compute time, a
descriptor object may re-interpret the base data type of that data container into an implicitly-assumed elementary
data type. That implicitly-assumed data type depends on the object type, i.e., on the specialization values used for
the template parameters when instantiating the descriptor class, and, in case of complex descriptors, on the con-
figuration value set for its configuration parameter config_param::COMPLEX_STORAGE. The table below lists the
implicitly-assumed data type in either domain (last 2 columns) based on the object type and its configuration value for
config_param::COMPLEX_STORAGE (first 2 columns).

Object type Configuration value for configuration parameter config_param::COMPLEX_STORAGE Implicitly-assumed elementary data type in forward domain Implicitly-assumed elementary data type in backward domain
descriptor<precision::SINGLE, domain::COMPLEX> config_value::COMPLEX_COMPLEX std::complex<float> std::complex<float>
descriptor<precision::DOUBLE, domain::COMPLEX> config_value::COMPLEX_COMPLEX std::complex<double> std::complex<double>
descriptor<precision::SINGLE, domain::COMPLEX> config_value::REAL_REAL float float
descriptor<precision::DOUBLE, domain::COMPLEX> config_value::REAL_REAL double double
descriptor<precision::SINGLE, domain::REAL> irrelevant float std::complex<float>
descriptor<precision::DOUBLE, domain::REAL> irrelevant double std::complex<double>

Configuring data layouts for batched transforms

The value 𝑙xwd in (8.2) above is communicated as an std::int64_t configuration value, set for the configuration
parameter config_param::FWD_DISTANCE if x = f (resp. config_param::BWD_DISTANCE if x = b). This value
is irrelevant for unbatched transforms, i.e., for descriptors set to handle a number of transforms 𝑀 equal to 1 (default
behavior).

In case of batched transforms, the number 𝑀 > 1 of desired DFTs must be set explicitly as an std::int64_t config-
uration value for the configuration parameter config_param::NUMBER_OF_TRANSFORMS. In that case, the configu-
ration parameters config_param::FWD_DISTANCE and config_param::BWD_DISTANCE must also be set explicitly
since their default configuration values of 0 would break the consistency requirements for any 𝑀 > 1.

Configuring strides in forward and backward domains

The values 𝑠xwd
0 , 𝑠xwd

1 , . . . , 𝑠xwd
𝑑 in (8.2) above are communicated as elements, in that order, of a

(𝑑 + 1)-long std::vector<std::int64_t> configuration value, set for the configuration parameter
config_param::FWD_STRIDES if x = f (resp. config_param::BWD_STRIDES if x = b). The element 𝑠xwd

0

represents an absolute offset (or “displacement”) in the data sets while the subsequent elements 𝑠xwd
𝑗 (𝑗 > 0) are

generalized strides to be considered along dimensions 𝑗 ∈ {1, . . . , 𝑑}.

The default values set for the forward and backward strides correspond to the data layout configurations for unbatched,
in-place transforms using unit stride along the last dimension with no offset (and minimal padding in forward domain
in case of real descriptors, aligning with the requirements for in-place transforms). In other words, the default values
are 𝑠fwd

0 = 𝑠bwd
0 = 0, 𝑠fwd

𝑑 = 𝑠bwd
𝑑 = 1 and, for 𝑑-dimensional DFTs with 𝑑 > 1,

• 𝑠fwd
𝑑−1 = 𝑠bwd

𝑑−1 = 𝑛𝑑 for complex descriptors;

• 𝑠bwd
𝑑−1 = ⌊𝑛𝑑

2 ⌋+ 1, and 𝑠fwd
𝑑−1 = 2𝑠bwd

𝑑−1 for real descriptors;

8.2. oneMKL Domains 1557

oneAPI Specification, Release 1.4-provisional-rev-1

• if 𝑑 > 2, 𝑠xwd
𝑘 = 𝑛𝑘+1𝑠

xwd
𝑘+1 for 𝑘 ∈ {1, . . . , 𝑑− 2} (for x = f and x = b).

General consistency requirements

In general, the distances and strides must be set so that every index value (8.2) corresponds to a unique entry of the data
sequences under consideration. In other words, there must not be one index value as expressed in (8.2) that corresponds
to two different (𝑑 + 1)-tuples (𝑚, 𝑘1, 𝑘2, . . . , 𝑘𝑑) that are both within the elementary range of indices considered by
oneMKL.

Additionally, for in-place transforms (configuration value config_value::INPLACE associated with configuration
parameter config_param::PLACEMENT), the smallest stride value must be associated with the same dimension in
forward and backward domains and the data layouts must abide by following “consistency requirement”: the memory
address(es) of leading entry(ies) along the last dimension must be identical in forward and backward domains. Specifi-
cally, considering any (𝑑+1)-tuple (𝑚, 𝑘1, 𝑘2, . . . , 𝑘𝑑−1, 0) within valid range, the memory address of the element of
corresponding index value (8.2) in forward domain (considering the implicitly assumed type in forward domain) must
be identical to the memory address of the element of corresponding index value (8.2) in backward domain (considering
the implicitly assumed type in backward domain). Equivalently,

• for complex descriptors, the offset, stride(s) (and distances, if relevant) must be equal in forward and backward
domain;

• for real descriptors, offsets and strides must satisfy 𝑠fwd
𝑗 = 2𝑠bwd

𝑗 ∀𝑗 ∈ {0, . . . , 𝑑 − 1} (note that 0 ≤ 𝑗 < 𝑑)
and distances, if relevant, must satisfy 𝑙fwd = 2𝑙bwd. Note that this leads to some data padding being required in
forward domain if unit strides are used along the last dimension in forward and backward domains.

Configuring strides for input and output data [deprecated, not recommended]

Instead of specifying strides by domain, one may choose to specify the strides for input and output data se-
quences. Let 𝑠x

𝑗 , 𝑗 ∈ {0, 1, . . . , 𝑑} be the stride values for input (resp. output) data sequences if x = i
(resp. x = o). Such 𝑠x

0, 𝑠
x
1, . . . , 𝑠

x
𝑑 values may be communicated as elements, in that order, of a (𝑑 +

1)-long std::vector<std::int64_t> configuration value, set for the (deprecated) configuration parameter
config_param::INPUT_STRIDES if x = i (resp. config_param::OUTPUT_STRIDES if x = o).

The values of 𝑠i
𝑗 and 𝑠o

𝑗 are to be used and considered by oneMKL if and only if 𝑠fwd
𝑗 = 𝑠bwd

𝑗 = 0,∀𝑗 ∈ {0, 1, . . . , 𝑑}.
(This will happen automatically if config_param::INPUT_STRIDES and config_param::OUTPUT_STRIDES are
set and config_param::FWD_STRIDES and config_param::BWD_STRIDES are not. See note below.) In such a
case, descriptor objects must consider the data layouts corresponding to the two compute directions separately. As
detailed above, relevant data sequence entries are accessed as elements of data containers (sycl::buffer objects or
device-accessible USM allocations) provided to the compute function, the base data type of which is (possibly implicitly
re-interpreted) as documented in this table. If using input and output strides, for any𝑚 and multi-index (𝑘1, 𝑘2, . . . , 𝑘𝑑)
within valid range, the index to be used when accessing a data sequence entry - or part thereof - in forward domain is

𝑠x
0 + 𝑘1 𝑠

x
1 + 𝑘2 𝑠

x
2 + · · ·+ 𝑘𝑑 𝑠x

𝑑 +𝑚 𝑙fwd

where x = i (resp. x = o) for forward (resp. backward) DFT(s). Similarly, the index to be used when accessing a data
sequence entry - or part thereof - in backward domain is

𝑠x
0 + 𝑘1 𝑠

x
1 + 𝑘2 𝑠

x
2 + · · ·+ 𝑘𝑑 𝑠x

𝑑 +𝑚 𝑙bwd

where x = o (resp. x = i) for forward (resp. backward) DFT(s).

As a consequence, configuring descriptor objects using these deprecated configuration parameters makes their config-
uration direction-dependent when different stride values are used in forward and backward domains. Since the intended
compute direction is unknown to the descriptor object when committing it, every direction that results in a consistent
data layout in forward and backward domains must be supported by successfully committed descriptor objects.

8.2. oneMKL Domains 1558

oneAPI Specification, Release 1.4-provisional-rev-1

Note: For descriptor objects with strides configured via these deprecated configuration parameters, the consistency
requirements may be satisfied for only one of the two compute directions, i.e., for only one of the forward or backward
DFT(s). Such a configuration should not cause an exception to be thrown by the descriptor’s commit member function
but the behavior of oneMKL is undefined if using that object for the compute direction that does not align with the
consistency requirements.

Note: Setting either of config_param::INPUT_STRIDES or config_param::OUTPUT_STRIDES triggers any
default or previously-set values for config_param::FWD_STRIDES and config_param::BWD_STRIDES to re-
set to std::vector<std::int64_t>(d+1, 0) values, and vice versa. This default behavior prevents mix-and-
matching usage of either of config_param::INPUT_STRIDES or config_param::OUTPUT_STRIDES with either
of config_param::FWD_STRIDES or config_param::BWD_STRIDES, which is not to be supported. If such a con-
figuration is attempted, an exception is to be thrown at commit time due to invalid configuration, as the stride values
that were implicitly reset surely invalidate the consistency requirements for any non-trivial DFT.

If specifying the data layout strides using these deprecated configuration parameters and if the strides differ in forward
and backward domain, the descriptor must be re-configured and re-committed for computing the DFT in the reverse
direction as shown below.

// ...
desc.set_value(config_param::INPUT_STRIDES, fwd_domain_strides);
desc.set_value(config_param::OUTPUT_STRIDES, bwd_domain_strides);
desc.commit(queue);
compute_forward(desc, ...);
// ...
desc.set_value(config_param::INPUT_STRIDES, bwd_domain_strides);
desc.set_value(config_param::OUTPUT_STRIDES, fwd_domain_strides);
desc.commit(queue);
compute_backward(desc, ...);

The config_param::INPUT_STRIDES and config_param::OUTPUT_STRIDES parameters are deprecated. A warn-
ing message “{IN,OUT}PUT_STRIDES are deprecated: please use {F,B}WD_STRIDES, instead.” is to be reported
to applications using these configuration parameters.

Parent topic DFT-related scoped enumeration types

Data storage

The data storage convention observed by a descriptor object depends on whether it is a real or complex de-
scriptor and, in case of complex descriptors, on the configuration value associated with configuration parameter
config_param::COMPLEX_STORAGE.

8.2. oneMKL Domains 1559

oneAPI Specification, Release 1.4-provisional-rev-1

Complex descriptors

For a complex descriptor, the configuration parameter config_param::COMPLEX_STORAGE specifies how the entries
of the complex data sequences it consumes and produces are stored. If that configuration parameter is associated with a
configuration value config_value::COMPLEX_COMPLEX (default behavior), those entries are accessed and stored as
std::complex<float> (resp. std::complex<double>) elements of a single data container (device-accessible USM
allocation or sycl::buffer object) if the descriptor object is a single-precision (resp. double-precision) descriptor.
If the configuration value config_value::REAL_REAL is used instead, the real and imaginary parts of those entries
are accessed and stored as float (resp. double) elements of two separate, non-overlapping data containers (device-
accessible USM allocations or sycl::buffer objects) if the descriptor object is a single-precision (resp. double-
precision) descriptor.

These two behaviors are further specified and illustrated below.

config_value::COMPLEX_COMPLEX for config_param::COMPLEX_STORAGE

For complex descriptors with parameter config_param::COMPLEX_STORAGE set to
config_value::COMPLEX_COMPLEX, each of forward- and backward-domain data sequences must belong to a
single data container (device-accessible USM allocation or sycl::buffer object). Any relevant entry (·)𝑚𝑘1,𝑘2,...,𝑘𝑑

is accessed/stored from/in a data container provided at compute time at the index value expressed in eq. (8.2)
(from this page) of that data container, whose elementary data type is (possibly implicitly re-interpreted as)
std::complex<float> (resp. std::complex<double>) for single-precision (resp. double-precision) descriptors.

The same unique data container is to be used for forward- and backward-domain data sequences for in-place
transforms (for descriptor objects with configuration value config_value::INPLACE for configuration parameter
config_param::PLACEMENT). Two separate data containers sharing no common elements are to be used for out-of-
place transforms (for descriptor objects with configuration value config_value::NOT_INPLACE for configuration
parameter config_param::PLACEMENT).

The following snippet illustrates the usage of config_value::COMPLEX_COMPLEX for configuration parameter
config_param::COMPLEX_STORAGE, in the context of in-place, single-precision (fp32) calculations of 𝑀 three-
dimensional 𝑛1×𝑛2×𝑛3 complex transforms, using identical (default) strides and distances in forward and backward
domains, with USM allocations.

namespace dft = oneapi::mkl::dft;
dft::descriptor<dft::precision::SINGLE, dft::domain::COMPLEX> desc({n1, n2, n3});
std::vector<std::int64_t> strides({0, n2*n3, n3, 1});
std::int64_t dist = n1*n2*n3;
std::complex<float> *Z = (std::complex<float> *) malloc_
→˓device(2*sizeof(float)*n1*n2*n3*M, queue);
desc.set_value(dft::config_param::FWD_STRIDES, strides);
desc.set_value(dft::config_param::BWD_STRIDES, strides);
desc.set_value(dft::config_param::FWD_DISTANCE, dist);
desc.set_value(dft::config_param::BWD_DISTANCE, dist);
desc.set_value(dft::config_param::NUMBER_OF_TRANSFORMS, M);
desc.set_value(dft::config_param::COMPLEX_STORAGE, dft::config_value::COMPLEX_COMPLEX);
desc.commit(queue);

// initialize forward-domain data such that entry {m;k1,k2,k3}
// = Z[strides[0] + k1*strides[1] + k2*strides[2] + k3*strides[3] + m*dist]
compute_forward(desc, Z); // complex-to-complex in-place DFT
// in backward domain: entry {m;k1,k2,k3}
// = Z[strides[0] + k1*strides[1] + k2*strides[2] + k3*strides[3] + m*dist]

8.2. oneMKL Domains 1560

oneAPI Specification, Release 1.4-provisional-rev-1

config_value::REAL_REAL for config_param::COMPLEX_STORAGE

For complex descriptors with parameter config_param::COMPLEX_STORAGE set to config_value::REAL_REAL,
forward- and backward-domain data sequences are read/stored from/in two different, non-overlapping data containers
(device-accessible USM allocations or sycl::buffer objects) encapsulating the real and imaginary parts of the rele-
vant entries separately. The real and imaginary parts of any relevant complex entry (·)𝑚𝑘1,𝑘2,...,𝑘𝑑

are both stored at the
index value expressed in eq. (8.2) (from this page) of their respective data containers, whose elementary data type is
(possibly implicitly re-interpreted as) float (resp. double) for single-precision (resp. double-precision) descriptors.

The same two data containers are to be used for real and imaginary parts of forward- and backward-domain data
sequences for in-place transforms (for descriptor objects with configuration value config_value::INPLACE for con-
figuration parameter config_param::PLACEMENT). Four separate data containers sharing no common elements are to
be used for out-of-place transforms (for descriptor objects with configuration value config_value::NOT_INPLACE
for configuration parameter config_param::PLACEMENT).

The following snippet illustrates the usage of config_value::REAL_REAL set for configuration parameter
config_param::COMPLEX_STORAGE, in the context of in-place, single-precision (fp32) calculation of 𝑀 three-
dimensional 𝑛1×𝑛2×𝑛3 complex transforms, using identical (default) strides and distances in forward and backward
domains, with USM allocations.

namespace dft = oneapi::mkl::dft;
dft::descriptor<dft::precision::SINGLE, dft::domain::COMPLEX> desc({n1, n2, n3});
std::vector<std::int64_t> strides({0, n2*n3, n3, 1});
std::int64_t dist = n1*n2*n3;
float *ZR = (float *) malloc_device(sizeof(float)*n1*n2*n3*M, queue); // data container␣
→˓for real parts
float *ZI = (float *) malloc_device(sizeof(float)*n1*n2*n3*M, queue); // data container␣
→˓for imaginary parts
desc.set_value(dft::config_param::FWD_STRIDES, strides);
desc.set_value(dft::config_param::BWD_STRIDES, strides);
desc.set_value(dft::config_param::FWD_DISTANCE, dist);
desc.set_value(dft::config_param::BWD_DISTANCE, dist);
desc.set_value(dft::config_param::NUMBER_OF_TRANSFORMS, M);
desc.set_value(dft::config_param::COMPLEX_STORAGE, dft::config_value::REAL_REAL);
desc.commit(queue);

// initialize forward-domain data such that the real part of entry {m;k1,k2,k3}
// = ZR[strides[0] + k1*strides[1] + k2*strides[2] + k3*strides[3] + m*dist]
// and the imaginary part of entry {m;k1,k2,k3}
// = ZI[strides[0] + k1*strides[1] + k2*strides[2] + k3*strides[3] + m*dist]
compute_forward<decltype(desc), float>(desc, ZR, ZI); // complex-to-complex in-place DFT
// in backward domain: the real part of entry {m;k1,k2,k3}
// = ZR[strides[0] + k1*strides[1] + k2*strides[2] + k3*strides[3] + m*dist]
// and the imaginary part of entry {m;k1,k2,k3}
// = ZI[strides[0] + k1*strides[1] + k2*strides[2] + k3*strides[3] + m*dist]

8.2. oneMKL Domains 1561

oneAPI Specification, Release 1.4-provisional-rev-1

Real descriptors

Real descriptors observe only one type of data storage. Any relevant (real) entry (·)𝑚𝑘1,𝑘2,...,𝑘𝑑
of a data sequence in

forward domain is accessed and stored as a float (resp. double) element of a single data container (device-accessible
USM allocation or sycl::buffer object) if the descriptor object is a single-precision (resp. double-precision) de-
scriptor. Any relevant (complex) entry (·)𝑚𝑘1,𝑘2,...,𝑘𝑑

of a data sequence in backward domain is accessed and stored as a
std::complex<float> (resp. std::complex<double>) element of a single data container (device-accessible USM
allocation or sycl::buffer object) if the descriptor object is a single-precision (resp. double-precision) descriptor.

The following snippet illustrates the usage of a real, single-precision descriptor (and the corresponding data storage) for
the in-place, single-precision (fp32), calculation of 𝑀 three-dimensional 𝑛1 × 𝑛2 × 𝑛3 real transforms, using default
strides in forward and backward domains, with USM allocations.

namespace dft = oneapi::mkl::dft;
dft::descriptor<dft::precision::SINGLE, dft::domain::REAL> desc({n1, n2, n3});
// Note: integer divisions here below
std::vector<std::int64_t> fwd_strides({0, 2*n2*(n3/2 + 1), 2*(n3/2 + 1), 1});
std::vector<std::int64_t> bwd_strides({0, n2*(n3/2 + 1), (n3/2 + 1), 1});
std::int64_t fwd_dist = 2*n1*n2*(n3/2 + 1);
std::int64_t bwd_dist = n1*n2*(n3/2 + 1);
float *data = (float *) malloc_device(sizeof(float)*fwd_dist*M, queue); // data container
desc.set_value(dft::config_param::FWD_STRIDES, fwd_strides);
desc.set_value(dft::config_param::BWD_STRIDES, bwd_strides);
desc.set_value(dft::config_param::FWD_DISTANCE, fwd_dist);
desc.set_value(dft::config_param::BWD_DISTANCE, bwd_dist);
desc.set_value(dft::config_param::NUMBER_OF_TRANSFORMS, M);
desc.commit(queue);

// initialize forward-domain data such that real entry {m;k1,k2,k3}
// = data[fwd_strides[0] + k1*fwd_strides[1] + k2*fwd_strides[2] + k3*fwd_strides[3]␣
→˓+ m*fwd_dist]
compute_forward(desc, data); // real-to-complex in-place DFT
// in backward domain, the implicitly-assumed type is complex so, considering
// std::complex<float>* complex_data = static_cast<std::complex<float>*>(data);
// we have entry {m;k1,k2,k3}
// = complex_data[bwd_strides[0] + k1*bwd_strides[1] + k2*bwd_strides[2] + k3*bwd_
→˓strides[3] + m*bwd_dist]
// for 0 <= k3 <= n3/2.
// Note: if n3/2 < k3 < n3, entry {m;k1,k2,k3} = std::conj(entry {m;n1-k1,n2-k2,n3-k3})

Parent topic DFT-related scoped enumeration types

Workspace placement

DFT implementations often require temporary storage for intermediate data whilst computing DFTs.
This temporary storage is referred to as a workspace. Whilst this is managed automatically by de-
fault (config_value::WORKSPACE_AUTOMATIC set for config_param::WORKSPACE_PLACEMENT), it
may be preferable to provide an external workspace (config_value::WORKSPACE_EXTERNAL set for
config_param::WORKSPACE_PLACEMENT) for the following reasons:

• to reduce the number of mallocs / frees;

• to reduce memory consumption.

For some backends and configurations, config_value::WORKSPACE_EXTERNAL may reduce performance.

8.2. oneMKL Domains 1562

oneAPI Specification, Release 1.4-provisional-rev-1

A typical workflow for using config_value::WORKSPACE_EXTERNAL is given in the section below.

WORKSPACE_PLACEMENT

For config_param::WORKSPACE_PLACEMENT, valid configuration values are
config_value::WORKSPACE_AUTOMATIC and config_value::WORKSPACE_EXTERNAL.

WORKSPACE_AUTOMATIC

The default value for the config_param::WORKSPACE_PLACEMENT is config_value::WORKSPACE_AUTOMATIC.

When set to config_value::WORKSPACE_AUTOMATIC the user does not need to provide an external workspace. The
workspace will be automatically managed by the backend library.

WORKSPACE_EXTERNAL

The configuration config_param::WORKSPACE_PLACEMENT can be set to config_value::WORKSPACE_EXTERNAL
to allow the workspace to be set manually.

When a descriptor is committed with config_value::WORKSPACE_EXTERNAL set for
config_param::WORKSPACE_PLACEMENT, the user must provide an external workspace before calling any
compute function. See set_workspace and Typical usage of WORKSPACE_EXTERNAL.

Typical usage of WORKSPACE_EXTERNAL

Usage of config_value::WORKSPACE_EXTERNAL typically involves the following order of operations:

1. config_value::WORKSPACE_EXTERNAL is set for the uncommitted descriptor’s
config_param::WORKSPACE_EXTERNAL.

2. The descriptor is committed.

3. The required workspace size is queried.

4. A workspace of sufficient size is provided to the descriptor.

5. Compute functions following the type of external workspace provided are called.

6. The user is responsible for freeing the external workspace.

This is shown in the following example code:

// Create a descriptor
mkl::dft::descriptor<mkl::dft::precision::SINGLE, dom> desc(n);
// 1. Set the workspace placement to WORKSPACE_EXTERNAL
desc.set_value(mkl::dft::config_param::WORKSPACE_PLACEMENT,

mkl::dft::config_value::WORKSPACE_EXTERNAL);
// Set further configuration parameters
// ...
// 2. Commit the descriptor
desc.commit(myQueue);
// 3. Query the required workspace size
std::int64_t workspaceBytes{0};
desc.get_value(mkl::dft::config_param::WORKSPACE_EXTERNAL_BYTES, &workspaceBytes);

(continues on next page)

8.2. oneMKL Domains 1563

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

// Obtain a sufficiently large USM allocation or buffer. For this example, a USM␣
→˓allocation is used.
float* workspaceUsm = sycl::malloc_device<float>(workspaceBytes / sizeof(float),␣
→˓myQueue);
// 4. Set the workspace
desc.set_workspace(workspaceUsm);
// 5. Now USM compute functions can be called.

Parent topic: DFT-related scoped enumeration types

compute_forward

This function computes the forward DFT(s), as defined by an instantiation of the descriptor class, on user-provided
data.

Description

Given a successfully committed descriptor object whose configuration is not inconsistent with forward DFT calcula-
tions, this function computes the forward transform defined by that object.

The compute_forward function requires a successfully committed object of the descriptor class and one, two or four
“data container” arguments (depending on the configuration of the descriptor object). If using (pointers to) USM allo-
cations as data containers, this function may also be provided with an std::vector<sycl::event> object collecting
dependencies to be observed by the desired DFT calculations and return a sycl::event tracking the progress of the
DFT calculations enqueued by this function.

Note: The compute_forward function may need to access the internals and private/protected members of the descriptor
class. This could be done, for instance, by labeling it as a friend function to the descriptor class.

compute_forward (Buffer version)

Syntax (in-place transform, except for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout);
}

8.2. oneMKL Domains 1564

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax (in-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type typename data_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout_re,
sycl::buffer<data_type, 1> &inout_im);

}

Syntax (out-of-place transform, except for complex descriptors with config_value::REAL_REAL for
config_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in,
sycl::buffer<output_type, 1> &out);

}

Syntax (out-of-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in_re,
sycl::buffer<input_type, 1> &in_im,
sycl::buffer<output_type, 1> &out_re,
sycl::buffer<output_type, 1> &out_im);

}

Input Parameters

desc
A fully configured and committed object of the descriptor class, whose configuration is not inconsistent with
forward DFT calculations.

inout
sycl::buffer object of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

8.2. oneMKL Domains 1565

oneAPI Specification, Release 1.4-provisional-rev-1

inout_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the rele-
vant data sequences, as configured by desc. data_type must be single or double precision floating-point, as
described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in
sycl::buffer object of sufficient capacity to store the elements defining all the relevant forward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

in_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant
forward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-
of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the relevant
forward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

Output Parameters

inout
sycl::buffer object of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

inout_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the rele-
vant data sequences, as configured by desc. data_type must be single or double precision floating-point, as
described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out
sycl::buffer object of sufficient capacity to store the elements defining all the relevant backward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

out_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant
backward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-
of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the relevant
backward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

8.2. oneMKL Domains 1566

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

The oneapi::mkl::dft::compute_forward routine shall throw the following exceptions if the associated condition
is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions
not covered here:

oneapi::mkl::invalid_argument()
If the provided descriptor object desc is invalid, for instance, if its configuration value associated with configu-
ration parameter config_param::COMMIT_STATUS is not config_param::COMMITTED.

compute_forward (USM version)

Syntax (in-place transform, except for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_forward(descriptor_type &desc,

data_type *inout,
const std::vector<sycl::event> &

→˓dependencies = {});
}

Syntax (in-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_forward(descriptor_type &desc,

data_type *inout_re,
data_type *inout_im,
const std::vector<sycl::event> &

→˓dependencies = {});
}

Syntax (out-of-place transform, except for complex descriptors with config_value::REAL_REAL for
config_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_forward(descriptor_type &desc,

input_type *in,
output_type *out,
const std::vector<sycl::event> &

→˓dependencies = {});
}

8.2. oneMKL Domains 1567

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax (out-of-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_forward(descriptor_type &desc,

input_type *in_re,
input_type *in_im,
output_type *out_re,
output_type *out_im,
const std::vector<sycl::event> &

→˓dependencies = {});
}

Input Parameters

desc
A fully configured and committed object of the descriptor class, whose configuration is not inconsistent with
forward DFT calculations.

inout
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

inout_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant data sequences, as configured by desc. data_type must be single or double precision floating-point,
as described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant forward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

in_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
forward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant forward-domain data sequences, as configured by desc. Only with complex descriptors configured for
out-of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

dependencies
An std::vector<sycl::event> object collecting the events returned by previously enqueued tasks that must
be finished before this transform can be calculated.

8.2. oneMKL Domains 1568

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

inout
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

inout_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant data sequences, as configured by desc. data_type must be single or double precision floating-point,
as described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant backward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

out_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
backward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant backward-domain data sequences, as configured by desc. Only with complex descriptors configured
for out-of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

Throws

The oneapi::mkl::dft::compute_forward() routine shall throw the following exceptions if the associated con-
dition is detected. An implementation may throw additional implementation-specific exception(s) in case of error
conditions not covered here:

oneapi::mkl::invalid_argument()
If the provided descriptor object desc is invalid, for instance, if its configuration value associated with configu-
ration parameter config_param::COMMIT_STATUS is not config_param::COMMITTED. It will also be thrown
if any required input/output pointer is nullptr.

Return Values

This function returns a sycl::event object that allows to track progress of the forward DFT, and can be passed as a
dependency to other routines that may depend on the result of the forward transform(s) before proceeding with other
operations.

Parent topic: Discrete Fourier Transform Functions

8.2. oneMKL Domains 1569

oneAPI Specification, Release 1.4-provisional-rev-1

compute_backward

This function computes the backward DFT(s), as defined by an instantiation of the descriptor class, on user-provided
data.

Description

Given a successfully committed descriptor object whose configuration is not inconsistent with backward DFT calcu-
lations, this function computes the backward transform defined by that object.

The compute_backward function requires a successfully committed object of the descriptor class and one, two or
four “data container” arguments (depending on the configuration of the descriptor object). If using (pointers to) USM
allocations as data containers, this function may also be provided with an std::vector<sycl::event> object col-
lecting dependencies to be observed by the desired DFT calculations and return a sycl::event tracking the progress
of the DFT calculations enqueued by this function.

Note: The compute_backward function may need to access the internals and private/protected members of the de-
scriptor class. This could be done, for instance, by labeling it as a friend function to the descriptor class.

compute_backward (Buffer version)

Syntax (in-place transform, except for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout);
}

Syntax (in-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type typename data_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout_re,
sycl::buffer<data_type, 1> &inout_im);

}

8.2. oneMKL Domains 1570

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax (out-of-place transform, except for complex descriptors with config_value::REAL_REAL for
config_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in,
sycl::buffer<output_type, 1> &out);

}

Syntax (out-of-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in_re,
sycl::buffer<input_type, 1> &in_im,
sycl::buffer<output_type, 1> &out_re,
sycl::buffer<output_type, 1> &out_im);

}

Input Parameters

desc
A fully configured and committed object of the descriptor class, whose configuration is not inconsistent with
backward DFT calculations.

inout
sycl::buffer object of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

inout_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the rele-
vant data sequences, as configured by desc. data_type must be single or double precision floating-point, as
described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in
sycl::buffer object of sufficient capacity to store the elements defining all the relevant backward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

in_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant

8.2. oneMKL Domains 1571

oneAPI Specification, Release 1.4-provisional-rev-1

backward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-
of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the relevant
backward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

Output Parameters

inout
sycl::buffer object of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

inout_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the rele-
vant data sequences, as configured by desc. data_type must be single or double precision floating-point, as
described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out
sycl::buffer object of sufficient capacity to store the elements defining all the relevant forward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

out_re
sycl::buffer object of sufficient capacity to store the elements defining the real parts of all the relevant
forward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-
of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out_im
sycl::buffer object of sufficient capacity to store the elements defining the imaginary parts of all the relevant
forward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

Throws

The oneapi::mkl::dft::compute_backward routine shall throw the following exceptions if the associated con-
dition is detected. An implementation may throw additional implementation-specific exception(s) in case of error
conditions not covered here:

oneapi::mkl::invalid_argument()
If the provided descriptor object desc is invalid, for instance, if its configuration value associated with configu-
ration parameter config_param::COMMIT_STATUS is not config_param::COMMITTED.

8.2. oneMKL Domains 1572

oneAPI Specification, Release 1.4-provisional-rev-1

compute_backward (USM version)

Syntax (in-place transform, except for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_backward(descriptor_type &desc,

data_type *inout,
const std::vector<sycl::event> &

→˓dependencies = {});
}

Syntax (in-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_backward(descriptor_type &desc,

data_type *inout_re,
data_type *inout_im,
const std::vector<sycl::event> &

→˓dependencies = {});
}

Syntax (out-of-place transform, except for complex descriptors with config_value::REAL_REAL for
config_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_backward(descriptor_type &desc,

input_type *in,
output_type *out,
const std::vector<sycl::event> &

→˓dependencies = {});
}

8.2. oneMKL Domains 1573

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax (out-of-place transform, for complex descriptors with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_backward(descriptor_type &desc,

input_type *in_re,
input_type *in_im,
output_type *out_re,
output_type *out_im,
const std::vector<sycl::event> &

→˓dependencies = {});
}

Input Parameters

desc
A fully configured and committed object of the descriptor class, whose configuration is not inconsistent with
backward DFT calculations.

inout
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

inout_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant data sequences, as configured by desc. data_type must be single or double precision floating-point,
as described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant backward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

in_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
backward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

in_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant backward-domain data sequences, as configured by desc. Only with complex descriptors configured
for out-of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

dependencies
An std::vector<sycl::event> object collecting the events returned by previously enqueued tasks that must
be finished before this transform can be calculated.

8.2. oneMKL Domains 1574

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

inout
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant data sequences,
as configured by desc (configured for in-place operations and not with config_value::REAL_REAL for con-
fig_param::COMPLEX_STORAGE, if complex).

inout_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
data sequences, as configured by desc. data_type must be single or double precision floating-point, as de-
scribed by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

inout_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant data sequences, as configured by desc. data_type must be single or double precision floating-point,
as described by the descriptor’s precision. Only with complex descriptors configured for in-place operations with
config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out
Pointer to USM allocation of sufficient capacity to store the elements defining all the relevant forward-
domain data sequences, as configured by desc (configured for out-of-place operations and not with con-
fig_value::REAL_REAL for config_param::COMPLEX_STORAGE, if complex).

out_re
Pointer to USM allocation of sufficient capacity to store the elements defining the real parts of all the relevant
forward-domain data sequences, as configured by desc. Only with complex descriptors configured for out-of-
place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

out_im
Pointer to USM allocation of sufficient capacity to store the elements defining the imaginary parts of all the
relevant forward-domain data sequences, as configured by desc. Only with complex descriptors configured for
out-of-place operations with config_value::REAL_REAL for config_param::COMPLEX_STORAGE.

Throws

The oneapi::mkl::dft::compute_backward() routine shall throw the following exceptions if the associated con-
dition is detected. An implementation may throw additional implementation-specific exception(s) in case of error
conditions not covered here:

oneapi::mkl::invalid_argument()
If the provided descriptor object desc is invalid, for instance, if its configuration value associated with configu-
ration parameter config_param::COMMIT_STATUS is not config_param::COMMITTED. It will also be thrown
if any required input/output pointer is nullptr.

Return Values

This function returns a sycl::event object that allows to track progress of the backward DFT, and can be passed as a
dependency to other routines that may depend on the result of the backward transform(s) before proceeding with other
operations.

Parent topic: Discrete Fourier Transform Functions

8.2. oneMKL Domains 1575

oneAPI Specification, Release 1.4-provisional-rev-1

8.2.4 Random Number Generators

The oneAPI Math Kernel Library Random Number Generators provides a set of routines implementing commonly
used pseudorandom, quasi-random, and non-deterministic generators with continuous and discrete distributions.

Random Number Generators (RNG)

Definitions

The pseudo-random number generator is defined by a structure(𝑆, 𝜇, 𝑓 , 𝑈 , 𝑔), where:

• 𝑆 is a finite set of states (the state space)

• 𝜇 is a probability distribution on 𝑆 for the initial state (or seed) 𝑠0
• 𝑓 : 𝑆 → 𝑆 is the transition function

• 𝑈 – a finite set of output symbols

• 𝑔 : 𝑆 → 𝑈 an output function

The generation of random numbers is as follows:

1. Generate the initial state (called the seed) 𝑠0 according to 𝜇 and compute 𝑢0 = 𝑔(𝑠0).

2. Iterate for 𝑖 = 1, ..., ‘ : 𝑚𝑎𝑡ℎ : ‘𝑠𝑖 = 𝑓(𝑠𝑖−1) and 𝑢𝑖 = 𝑔(𝑠𝑖). Output values 𝑢𝑖 are the so-called random
numbers produced by the PRNG.

In computational statistics, random variate generation is usually made in two steps:

1. Generating imitations of independent and identically distributed (i.i.d.) random variables having the uniform
distribution over the interval (0, 1)

2. Applying transformations to these i.i.d. 𝑈(0, 1) random variates in order to generate (or imitate) random variates
and random vectors from arbitrary distributions.

Execution Models

RNG domain supports two execution models:

1. Host API , which is aligned with the rest of oneMKL domains oneMKL domains.

2. Device API , which is specific for RNG domain. These APIs are designed to be callable from the User’s kernels
as well as Host code.

Random Number Generators Host Routines

Structure

RNG domain contains two classes types:

• Engines (basic random number generators) classes, which holds the state of generator and is a source of indepen-
dent and identically distributed random variables. Refer to Host Engines (Basic Random Number Generators)
for a detailed description.

• Distribution classes templates (transformation classes) for different types of statistical distributions, for example,
uniform, normal (Gaussian), binomial, etc. These classes contain all of the distribution’s parameters (including
generation method). Refer to Host Distributions for a detailed description of the distributions.

8.2. oneMKL Domains 1576

oneAPI Specification, Release 1.4-provisional-rev-1

The RNG domain also contains two types of free functions:

• Generation routines. The current routines are used to obtain random numbers from a given engine with proper
statistics defined by a given distribution. Refer to the Host Generate Routine section for a detailed description.

• Service routines. The routines are used to modify the engine state. Refer to Host Service Routines for a descrip-
tion of these routines.

Engine classes work with both generation and service routines. Distribution classes are used in generation routines
only. Refer to the oneMKL RNG Host Usage Model section for the description of typical RNG scenario.

oneMKL RNG Host Usage Model

Description

A typical algorithm for random number generators is as follows:

1. Create and initialize the object for basic random number generator.

• Use the skip_ahead or leapfrog function if it is required (used in parallel with random number generation
for Host and CPU devices).

2. Create and initialize the object for distribution generator.

3. Call the generate routine to get random numbers with appropriate statistical distribution.

The following example demonstrates random numbers generation with PHILOX4X32X10 basic generator (engine).

Buffer-based example

#include "oneapi/mkl/rng.hpp"

int main() {
sycl::queue q;

// Create the random number generator object
oneapi::mkl::rng::philox4x32x10 engine(q, seed);
// Create the distribution object
oneapi::mkl::rng::gaussian<double> distr(5.0, 2.0);
// Fill the SYCL buffer with random numbers
oneapi::mkl::rng::generate(distr, engine, n, sycl_buffer);

// ...
}

8.2. oneMKL Domains 1577

oneAPI Specification, Release 1.4-provisional-rev-1

USM-based example

#include "oneapi/mkl/rng.hpp"

int main() {
sycl::queue q;

// Create the random number generator object
oneapi::mkl::rng::philox4x32x10 engine(q, seed);
// Create the distribution object
oneapi::mkl::rng::gaussian<double> distr(5.0, 2.0);
// Fill the USM memory under the pointer with random numbers
auto event = oneapi::mkl::rng::generate(distr, engine, n, usm_ptr);
// ...
// wait until generation is finalized
event.wait();
// ...

}

Parent topic: Random Number Generators Host Routines

Host Generate Routine

• generate Entry point to obtain random numbers from a given engine with proper statistics of a given distribution.

Parent topic: Random Number Generators Host Routines

generate

Entry point to obtain random numbers from a given engine with proper statistics of a given distribution.

Description and Assumptions

oneapi::mkl::rng::generate function produces random numbers sequence from the given engine object and applied
transformation from a given distribution object.

generate (Buffer version)

Syntax

namespace oneapi::mkl::rng {
template<typename DistrType, typename EngineType>
void generate (const DistrType& distr, EngineType& engine, std::int64_t n, sycl::buffer
→˓<typename DistrType::result_type, 1>& r);
}

8.2. oneMKL Domains 1578

oneAPI Specification, Release 1.4-provisional-rev-1

Template Parameters

DistrType
Type of distribution which is used for random number generation.

EngineType
Type of engine which is used for random number generation.

Input Parameters

distr
Distribution object. See Host Distributions for details.

engine
Engine object. See Host Engines (Basic Random Number Generators) for details.

n
Number of random values to be generated.

Output Parameters

r
sycl::buffer of generated values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when n > r.get_count(), or n < 0

generate (USM version)

Syntax

namespace oneapi::mkl::rng {
template<typename DistrType, typename EngineType>
sycl::event generate (const DistrType& distr, EngineType& engine, std::int64_t n,␣
→˓typename DistrType::result_type* r, const std::vector<sycl::event> & dependencies);
}

Template Parameters

DistrType
Type of distribution which is used for random number generation.

EngineType
Type of engine which is used for random number generation.

8.2. oneMKL Domains 1579

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

distr
Distribution object. See Host Distributions for details.

engine
Engine object. See Host Engines (Basic Random Number Generators) for details.

n
Number of random values to be generated.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

r
pointer to generated values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when r == nullptr, or n < 0

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Host Generate Routine

8.2. oneMKL Domains 1580

oneAPI Specification, Release 1.4-provisional-rev-1

Host Engines (Basic Random Number Generators)

oneMKL RNG provides pseudorandom, quasi-random, and non-deterministic random number generators for Data
Parallel C++:

Rou-
tine

Description

de-
fault_engine

The default random engine

mrg32k3aThe combined multiple recursive pseudorandom number generator MRG32k3a[L’Ecuyer99a]
philox4x32x10Philox4x32-10 counter-based pseudorandom number generator with a period of

2128PHILOX4X32X10[Salmon11]
mcg31m1The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 231 -1)

[L’Ecuyer99]
r250 The 32-bit generalized feedback shift register pseudorandom number generator GFSR(250,

103)[Kirkpatrick81]
mcg59 The 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259) from NAG Nu-

merical Libraries [NAG]
wich-
mann_hill

Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Numerical
Libraries [NAG]

mt19937 Mersenne Twister pseudorandom number generator MT19937[Matsumoto98] with period length 219937-1
of the produced sequence

mt2203 Set of 6024 Mersenne Twister pseudorandom number generators MT2203[Matsumoto98], [Matsumoto00].
Each of them generates a sequence of period length equal to 22203-1. Parameters of the generators provide
mutual independence of the corresponding sequences.

sfmt19937SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937[Saito08] with a pe-
riod length equal to 219937-1 of the produced sequence.

sobol Sobol quasi-random number generator [Sobol76], [Bratley88], which works in arbitrary dimension.
nieder-
reiter

Niederreiter quasi-random number generator [Bratley92], which works in arbitrary dimension.

ars5 ARS-5 counter-based pseudorandom number generator with a period of 2128, which uses instructions from
the AES-NI set ARS5[Salmon11].

non-
deter-
minis-
tic

Non-deterministic random number generator

For some basic generators, oneMKL RNG provides two methods of creating independent states in multiprocessor
computations, which are the leapfrog method and the block-splitting method. These sequence splitting methods are
also useful in sequential Monte Carlo. The description of these functions can be found in the Host Service Routines
section.

In addition, the MT2203 pseudorandom number generator is a set of 6024 generators designed to create up to 6024
independent random sequences, which might be used in parallel Monte Carlo simulations. Another generator that has
the same feature is Wichmann-Hill. It allows creating up to 273 independent random streams. The properties of the
generators designed for parallel computations are discussed in detail in [Coddington94].

Parent topic: Random Number Generators Host Routines

• default_engine The default random engine (implementation defined)

• mrg32k3a The combined multiple recursive pseudorandom number generator MRG32k3a [L’Ecuyer99a]

• philox4x32x10 A Philox4x32-10 counter-based pseudorandom number generator. [Salmon11].

8.2. oneMKL Domains 1581

oneAPI Specification, Release 1.4-provisional-rev-1

• mcg31m1 The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 231 -1)
[L’Ecuyer99]

• mcg59 The 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259) from NAG
Numerical Libraries [NAG].

• r250 The 32-bit generalized feedback shift register pseudorandom number generator
GFSR(250,103)[Kirkpatrick81].

• wichmann_hill Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Nu-
merical Libraries [NAG].

• mt19937 Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period length
219937-1 of the produced sequence.

• sfmt19937 SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with
a period length equal to 219937-1 of the produced sequence.

• mt2203 Set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98], [Mat-
sumoto00]. Each of them generates a sequence of period length equal to 22203-1. Parameters of the generators
provide mutual independence of the corresponding sequences..

• ars5 ARS-5 counter-based pseudorandom number generator with a period of 2128, which uses instructions from
the AES-NI set ARS5[Salmon11].

• sobol Sobol quasi-random number generator [Sobol76], [Bratley88], which works in arbitrary dimension.

• niederreiter Niederreiter quasi-random number generator [Bratley92], which works in arbitrary dimension.

• nondeterministic Non-deterministic random number generator.

default_engine

Default random engine.

Description

The choice of engine type named by default_engine is implementation-defined. The implementation may select this
type on the basis of performance, size, quality, or any combination of such factors.

type alias default_engine

Syntax

using default_engine = implementation-defined;

Parent topic: Host Engines (Basic Random Number Generators)

8.2. oneMKL Domains 1582

oneAPI Specification, Release 1.4-provisional-rev-1

mrg32k3a

The combined multiple recursive pseudorandom number generator MRG32k3a.

Description

MRG32k3a engine is a 32-bit combined multiple recursive generator with two components of order 3 [L’Ecuyer99a].
MRG32k3a combined generator meets the requirements for modern RNGs, such as good multidimensional uniformity,
or a long period (𝑝 ≈ 2191).

Generation algorithm

𝑥𝑛 = 𝑎11𝑥𝑛−1 + 𝑎12𝑥𝑛−2 + 𝑎13𝑥𝑛−3(𝑚𝑜𝑑 𝑚1)

𝑦𝑛 = 𝑎21𝑦𝑛−1 + 𝑎22𝑦𝑛−2 + 𝑎23(𝑚𝑜𝑑 𝑚2)

𝑧𝑛 = 𝑥𝑛 − 𝑦𝑛(𝑚𝑜𝑑 𝑚1)

𝑢𝑛 = 𝑧𝑛/𝑚1

𝑎11 = 0, 𝑎12 = 1403580, 𝑎13 = −810728,𝑚1 = 232 − 209

𝑎21 = 527612, 𝑎22 = 0, 𝑎23 = −1370589,𝑚2 = 232 − 22853

class mrg32k3a

Syntax

namespace oneapi::mkl::rng {
class mrg32k3a {
public:

static constexpr std::uint32_t default_seed = 1;

mrg32k3a(sycl::queue queue, std::uint32_t seed = default_seed);

mrg32k3a(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

mrg32k3a(const mrg32k3a& other);

mrg32k3a(mrg32k3a&& other);

mrg32k3a& operator=(const mrg32k3a& other);

mrg32k3a& operator=(mrg32k3a&& other);

~mrg32k3a();
};
}

8.2. oneMKL Domains 1583

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
mrg32k3a(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the
engine

mrg32k3a(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the
engine

mrg32k3a(const mrg32k3a& other) Copy constructor
mrg32k3a(mrg32k3a&& other) Move constructor
mrg32k3a& operator=(const mrg32k3a& other) Copy assignment operator
mrg32k3a& operator=(mrg32k3a&& other) Move assignment operator

Constructors

mrg32k3a::mrg32k3a(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume 𝑥−3 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 =
1.

mrg32k3a::mrg32k3a(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑥−3 = 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 1 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 2 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 3 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 4 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 5 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4]𝑚𝑜𝑑 𝑚2, 𝑦−1 = 1

if 𝑛 ⩾ 6 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

8.2. oneMKL Domains 1584

oneAPI Specification, Release 1.4-provisional-rev-1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4]𝑚𝑜𝑑 𝑚2, 𝑦−1 = 𝑠𝑒𝑒𝑑[5]𝑚𝑜𝑑 𝑚2

if the values prove to be 𝑥−3 = 𝑥−2 = 𝑥−1 = 0, assume 𝑥−3 = 1

if the values prove to be 𝑦−3 = 𝑦−2 = 𝑦−1 = 0, assume 𝑦−3 = 1

mrg32k3a::mrg32k3a(const mrg32k3a& other)

Input Parameters

other
Valid mrg32k3a object. The queue and state of the other engine is copied and applied to the current engine.

mrg32k3a::mrg32k3a(mrg32k3a&& other)

Input Parameters

other
Valid mrg32k3a object. The queue and state of the other engine is moved to the current engine.

mrg32k3a::mrg32k3a& operator=(const mrg32k3a& other)

Input Parameters

other
Valid mrg32k3a object. The queue and state of the other engine is copied and applied to the current engine.

mrg32k3a::mrg32k3a& operator=(mrg32k3a&& other)

Input Parameters

other
Valid mrg32k3a r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

philox4x32x10

The Philox4x32x10 counter-based pseudorandom number generator.

Description

The Philox4x32x10 engine is a keyed family of generator of counter-based BRNG. The state consists of 128-bit integer
counter 𝑐 and two 32-bits keys 𝑘0 and 𝑘1.

8.2. oneMKL Domains 1585

oneAPI Specification, Release 1.4-provisional-rev-1

Generation algorithm

The generator has 32-bit integer output obtained in the following way [Salmon11]:

1. 𝑐𝑛 = 𝑐𝑛−1 + 1

2. 𝜔𝑛 = 𝑓(𝑐𝑛), where 𝑓 is a function that takes 128-bit argument and returns a 128-bit number. The
returned number is obtained as follows:

2.1. The argument 𝑐 is interpreted as four 32-bit numbers 𝑐 = 𝐿1𝑅1𝐿0𝑅0, where 𝐴𝐵𝐶𝐷 = 𝐴 · 296 +𝐵 ·
264 + 𝐶 · 232 +𝐷, put 𝑘00 = 𝑘0, 𝑘

0
1 = 𝑘1.

2.2. The following recurrence is calculated:

𝐿𝑖+1
1 = 𝑚𝑢𝑙𝑙𝑜(𝑅𝑖

1, 0𝑥𝐷2511𝐹53)

𝑅𝑖+1
1 = 𝑚𝑢𝑙ℎ𝑖(𝑅𝑖

0, 0𝑥𝐶𝐷9𝐸8𝐷57)⊕ 𝑘𝑖0 ⊕ 𝐿𝑖
0

𝐿𝑖+1
0 = 𝑚𝑢𝑙𝑙𝑜(𝑅𝑖

0, 0𝑥𝐶𝐷9𝐸8𝐷57)

𝑅𝑖+1
0 = 𝑚𝑢𝑙ℎ𝑖(𝑅𝑖

1, 0𝑥𝐷2511𝐹53)⊕ 𝑘𝑖1 ⊕ 𝐿𝑖
1

𝑘𝑖+1
0 = 𝑘𝑖0 + 0𝑥𝐵𝐵67𝐴𝐸85

𝑘𝑖+1
1 = 𝑘𝑖1 +0𝑥9𝐸3779𝐵9, where 𝑚𝑢𝑙ℎ𝑖(𝑎, 𝑏) and 𝑚𝑢𝑙𝑙𝑜(𝑎, 𝑏) are high and low parts of the 𝑎 · 𝑏 product

respectively.

2.3. Put 𝑓(𝑐) = 𝐿𝑁
1 𝑅𝑁

1 𝐿𝑁
0 𝑅𝑁

0 , where 𝑁 = 10

3. Integer output: 𝑟4𝑛+𝑘 = 𝜔𝑛(𝑘), where 𝜔𝑛(𝑘) is the k-th 32-bit integer in quadruple 𝜔𝑛, 𝑘 = 0, 1, 2, 3

4. Real output: 𝑢𝑛 = (𝑖𝑛𝑡)𝑟𝑛/2
32 + 1/2

class philox4x32x10

Syntax

namespace oneapi::mkl::rng {
class philox4x32x10 {
public:
static constexpr std::uint64_t default_seed = 0;

philox4x32x10(sycl::queue queue, std::uint64_t seed = default_seed);

philox4x32x10(sycl::queue queue, std::initializer_list<std::uint64_t> seed);

philox4x32x10(const philox4x32x10& other);

philox4x32x10(philox4x32x10&& other);

philox4x32x10& operator=(const philox4x32x10& other);

philox4x32x10& operator=(philox4x32x10&& other);

~philox4x32x10();
};
}

8.2. oneMKL Domains 1586

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
philox4x32x10(sycl::queue queue, std::uint64_t seed = de-
fault_seed)

Constructor for common seed initialization of
the engine

philox4x32x10(sycl::queue queue,
std::initializer_list<std::uint64_t> seed)

Constructor for extended seed initialization of
the engine

philox4x32x10(const philox4x32x10& other) Copy constructor
philox4x32x10(philox4x32x10&& other) Move constructor
philox4x32x10& operator=(const philox4x32x10& other) Copy assignment operator
philox4x32x10& operator=(philox4x32x10&& other) Move assignment operator

Constructors

philox4x32x10::philox4x32x10(sycl::queue queue, std::uint64_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume 𝑘 = 𝑠𝑒𝑒𝑑, 𝑐 = 0, where 𝑘 is a 64-bit key, 𝑐 is a 128-bit
counter.

philox4x32x10::philox4x32x10(sycl::queue queue, std::initializer_list<std::uint64_t>␣
→˓seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑘 = 0, 𝑐 = 0

if 𝑛 = 1 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 0

if 𝑛 = 2 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1]

if 𝑛 = 3 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1] + 𝑠𝑒𝑒𝑑[2] · 264

for 𝑛 > 3 following arguments are ignored

philox4x32x10::philox4x32x10(const philox4x32x10& other)

8.2. oneMKL Domains 1587

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

other
Valid philox4x32x10 object. The queue and state of the other engine is copied and applied to the current
engine.

philox4x32x10::philox4x32x10(philox4x32x10&& other)

Input Parameters

other
Valid philox4x32x10 r-value object. The queue and state of the other engine is moved to the current engine.

philox4x32x10::philox4x32x10& operator=(const philox4x32x10& other)

Input Parameters

other
Valid philox4x32x10 object. The queue and state of the other engine is copied and applied to the current
engine.

philox4x32x10::philox4x32x10& operator=(philox4x32x10&& other)

Input Parameters

other
Valid philox4x32x10 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

mcg31m1

The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 231 -1).

Description

The mcg31m1 engine is a 31-bit multiplicative congruential generator [L’Ecuyer99]. The mcg31m1 generator belongs
to linear congruential generators with the period length of approximately 231. Such generators are still used as default
random number generators in various software systems, mainly due to the simplicity of the portable versions imple-
mentation, speed, and compatibility with the earlier systems versions. However, their period length does not meet the
requirements for modern basic generators. Still, the mcg31m1 generator possesses good statistic properties and you
may successfully use it to generate random numbers of different distributions for small samplings.

8.2. oneMKL Domains 1588

oneAPI Specification, Release 1.4-provisional-rev-1

Generation algorithm

𝑥𝑛 = 𝑎𝑥𝑛−1(𝑚𝑜𝑑 𝑚)

𝑢𝑛 = 𝑥𝑛/𝑚

𝑎 = 1132489760,𝑚 = 231 − 1

class mcg31m1

Syntax

namespace oneapi::mkl::rng {
class mcg31m1 {
public:

static constexpr std::uint32_t default_seed = 1;

mcg31m1(sycl::queue queue, std::uint32_t seed = default_seed);

mcg31m1(const mcg31m1& other);

mcg31m1(mcg31m1&& other);

mcg31m1& operator=(const mcg31m1& other);

mcg31m1& operator=(mcg31m1&& other);

~mcg31m1();
};
}

Class Members

Routine Description
mcg31m1(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the en-
gine

mcg31m1(const mcg31m1& other) Copy constructor
mcg31m1(mcg31m1&& other) Move constructor
mcg31m1& operator=(const mcg31m1& other) Copy assignment operator
mcg31m1& operator=(mcg31m1&& other) Move assignment operator

8.2. oneMKL Domains 1589

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors

mcg31m1::mcg31m1(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to obtain
random numbers from a given engine.

seed
The initial conditions of the generator state, assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 0𝑥7𝐹𝐹𝐹𝐹𝐹𝐹𝐹 , if 𝑥0 = 0, assume
𝑥0 = 1.

mcg31m1::mcg31m1(const mcg31m1& other)

Input Parameters

other
Valid mcg31m1 object. The queue and state of the other engine is copied and applied to the current engine.

mcg31m1::mcg31m1(mcg31m1&& other)

Input Parameters

other
Valid mcg31m1 object. The queue and state of the other engine is moved to the current engine.

mcg31m1::mcg31m1& operator=(const mcg31m1& other)

Input Parameters

other
Valid mcg31m1 object. The queue and state of the other engine is copied and applied to the current engine.

mcg31m1::mcg31m1& operator=(mcg31m1&& other)

Input Parameters

other
Valid mcg31m1 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

8.2. oneMKL Domains 1590

oneAPI Specification, Release 1.4-provisional-rev-1

mcg59

The 59-bit multiplicative congruential pseudorandom number generator.

Description

The mcg59 engine is a 59-bit multiplicative congruential generator from NAG Numerical Libraries NAG. The mcg59
generator belongs to linear congruential generators with the period length of approximately 257.

Generation algorithm

𝑥𝑛 = 𝑎𝑥𝑛−1(𝑚𝑜𝑑 𝑚)

𝑢𝑛 = 𝑥𝑛/𝑚

𝑎 = 1313,𝑚 = 259

class mcg59

Syntax

namespace oneapi::mkl::rng {
class mcg59 {
public:

static constexpr std::uint64_t default_seed = 1;

mcg59(sycl::queue queue, std::uint64_t seed = default_seed);

mcg59(const mcg59& other);

mcg59(mcg59&& other);

mcg59& operator=(const mcg59& other);

mcg59& operator=(mcg59&& other);

~mcg59();
};
}

Class Members

Routine Description
mcg59(sycl::queue queue, std::uint64_t seed = de-
fault_seed)

Constructor for common seed initialization of the en-
gine

mcg59(const mcg59& other) Copy constructor
mcg59(mcg59&& other) Move constructor
mcg59& operator=(const mcg59& other) Copy assignment operator
mcg59& operator=(mcg59&& other) Move assignment operator

8.2. oneMKL Domains 1591

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors

mcg59::mcg59(sycl::queue queue, std::uint64_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 259, if 𝑥0 = 0, assume 𝑥0 = 1.

mcg59::mcg59(const mcg59& other)

Input Parameters

other
Valid mcg59 object. The queue and state of the other engine is copied and applied to the current engine.

mcg59::mcg59(mcg59&& other)

Input Parameters

other
Valid mcg59 object. The queue and state of the other engine is moved to the current engine.

mcg59::mcg59& operator=(const mcg59& other)

Input Parameters

other
Valid mcg59 object. The queue and state of the other engine is copied and applied to the current engine.

mcg59::mcg59& operator=(mcg59&& other)

Input Parameters

other
Valid mcg59 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

8.2. oneMKL Domains 1592

oneAPI Specification, Release 1.4-provisional-rev-1

r250

The 32-bit generalized feedback shift register pseudorandom number generator GFSR(250,103) [Kirkpatrick81].

Description

Feedback shift register generators possess ample theoretical foundation and were initially intended for cryptographic
and communication applications. The stream state is the array of 250 32-bit integers.

Generation algorithm

𝑥𝑛 = 𝑥𝑛−103 ⊕ 𝑥𝑛−250

𝑢𝑛 = 𝑥𝑛/2
32

class r250

Syntax

namespace oneapi::mkl::rng {
class r250 {
public:

static constexpr std::uint32_t default_seed = 1;

r250(sycl::queue queue, std::uint32_t seed = default_seed);

r250(sycl::queue queue, std::vector<std::uint32_t> seed);

r250(const r250& other);

r250(r250&& other);

r250& operator=(const r250& other);

r250& operator=(r250&& other);

~r250();
};
}

8.2. oneMKL Domains 1593

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
r250(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the en-
gine

r250(sycl::queue queue, std::vector<std::uint32_t>
seed)

Constructor for extended seed initialization of the en-
gine

r250(const r250& other) Copy constructor
r250(r250&& other) Move constructor
r250& operator=(const r250& other) Copy assignment operator
r250& operator=(r250&& other) Move assignment operator

Constructors

r250::r250(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to obtain
random numbers from a given engine.

seed
The initial conditions of the generator state, assume 𝑥−250 = 𝑠𝑒𝑒𝑑. If 𝑠𝑒𝑒𝑑 = 0, assume 𝑠𝑒𝑒𝑑 = 1. Other
values in state are initialized according to recurrent correlation 𝑥𝑛+1 = 69069𝑥𝑛(𝑚𝑜𝑑 232). Then the values
𝑥7𝑘−247, 𝑘 = 0, 1, ..., 31 are interpreted as a binary matrix of size 32 x 32 and diagonal bits are set to 0, the
under-diagonal bits to 0.

r250::r250(sycl::queue queue, std::vector<std::uint32_t> seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state if 𝑛 ⩾ 0 : 𝑥𝑘−250 = 𝑠𝑒𝑒𝑑[𝑘], 𝑘 = 0, 1, ..., 249

8.2. oneMKL Domains 1594

oneAPI Specification, Release 1.4-provisional-rev-1

r250::r250(const r250& other)

Input Parameters

other
Valid r250 object. The queue and state of the other engine is copied and applied to the current engine.

r250::r250(r250&& other)

Input Parameters

other
Valid r250 object. The queue and state of the other engine is moved to the current engine.

r250::r250& operator=(const r250& other)

Input Parameters

other
Valid r250 object. The queue and state of the other engine is copied and applied to the current engine.

r250::r250& operator=(r250&& other)

Input Parameters

other
Valid r250 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

wichmann_hill

The wichmann_hill engine is the set of 273 Wichmann-Hill’s combined multiplicative congruential generators from
NAG Numerical Libraries [NAG].

Description

The set of 372 different basic pseudorandom number generators wichmann_hill is the second basic generator in the
NAG libraries.

8.2. oneMKL Domains 1595

oneAPI Specification, Release 1.4-provisional-rev-1

Generation algorithm

𝑥𝑛 = 𝑎1,𝑗𝑥𝑛−1(𝑚𝑜𝑑 𝑚1,𝑗)

𝑦𝑛 = 𝑎2,𝑗𝑦𝑛−1(𝑚𝑜𝑑 𝑚2,𝑗)

𝑧𝑛 = 𝑎3,𝑗𝑧𝑛−1(𝑚𝑜𝑑 𝑚3,𝑗)

𝑤𝑛 = 𝑎4,𝑗𝑤𝑛−1(𝑚𝑜𝑑 𝑚4,𝑗)

𝑢𝑛 = (𝑥𝑛/𝑚1,𝑗 + 𝑦𝑛/𝑚2,𝑗 + 𝑧𝑛/𝑚3,𝑗 + 𝑤𝑛/𝑚4,𝑗)𝑚𝑜𝑑 1

The constants 𝑎𝑖,𝑗 range from 112 to 127, the constants 𝑚𝑖,𝑗 are prime numbers ranging from 16718909 to 16776917,
close to 224.

class wichmann_hill

Syntax

namespace oneapi::mkl::rng {
class wichmann_hill {
public:

static constexpr std::uint32_t default_seed = 1;

wichmann_hill(sycl::queue queue, std::uint32_t seed = default_seed);

wichmann_hill(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_idx);

wichmann_hill(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

wichmann_hill(sycl::queue queue, std::initializer_list<std::uint32_t> seed,␣
→˓std::uint32_t engine_idx);

wichmann_hill(const wichmann_hill& other);

wichmann_hill(wichmann_hill&& other);

wichmann_hill& operator=(const wichmann_hill& other);

wichmann_hill& operator=(wichmann_hill&& other);

~wichmann_hill();
};
}

8.2. oneMKL Domains 1596

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
wichmann_hill(sycl::queue queue, std::uint32_t seed
= default_seed)

Constructor for common seed initialization of the engine
(for this case multiple generators of the set would be used)

wichmann_hill(sycl::queue queue, std::uint32_t
seed, std::uint32_t engine_idx)

Constructor for common seed initialization of the engine
(for this case single generator of the set would be used)

wichmann_hill(sycl::queue& queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the engine
(for this case multiple generators of the set would be used)

wichmann_hill(sycl::queue& queue,
std::initializer_list<std::uint32_t> seed,
std::uint32_t engine_idx)

Constructor for extended seed initialization of the engine
(for this case single generator of the set would be used)

wichmann_hill(const wichmann_hill& other) Copy constructor
wichmann_hill(wichmann_hill&& other) Move constructor
wichmann_hill& operator=(const wichmann_hill&
other)

Copy assignment operator

wichmann_hill& operator=(wichmann_hill&&
other)

Move assignment operator

Constructors

wichmann_hill::wichmann_hill(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. Assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume
𝑥0 = 1.

wichmann_hill::wichmann_hill(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_
→˓idx)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. Assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume
𝑥0 = 1.

engine_idx
The index of the set 1, . . . , 273.

8.2. oneMKL Domains 1597

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑖𝑑𝑥 > 273

wichmann_hill::wichmann_hill(sycl::queue& queue, std::initializer_list<std::uint32_t>␣
→˓seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume: if 𝑛 = 0 : 𝑥0 = 𝑦0 = 𝑧0 = 𝑤0 = 1

if 𝑛 = 1 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume 𝑥0 = 1.

if 𝑛 = 2 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑤0 = 1.

if 𝑛 = 3 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚3, 𝑤0 = 1.

if 𝑛 ⩾ 4 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚2

𝑧0 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚3, 𝑤0 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚4.

wichmann_hill::wichmann_hill(sycl::queue& queue, std::initializer_list<std::uint32_t>␣
→˓seed, std::uint32_t engine_idx)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume: if 𝑛 = 0 : 𝑥0 = 𝑦0 = 𝑧0 = 𝑤0 = 1

if 𝑛 = 1 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume 𝑥0 = 1.

if 𝑛 = 2 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑤0 = 1.

if 𝑛 = 3 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚3, 𝑤0 = 1.

if 𝑛 ⩾ 4 : 𝑥0 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚2

𝑧0 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚3, 𝑤0 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚4.

engine_idx
The index of the set 1, . . . , 273.

wichmann_hill::wichmann_hill(const wichmann_hill& other)

8.2. oneMKL Domains 1598

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

other
Valid wichmann_hill object. The queue and state of the other engine is copied and applied to the current
engine.

wichmann_hill::wichmann_hill(wichmann_hill&& other)

Input Parameters

other
Valid wichmann_hill object. The queue and state of the other engine is moved to the current engine.

wichmann_hill::wichmann_hill& operator=(const wichmann_hill& other)

Input Parameters

other
Valid wichmann_hill object. The queue and state of the other engine is copied and applied to the current
engine.

wichmann_hill::wichmann_hill& operator=(wichmann_hill&& other)

Input Parameters

other
Valid wichmann_hill r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

mt19937

Mersenne Twister pseudorandom number generator.

Description

The Mersenne Twister pseudorandom number generator, mt19937, is a modification of twisted generalized feedback
shift register generator [Matsumoto98]. MT19937 has the period length of 219937−1 and is 623-dimensionally equidis-
tributed with up to 32-bit accuracy. These properties make the generator applicable for simulations in various fields of
science and engineering. The state of the generator is represented by 624 32-bit unsigned integer numbers.

8.2. oneMKL Domains 1599

oneAPI Specification, Release 1.4-provisional-rev-1

Generation algorithm

𝑥𝑛 = 𝑥𝑛−(624−397) ⊕ ((𝑥𝑛−624&0𝑥80000000)|(𝑥𝑛−624+1&0𝑥7𝐹𝐹𝐹𝐹𝐹𝐹𝐹))𝐴

𝑦𝑛 = 𝑥𝑛

𝑦𝑛 = 𝑦𝑛 ⊕ (𝑦𝑛 >> 11)

𝑦𝑛 = 𝑦𝑛 ⊕ ((𝑦𝑛 << 7)&0𝑥9𝐷2𝐶5680)

𝑦𝑛 = 𝑦𝑛 ⊕ ((𝑦𝑛 << 15)&0𝑥𝐸𝐹𝐶60000)

𝑦𝑛 = 𝑦𝑛 ⊕ (𝑦𝑛 >> 18)

𝑢𝑛 = 𝑦𝑛/2
32

Matrix 𝐴𝑗(32𝑥32) has the following format:

⎡⎢⎢⎢⎢⎣
0 1 0
0 0 ... 0 ...
...
0 ... 0 0 1
𝑎31 𝑎30 𝑎0

⎤⎥⎥⎥⎥⎦
Where the 32-bit vector 𝑎 = 𝑎31..𝑎0 has the value 𝑎 = 0𝑥9908𝐵0𝐷𝐹 .

class mt19937

Syntax

namespace oneapi::mkl::rng {
class mt19937 {
public:

static constexpr std::uint32_t default_seed = 1;

mt19937(sycl::queue queue, std::uint32_t seed = default_seed);

mt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

mt19937(const mt19937& other);

mt19937(mt19937&& other);

mt19937& operator=(const mt19937& other);

mt19937& operator=(mt19937&& other);

~mt19937();
};
}

8.2. oneMKL Domains 1600

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
mt19937(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the
engine

mt19937(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the
engine

mt19937(const mt19937& other) Copy constructor
mt19937(mt19937&& other) Move constructor
mt19937& operator=(const mt19937& other) Copy assignment operator
mt19937& operator=(mt19937&& other) Move assignment operator

Constructors

mt19937::mt19937(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [MT2203].

mt19937::mt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [MT2203].

mt19937::mt19937(const mt19937& other)

Input Parameters

other
Valid mt19937 object. The queue and state of the other engine is copied and applied to the current engine.

mt19937::mt19937(mt19937&& other)

8.2. oneMKL Domains 1601

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

other
Valid mt19937 object. The queue and state of the other engine is moved to the current engine.

mt19937::mt19937& operator=(const mt19937& other)

Input Parameters

other
Valid mt19937 object. The queue and state of the other engine is copied and applied to the current engine.

mt19937::mt19937& operator=(mt19937&& other)

Input Parameters

other
Valid mt19937 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

sfmt19937

The SIMD-oriented Mersenne Twister pseudorandom number generator.

Description

SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with a period length
equal to 219937 − 1 of the produced sequence. The state of the engine contains the array of 156 128-bit integers.

Generation algorithm

𝑤𝑛 = 𝑤0𝐴⊕ 𝑤𝑀𝐵 ⊕ 𝑤𝑛−2𝐶 ⊕ 𝑤𝑛−1𝐷

Where 𝑤0, 𝑤𝑀 , 𝑤𝑛−2, ... are the 128-bit integers, and 𝑤𝐴,𝑤𝐵,𝑤𝐶,𝑤𝐷 operations are defined as follows:

𝑤𝐴 = (𝑤 << 8)⊕ 𝑤, left shift of 128-bit integer 𝑤 by 𝑎 followed by exclusive-or operation

𝑤𝐵 = (𝑤 >> 8)&𝑚𝑎𝑠𝑘, right shift of each 32-bit integer in quadruple 𝑤 by and-operator with quadruple of 32-bit
masks 𝑚𝑎𝑠𝑘 = (0𝑥𝐵𝐹𝐹𝐹𝐹𝐹𝐹6, 0𝑥𝐷𝐹𝐹𝐴𝐹𝐹𝐹𝐹, 0𝑥𝐷𝐷𝐹𝐸𝐶𝐵7𝐹, 0𝑥𝐷𝐹𝐹𝐹𝐹𝐹𝐸𝐹)

𝑤𝐶 = (𝑤 >> 8)⊕ 𝑤, right shift of 128-bit integer 𝑤

𝑤𝐷 = (𝑤 << 8), left shift of each 32-bit integer in quadruple 𝑤

Integer output: 𝑟4𝑛+𝑘 = 𝑤𝑛(𝑘), where 𝑤𝑛(𝑘) is the k-th 32-bit integer in quadruple 𝑤𝑛, 𝑘 = 0, 1, 2, 3

𝑢𝑛 = (𝑖𝑛𝑡)𝑟𝑛/2
32 + 1/2

8.2. oneMKL Domains 1602

oneAPI Specification, Release 1.4-provisional-rev-1

class sfmt19937

Syntax

namespace oneapi::mkl::rng {
class sfmt19937 {
public:

static constexpr std::uint32_t default_seed = 1;

sfmt19937(sycl::queue queue, std::uint32_t seed = default_seed);

sfmt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

sfmt19937(const sfmt19937& other);

sfmt19937(sfmt19937&& other);

sfmt19937& operator=(const sfmt19937& other);

sfmt19937& operator=(sfmt19937&& other);

~sfmt19937();
};
}

Class Members

Routine Description
sfmt19937(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the
engine

sfmt19937(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the
engine

sfmt19937(const sfmt19937& other) Copy constructor
sfmt19937(sfmt19937&& other) Move constructor
sfmt19937& operator=(const sfmt19937& other) Copy assignment operator
sfmt19937& operator=(sfmt19937&& other) Move assignment operator

Constructors

8.2. oneMKL Domains 1603

oneAPI Specification, Release 1.4-provisional-rev-1

sfmt19937::sfmt19937(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [Saito08].

sfmt19937::sfmt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [Saito08].

sfmt19937::sfmt19937(const sfmt19937& other)

Input Parameters

other
Valid sfmt19937 object. The queue and state of the other engine is copied and applied to the current engine.

sfmt19937::sfmt19937(sfmt19937&& other)

Input Parameters

other
Valid sfmt19937 object. The queue and state of the other engine is moved to the current engine.

sfmt19937::sfmt19937& operator=(const sfmt19937& other)

Input Parameters

other
Valid sfmt19937 object. The queue and state of the other engine is copied and applied to the current engine.

sfmt19937::sfmt19937& operator=(sfmt19937&& other)

8.2. oneMKL Domains 1604

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

other
Valid sfmt19937 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

mt2203

The mt2203 engine is the set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98],
[Matsumoto00].

Description

The set of 6024 basic pseudorandom number generators MT2203 is a natural addition to the MT19937 generator.
MT2203 generators are intended for use in large scale Monte Carlo simulations performed on multi-processor computer
systems.

Generation algorithm

For 𝑗 = 1, ..., 6024:

𝑥𝑛,𝑗 = 𝑥𝑛−(69−34),𝑗 ⊕ ((𝑥𝑛−69,𝑗&0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐸0)|(𝑥𝑛+69+1,𝑗&0𝑥1𝐹))𝐴𝑗

𝑦𝑛,𝑗 = 𝑥𝑛,𝑗

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ (𝑦𝑛,𝑗 >> 12)

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ ((𝑦𝑛,𝑗 << 7)&𝑏𝑗)

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ ((𝑦𝑛,𝑗 << 15)&𝑐𝑗)

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ (𝑦𝑛,𝑗 >> 18)

Matrix 𝐴𝑗(32𝑥32) has the following format:

⎡⎢⎢⎢⎢⎣
0 1 0
0 0 ... 0 ...
...
0 ... 0 0 1

𝑎31,𝑗 𝑎30,𝑗 𝑎0,1

⎤⎥⎥⎥⎥⎦

class mt2203

Syntax

namespace oneapi::mkl::rng {
class mt2203 {
public:

static constexpr std::uint32_t default_seed = 1;

mt2203(sycl::queue queue, std::uint32_t seed = default_seed);
(continues on next page)

8.2. oneMKL Domains 1605

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

mt2203(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_idx);

mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed, std::uint32_t␣
→˓engine_idx);

mt2203(const mt2203& other);

mt2203(mt2203&& other);

mt2203& operator=(const mt2203& other);

mt2203& operator=(mt2203&& other);

~mt2203();
};
}

Class Members

Routine Description
mt2203(sycl::queue queue, std::uint32_t seed =
default_seed)

Constructor for common seed initialization of the engine (for
this case multiple generators of the set would be used)

mt2203(sycl::queue queue, std::uint32_t seed,
std::uint32_t engine_idx)

Constructor for common seed initialization of the engine (for
this case single generator of the set would be used)

mt2203(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the engine (for
this case multiple generators of the set would be used)

mt2203(sycl::queue queue,
std::initializer_list<std::uint32_t> seed,
std::uint32_t engine_idx)

Constructor for extended seed initialization of the engine (for
this case single generator of the set would be used)

mt2203(const mt2203& other) Copy constructor
mt2203(mt2203&& other) Move constructor
mt2203& operator=(const mt2203& other) Copy assignment operator
mt2203& operator=(mt2203&& other) Move assignment operator

Constructors

8.2. oneMKL Domains 1606

oneAPI Specification, Release 1.4-provisional-rev-1

mt2203::mt2203(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [MT2203].

mt2203::mt2203(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_idx)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [MT2203].

engine_idx
The index of the set 1, . . . , 6024.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑖𝑑𝑥 > 6024

mt2203::mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [MT2203].

mt2203::mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed, std::uint32_
→˓t engine_idx)

8.2. oneMKL Domains 1607

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state. The initialization algorithm described in [MT2203].

engine_idx
The index of the set 1, . . . , 6024.

mt2203::mt2203(const mt2203& other)

Input Parameters

other
Valid mt2203 object. The queue and state of the other engine is copied and applied to the current engine.

mt2203::mt2203(mt2203&& other)

Input Parameters

other
Valid mt2203 object. The queue and state of the other engine is moved to the current engine.

mt2203::mt2203& operator=(const mt2203& other)

Input Parameters

other
Valid mt2203 object. The queue and state of the other engine is copied and applied to the current engine.

mt2203::mt2203& operator=(mt2203&& other)

Input Parameters

other
Valid mt2203 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

8.2. oneMKL Domains 1608

oneAPI Specification, Release 1.4-provisional-rev-1

ars5

The ars5 counter-based pseudorandom number generator.

Description

The ars5 engine is a keyed family of counter-based BRNG. The state consists of a 128-bit integer counter 𝑐 and a 128-bit
key 𝑘. The BRNG is based on the AES encryption algorithm [FIPS-197].

Generation algorithm

The generator has a 32-bit integer output obtained in the following way [Salmon11]:

1. The i-th number is defined by the following formula 𝑟𝑖 = (𝑓(𝑖/4) >> ((𝑖 𝑚𝑜𝑑 4) * 32))𝑚𝑜𝑑 232

2. Function 𝑓(𝑐) takes a 128-bit argument and returns a 128-bit number. The returned number is obtained
as follows:

2.1. 𝑐0 = 𝑐⊕ 𝑘 and 𝑘0 = 𝑘.

2.2. The following recurrence is calculated N = 5 times:

𝑐𝑖+1 = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑐)

𝑐𝑖+1 = 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑐𝑖+1)

𝑐𝑖+1 = 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠(𝑐𝑖+1), this step is omitted if 𝑖+ 1 = 𝑁

𝑐𝑖+1 = 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑐𝑖+1, 𝑘𝑗)

𝐿𝑜(𝑘𝑖+1) = 𝐿𝑜(𝑘) + 0𝑥9𝐸3779𝐵97𝐹4𝐴7𝐶15

𝐻𝑖(𝑘𝑖+1) = 𝐻𝑖(𝑘) + 0𝑥𝐵𝐵67𝐴𝐸8584𝐶𝐴𝐴73𝐵

Specification for 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠, 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠,𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠,𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦 functions can be found in
[FIPS-197].

2.3. Put 𝑓(𝑐) = 𝑐𝑁 , where 𝑁 = 10

3. Real output: 𝑢𝑛 = (𝑖𝑛𝑡)𝑟𝑛/2
32 + 1/2

class ars5

Syntax

namespace oneapi::mkl::rng {
class ars5 {
public:

static constexpr std::uint64_t default_seed = 0;

ars5(sycl::queue queue, std::uint64_t seed = default_seed);

ars5(sycl::queue queue, std::initializer_list<std::uint64_t> seed);

ars5(const ars5& other);

ars5(ars5&& other);
(continues on next page)

8.2. oneMKL Domains 1609

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

ars5& operator=(const ars5& other);

ars5& operator=(ars5&& other);

~ars5();
};
}

Class Members

Routine Description
ars5(sycl::queue queue, std::uint64_t seed) Constructor for common seed initialization of the en-

gine
ars5(sycl::queue queue, std::initializer_list<std::uint64_t>
seed)

Constructor for extended seed initialization of the
engine

ars5(const ars5& other) Copy constructor
ars5(ars5&& other) Move constructor
ars5& operator=(const ars5& other) Copy assignment operator
ars5& operator=(ars5&& other) Move assignment operator

Constructors

ars5::ars5(sycl::queue queue, std::uint64_t seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to obtain
random numbers from a given engine.

seed
The initial conditions of the generator state, assume 𝑘 = 𝑠𝑒𝑒𝑑, 𝑐 = 0, where 𝑘 is 128-bit key, 𝑐 is 128-bit counter.

ars5::ars5(sycl::queue queue, std::initializer_list<std::uint64_t> seed)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed
The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑘 = 0, 𝑐 = 0

if 𝑛 = 1 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 0

if 𝑛 = 2 : 𝑘 = 𝑠𝑒𝑒𝑑[0] + 𝑠𝑒𝑒𝑑[1] · 264, 𝑐 = 0

8.2. oneMKL Domains 1610

oneAPI Specification, Release 1.4-provisional-rev-1

if 𝑛 = 3 : 𝑘 = 𝑠𝑒𝑒𝑑[0] + 𝑠𝑒𝑒𝑑[1] · 264, 𝑐 = 𝑠𝑒𝑒𝑑[2]

if 𝑛 = 4 : 𝑘 = 𝑠𝑒𝑒𝑑[0] + 𝑠𝑒𝑒𝑑[1] · 264, 𝑐 = 𝑠𝑒𝑒𝑑[2] + 𝑠𝑒𝑒𝑑[3] · 264

for 𝑛 > 4 following arguments are ignored

ars5::ars5(const ars5& other)

Input Parameters

other
Valid ars5 object. The queue and state of the other engine is copied and applied to the current engine.

ars5::ars5(ars5&& other)

Input Parameters

other
Valid ars5 r-value object. The queue and state of the other engine is moved to the current engine.

ars5::ars5& operator=(const ars5& other)

Input Parameters

other
Valid ars5 object. The queue and state of the other engine is copied and applied to the current engine.

ars5::ars5& operator=(ars5&& other)

Input Parameters

other
Valid ars5 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

sobol

The sobol is a 32-bit Gray code-based quasi-random number generator.

Description

Bratley and Fox [Bratley88] provide an implementation of the SOBOL quasi-random number generator. The default di-
mensions of quasi-random vectors can vary from 1 to 40 inclusive. It is also allowed to register user-defined parameters
(direction numbers).

8.2. oneMKL Domains 1611

oneAPI Specification, Release 1.4-provisional-rev-1

Generation algorithm

𝑥𝑛 = 𝑥𝑛1
⊕ 𝑣𝑐

𝑢𝑛 = 𝑥𝑛/2
32

The value 𝑐 is the right-most zero bit in 𝑛− 1; 𝑥𝑛 is s-dimensional vector of 32-bit values. The s-dimensional vectors
(calculated during engine initialization) 𝑣𝑖, 𝑖 = 1, 32 are called direction numbers. The vector 𝑢𝑛 is the generator
output normalized to the unit hypercube (0, 1)𝑠.

class sobol

Syntax

namespace oneapi::mkl::rng {
class sobol {
public:

static constexpr std::uint32_t default_dimensions_number = 1;

sobol(sycl::queue queue, std::uint32_t dimensions = default_dimensions_number);

sobol(sycl::queue queue, std::vector<std::uint32_t>& direction_numbers);

sobol(const sobol& other);

sobol(sobol&& other);

sobol& operator=(const sobol& other);

sobol& operator=(sobol&& other);

~sobol();
};
}

Class Members

Routine Description
sobol(sycl::queue queue, std::uint32_t di-
mensions = default_dimensions_number)

Constructor with specified number of dimensions. The value should
be 1..40.

sobol(sycl::queue queue,
std::vector<std::uint32_t>& direc-
tion_numbers)

Constructor for extended use-case, when it’s needed to use the num-
ber of dimensions greater than 40 or obtain another sequence.

sobol(const sobol& other) Copy constructor
sobol(sobol&& other) Move constructor
sobol& operator=(const sobol& other) Copy assignment operator
sobol& operator=(sobol&& other) Move assignment operator

8.2. oneMKL Domains 1612

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors

sobol::sobol(sycl::queue queue, std::uint32_t dimensions = default_dimensions_number)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

dimensions
Number of dimensions. If 𝑑𝑖𝑚𝑒𝑛 < 1 or 𝑑𝑖𝑚𝑒𝑛 > 40, assume 𝑑𝑖𝑚𝑒𝑛 = 1.

sobol::sobol(sycl::queue queue, std::vector<std::uint32_t>& direction_numbers)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

direction_numbers
If you want to generate quasi-random vectors of greater dimension or obtain another sequence, you can register
a set of your own direction_numbers. The number of dimensions corresponds to direction_numbers.size() / 32.

sobol::sobol(const sobol& other)

Input Parameters

other
Valid sobol object. The queue and state of the other engine is copied and applied to the current engine.

sobol::sobol(sobol&& other)

Input Parameters

other
Valid sobol object. The queue and state of the other engine is moved to the current engine.

8.2. oneMKL Domains 1613

oneAPI Specification, Release 1.4-provisional-rev-1

sobol::sobol& operator=(const sobol& other)

Input Parameters

other
Valid sobol object. The queue and state of the other engine is copied and applied to the current engine.

sobol::sobol& operator=(sobol&& other)

Input Parameters

other
Valid sobol r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

niederreiter

The niederreiter generator is a 32-bit Gray code-based quasi-random number generator.

Description

According to results of Bratley, Fox and Niederreiter [Bratley92] Niederreiter sequences have the best known theoret-
ical asymptotic properties. The default dimension of quasi-random vectors can vary from 1 to 318 inclusive. It is also
allowed to register user-defined parameters (irreducible polynomials).

Generation algorithm

𝑥𝑛 = 𝑥𝑛1 ⊕ 𝑣𝑐

𝑢𝑛 = 𝑥𝑛/2
32

The value 𝑐 is the right-most zero bit in 𝑛− 1; 𝑥𝑛 is s-dimensional vector of 32-bit values. The s-dimensional vectors
(calculated during engine initialization) 𝑣𝑖, 𝑖 = 1, 32 are called direction numbers. The vector 𝑢𝑛 is the generator
output normalized to the unit hypercube (0, 1)𝑠.

class niederreiter

Syntax

namespace oneapi::mkl::rng {
class niederreiter {
public:

static constexpr std::uint32_t default_dimensions_number = 1;

niederreiter(sycl::queue queue, std::uint32_t dimensions = default_dimensions_
→˓number);

(continues on next page)

8.2. oneMKL Domains 1614

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

niederreiter(sycl::queue queue, std::vector<std::uint32_t>& irred_polynomials);

niederreiter(const niederreiter& other);

niederreiter(niederreiter&& other);

niederreiter& operator=(const niederreiter& other);

niederreiter& operator=(niederreiter&& other);

~niederreiter();
};
}

Class Members

Routine Description
niederreiter(sycl::queue queue, std::uint32_t
dimensions = default_dimensions_number)

Constructor with specified number of dimensions. The value
should be 1..318.

niederreiter(sycl::queue queue,
std::vector<std::uint32_t>& ir-
red_polynomials)

Constructor for extended use-case, when it’s needed to use the num-
ber of dimensions greater than 318 or obtain another sequence.

niederreiter(const niederreiter& other) Copy constructor
niederreiter(niederreiter&& other) Move constructor
niederreiter& operator=(const niederreiter&
other)

Copy assignment operator

niederreiter& operator=(niederreiter&&
other)

Move assignment operator

Constructors

niederreiter::niederreiter(sycl::queue queue, std::uint32_t dimensions = default_
→˓dimensions_number)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

dimensions
Number of dimensions. If 𝑑𝑖𝑚𝑒𝑛 < 1 or 𝑑𝑖𝑚𝑒𝑛 > 318, assume 𝑑𝑖𝑚𝑒𝑛 = 1.

niederreiter::niederreiter(sycl::queue queue, std::vector<std::uint32_t>& irred_
→˓polynomials)

8.2. oneMKL Domains 1615

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

irred_polynomials
If you want to generate quasi-random vectors of greater dimension or obtain another sequence, you can register
a set of your own irreducible polynomials. The number of dimensions corresponds to the length of the vector.

niederreiter::niederreiter(const niederreiter& other)

Input Parameters

other
Valid niederreiter object. The queue and state of the other engine is copied and applied to the current engine.

niederreiter::niederreiter(niederreiter&& other)

Input Parameters

other
Valid niederreiter object. The queue and state of the other engine is moved to the current engine.

niederreiter::niederreiter& operator=(const niederreiter& other)

Input Parameters

other
Valid niederreiter object. The queue and state of the other engine is copied and applied to the current engine.

niederreiter::niederreiter& operator=(niederreiter&& other)

Input Parameters

other
Valid niederreiter r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

nondeterministic

Non-deterministic random number generator.

8.2. oneMKL Domains 1616

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Implementation defined generator with non-deterministic source of randomness (for example, a hardware device).

class nondeterministic

Syntax

namespace oneapi::mkl::rng {
class nondeterministic {
public:

nondeterministic(sycl::queue queue);

nondeterministic(const nondeterministic& other);

nondeterministic(nondeterministic&& other);

nondeterministic& operator=(const nondeterministic& other);

nondeterministic& operator=(nondeterministic&& other);

~nondeterministic();
};
}

Class Members

Routine Description
nondeterministic(sycl::queue queue) Constructor for the particular device
nondeterministic(const nondeterministic& other) Copy constructor
nondeterministic(nondeterministic&& other) Move constructor
nondeterministic& operator=(const nondeterministic& other) Copy assignment operator
nondeterministic& operator=(nondeterministic&& other) Move assignment operator

Constructors

8.2. oneMKL Domains 1617

oneAPI Specification, Release 1.4-provisional-rev-1

nondeterministic::nondeterministic(sycl::queue queue)

Input Parameters

queue
Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

nondeterministic::nondeterministic(const nondeterministic& other)

Input Parameters

other
Valid nondeterministic object. The queue and state of the other engine is copied and applied to the current
engine.

nondeterministic::nondeterministic(nondeterministic&& other)

Input Parameters

other
Valid nondeterministic object. The queue and state of the other engine is moved to the current engine.

nondeterministic::nondeterministic& operator=(const nondeterministic& other)

Input Parameters

other
Valid nondeterministic object. The queue and state of the other engine is copied and applied to the current
engine.

nondeterministic::nondeterministic& operator=(nondeterministic&& other)

Input Parameters

other
Valid nondeterministic r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Host Engines (Basic Random Number Generators)

8.2. oneMKL Domains 1618

oneAPI Specification, Release 1.4-provisional-rev-1

Host Service Routines

Routine Description
leapfrog Proceed state of engine by the leapfrog method to generate a subsequence of the original sequence
skip_ahead Proceed state of engine by the skip-ahead method to skip a given number of elements from the original

sequence

Parent topic: Random Number Generators Host Routines

leapfrog

Proceed state of engine by the leapfrog method.

Description and Assumptions

oneapi::mkl::rng::leapfrog function generates random numbers in an engine with non-unit stride. This feature is par-
ticularly useful in distributing random numbers from the original stream across the stride buffers without generating
the original random sequence with subsequent manual distribution. see Figure “Leapfrog Method”.

Leapfrog Method

leapfrog

Syntax

namespace oneapi::mkl::rng {
template<typename EngineType>
void leapfrog(EngineType& engine, std::uint64_t idx, std::uint64_t stride);
}

8.2. oneMKL Domains 1619

oneAPI Specification, Release 1.4-provisional-rev-1

Template Parameters

EngineType
Type of engine. Note: may not be supported by all available engine classes.

Input Parameters

engine
Engine which state would be skipped.

idx
Index of the computational node.

stride
Largest number of computational nodes, or stride.

Example

// Creating 3 identical engines
oneapi::mkl::rng::mcg31m1 engine_1(queue, seed);

oneapi::mkl::rng::mcg31m1 engine_2(engine_1);
oneapi::mkl::rng::mcg31m1 engine_3(engine_1);

// Leapfrogging the states of engines
oneapi::mkl::rng::leapfrog(engine_1, 0 , 3);
oneapi::mkl::rng::leapfrog(engine_2, 1 , 3);
oneapi::mkl::rng::leapfrog(engine_3, 2 , 3);
// Generating random numbers

Parent topic: Host Service Routines

skip_ahead

Proceed state of engine by the skip-ahead method.

Description and Assumptions

oneapi::mkl::rng::skip_ahead function changes the current state of the engine so that with the further call of the gener-
ator the output subsequence begins with the specified offset see Figure “Block-Splitting Method”.

Block-Splitting Method

8.2. oneMKL Domains 1620

oneAPI Specification, Release 1.4-provisional-rev-1

skip_ahead

Syntax

namespace oneapi::mkl::rng {
template<typename EngineType>
void skip_ahead(EngineType& engine, std::uint64_t num_to_skip);
}

Template Parameters

EngineType
Type of engine. Note: may not be supported by all available engine classes.

Input Parameters

engine
Engine which state would be skipped.

num_to_skip
Number of elements to skip in the engine’s sequence.

Example

// Creating 3 identical engines
oneapi::mkl::rng::mcg31m1 engine_1(queue, seed);
oneapi::mkl::rng::mcg31m1 engine_2(engine_1);
oneapi::mkl::rng::mcg31m1 engine_3(engine_2);

// Skipping ahead by 7 elements the 2nd engine
oneapi::mkl::rng::skip_ahead(engine_2, 7);

// Skipping ahead by 14 elements the 3rd engine
oneapi::mkl::rng::skip_ahead(engine_3, 14);

8.2. oneMKL Domains 1621

oneAPI Specification, Release 1.4-provisional-rev-1

skip_ahead (Interface with a partitioned number of skipped elements)

Syntax

namespace oneapi::mkl::rng {
template<typename EngineType>
void oneapi::mkl::rng::skip_ahead(EngineType& engine, std::initializer_list<std::uint64_
→˓t> num_to_skip);
}

Template Parameters

EngineType
Type of engine. Note: may not be supported by all available engine classes.

Input Parameters

engine
Engine which state would be skipped.

num_to_skip
Partitioned number of elements to skip in the engine’s sequence. The total number of skipped elements would
be: 𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[0]+𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[1]·264+...+𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[1]·264(𝑛−1), where n is a number of elements
in num_to_skip list.

Example with Partitioned Numer of Elements

// Creating the first engine
oneapi::mkl::rng::mrg32k3a engine_1(queue, seed);

// To skip 2^64 elements in the random stream number of skipped elements should be
// represented as num_to_skip = 2^64 = 0 + 1 * 2^64
std::initializer_list<std::uint64_t> num_to_skip = {0, 1};

// Creating the 2nd engine based on 1st. Skipping by 2^64
oneapi::mkl::rng::mrg32k3a engine_2(engine_1);
oneapi::mkl::rng::skip_ahead(engine_2, num_to_skip);

Parent topic: Host Service Routines

Host Distributions

oneMKL RNG routines are used to generate random numbers with different types of distribution. Each function group
is introduced below by the type of underlying distribution and contains a short description of its functionality, as well as
specifications of the call sequence and the explanation of input and output parameters. Table Continuous Distribution
Generators and Table Discrete Distribution Generators list the random number generator routines with data types and
output distributions, and sets correspondence between data types of the generator routines and the basic random number
generators.

Table Continuous Distribution Generators

8.2. oneMKL Domains 1622

oneAPI Specification, Release 1.4-provisional-rev-1

Routine Description
uniform (continuous) Uniform continuous distribution on the interval [a,b)
gaussian Normal (Gaussian) distribution
exponential Exponential distribution
laplace Laplace distribution (double exponential distribution)
weibull Weibull distribution
cauchy Cauchy distribution
rayleigh Rayleigh distribution
lognormal Lognormal distribution
gumbel Gumbel (extreme value) distribution
gamma Gamma distribution
beta Beta distribution
chi_square Chi-Square distribution
gaussian_mv Normal Multivariate (Gaussian Multivariate) distribution

Table Discrete Distribution Generators

Type of Distribution Description
uniform (discrete) Uniform discrete distribution on the interval [a,b)
uniform_bits Uniformly distributed bits in 32/64-bit chunks
bits Bits of underlying BRNG integer recurrence
bernoulli Bernoulli distribution
geometric Geometric distribution
binomial Binomial distribution
hypergeometric Hypergeometric distribution
poisson Poisson distribution
poisson_v Poisson distribution with varying mean
negative_binomial Negative binomial distribution, or Pascal distribution
multinomial Multinomial distribution

Modes of random number generation

The library provides two modes of random number generation, accurate and fast. Accurate generation
mode is intended for applications that are highly demanding to accuracy of calculations. When used in
this mode, the generators produce random numbers lying completely within the definitional domain for
all values of the distribution parameters. For example, random numbers obtained from the generator of
continuous distribution that is uniform on interval [a,b] belong to this interval irrespective of what a and b
values may be. Fast mode provides high performance generation and also guarantees that generated random
numbers belong to the definitional domain except for some specific values of distribution parameters. The
generation mode is set by specifying the relevant value of the method parameter in generator routines. The
list of distributions that support accurate mode of generation is given in the table below.

Table Distribution Generators with Accurate Method

8.2. oneMKL Domains 1623

oneAPI Specification, Release 1.4-provisional-rev-1

Distribution Method
uniform (contin-
uous)

oneapi::mkl::rng::unform_method::accurate

exponential oneapi::mkl::rng::exponential_method::icdf_accurate
weibull oneapi::mkl::rng::weibull_method::icdf_accurate
rayleigh oneapi::mkl::rng::rayleigh_method::icdf_accurate
lognormal oneapi::mkl::rng::lognormal_method::box_muller2_accurate,

oneapi::mkl::rng::lognormal_method::icdf_accurate
gamma oneapi::mkl::rng::gamma_method::marsaglia_accurate
beta oneapi::mkl::rng::beta_method::cja_accurate

Parent topic: Random Number Generators Host Routines

8.2. oneMKL Domains 1624

oneAPI Specification, Release 1.4-provisional-rev-1

Distributions Template Parameter Method

Method Dis-
tri-
bu-
tions

Math Description

uniform_method::standard
uniform_method::accurate

uniform(s,
d)
uniform(i)

Standard method. uniform_method::standard_accurate supported for uniform(s,
d) only.

gaussian_method::box_mullergaussianGenerates normally distributed random number x thru the pair of uniformly distributed
numbers 𝑢1 and 𝑢2 according to the formula: 𝑥 =

√
−2𝑙𝑛𝑢1 sin(2𝜋𝑢2)

gaussian_method::box_muller2gaussian
lognormal

Generates normally distributed random numbers 𝑥1 and 𝑥2 thru the pair of uniformly
distributed numbers 𝑢1 and 𝑢2 according to the formulas: 𝑥1 =

√
−2𝑙𝑛𝑢1 sin 2𝜋𝑢2 𝑥2 =√

−2𝑙𝑛𝑢1 cos 2𝜋𝑢2

gaussian_method::icdfgaussianInverse cumulative distribution function (ICDF) method.
exponential_method::icdf
exponential_method::icdf_accurate

exponentialInverse cumulative distribution function (ICDF) method.

weibull_method::icdf
weibull_method::icdf_accurate

weibullInverse cumulative distribution function (ICDF) method.

cauchy_method::icdfcauchyInverse cumulative distribution function (ICDF) method.
rayleigh_method::icdf
rayleigh_method::icdf_accurate

rayleighInverse cumulative distribution function (ICDF) method.

bernoulli_method::icdfbernoulliInverse cumulative distribution function (ICDF) method.
geometric_method::icdfgeometricInverse cumulative distribution function (ICDF) method.
gumbel_method::icdfgumbelInverse cumulative distribution function (ICDF) method.
lognormal_method::icdf
lognormal_method::icdf_accurate

lognormalInverse cumulative distribution function (ICDF) method.

lognormal_method::box_muller2
lognormal_method::box_muller2_accurate

lognormalGenerated normally distributed random numbers 𝑥1 and 𝑥2 by box_muller2 method are
converted to lognormal distribution.

gamma_method::marsaglia
gamma_method::marsaglia_accurate

gamma For 𝛼 > 1, a gamma distributed random number is generated as a cube of properly scaled
normal random number; for 0.6 ≤ 𝛼 < 1, a gamma distributed random number is gener-
ated using rejection from Weibull distribution; for 𝛼 < 0.6, a gamma distributed random
number is obtained using transformation of exponential power distribution; for 𝛼 = 1,
gamma distribution is reduced to exponential distribution.

beta_method::cja
beta_method::cja_accurate

beta Cheng-Jonhnk-Atkinson method. For 𝑚𝑖𝑛(𝑝, 𝑞) > 1, Cheng method is used; for
𝑚𝑖𝑛(𝑝, 𝑞) < 1, Johnk method is used, if 𝑞 + 𝐾 * 𝑝2 + 𝐶 ≤ 0(𝐾 = 0.852..., 𝐶 =
−0.956...) otherwise, Atkinson switching algorithm is used; for 𝑚𝑎𝑥(𝑝, 𝑞) < 1, method
of Johnk is used; for 𝑚𝑖𝑛(𝑝, 𝑞) < 1,𝑚𝑎𝑥(𝑝, 𝑞) > 1, Atkinson switching algorithm is
used (CJA stands for Cheng, Johnk, Atkinson); for 𝑝 = 1 or 𝑞 = 1, inverse cumulative
distribution function method is used; for 𝑝 = 1 and 𝑞 = 1, beta distribution is reduced to
uniform distribution.

chi_square_method::gamma_basedchi_square(most common): If 𝜈 ≥ 17 or 𝜈 is odd and 5 ≤ 𝜈 ≤ 15, a chi-square distribution is
reduced to a Gamma distribution with these parameters: Shape 𝛼 = 𝜈/2Offset 𝑎 = 0
Scale factor 𝛽 = 2 The random numbers of the Gamma distribution are generated.

binomial_method::btpebinomialAcceptance/rejection method for 𝑛𝑡𝑟𝑖𝑎𝑙 *𝑚𝑖𝑛(𝑝, 1 − 𝑝) ≥ 30 with decomposition into
four regions: two parallelograms, triangle, left exponential tail, right exponential tail.

poisson_method::ptpepoissonAcceptance/rejection method for 𝜆 ≥ 27 with decomposition into four regions: two par-
allelograms, triangle, left exponential tail, right exponential tail.

poisson_method::gaussian_icdf_basedpoissonfor 𝜆 ≥ 1, method based on Poisson inverse CDF approximation by Gaussian inverse
CDF; for 𝜆 < 1, table lookup method is used.

poisson_v_method::gaussian_icdf_basedpoisson_vfor 𝜆 ≥ 1, method based on Poisson inverse CDF approximation by Gaussian inverse
CDF; for 𝜆 < 1, table lookup method is used.

hypergeometric_method::h2pehypergeometricAcceptance/rejection method for large mode of distribution with decomposition into three
regions: rectangular, left exponential tail, right exponential tail.

negative_binomial_method::nbarnegative_binomialAcceptance/rejection method for: (𝑎−1)(1−𝑝)
𝑝 ≥ 100with decomposition into five regions:

rectangular, 2 trapezoid, left exponential tail, right exponential tail.
multinomial_method::poisson_icdf_basedmultinomialMultinomial distribution with parameters 𝑚, 𝑘, and a probability vector 𝑝. Random num-

bers of the multinomial distribution are generated by Poisson Approximation method.
gaussian_mv_method::box_mullergaussian_mvBoxMuller method for gaussian_mv method.
gaussian_mv_method::box_muller2gaussian_mvBoxMuller2 method for gaussian_mv method.
gaussian_mv_method::icdfgaussian_mvInverse cumulative distribution function (ICDF) method.

8.2. oneMKL Domains 1625

oneAPI Specification, Release 1.4-provisional-rev-1

Parent topic: Host Distributions

uniform (continuous)

Class is used for generation of uniformly distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers uniformly distributed
over the interval [𝑎, 𝑏), where 𝑎, 𝑏 are the left and right bounds of the interval, respectively, and 𝑎, 𝑏 ∈ 𝑅; 𝑎 < 𝑏

The probability distribution is given by:

𝑓𝑎,𝑏(𝑥) =

{︂
1

𝑏−𝑎 , 𝑥 ∈ [𝑎, 𝑏)

0, 𝑥 /∈ [𝑎, 𝑏)

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎨⎩
0, 𝑥 < 𝑎

𝑥−𝑎
𝑏−𝑎 , 𝑎 ≤ 𝑥 < 𝑏, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝑏

class uniform

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = uniform_method::by_default>
class uniform {
public:

using method_type = Method;
using result_type = RealType;
uniform();
explicit uniform(RealType a, RealType b);
RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::uniform_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::uniform_method::by_default

8.2. oneMKL Domains 1626

oneAPI Specification, Release 1.4-provisional-rev-1

• oneapi::mkl::rng::uniform_method::standard

• oneapi::mkl::rng::uniform_method::accurate

See description of the methods in Distributions methods template parameter

Class Members

Routine Description
uniform() Default constructor
explicit uniform(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain left bound a
RealType b() const Method to obtain right bound b

Member types

uniform::method_type = Method

Description

The type which defines transformation method for generation.

uniform::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

uniform::uniform()

Description

Default constructor for distribution, parameters set as a = 0.0, b = 1.0.

8.2. oneMKL Domains 1627

oneAPI Specification, Release 1.4-provisional-rev-1

explicit uniform::uniform(RealType a, RealType b)

Description

Constructor with parameters. a is a left bound, b is a right bound, assume 𝑎 < 𝑏.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑎 ≥ 𝑏

Characteristics

RealType uniform::a() const

Return Value

Returns the distribution parameter a - left bound.

RealType uniform::b() const

Return Value

Returns the distribution parameter b - right bound.

Parent topic: Host Distributions

gaussian

Class is used for generation of normally distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers normally distributed
with mean (𝑚𝑒𝑎𝑛, 𝑎) and standard deviation (𝑠𝑡𝑑𝑑𝑒𝑣, 𝜎), where 𝑎, 𝜎 ∈ 𝑅;𝜎 > 0.

The probability distribution is given by:

𝑓𝑎,𝜎(𝑥) =
1

𝜎
√
2𝜋

𝑒𝑥𝑝(− (𝑥− 𝑎)2

2 * 𝜎2
), 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝜎(𝑥) =

∫︁ 𝑥

−∞

1

𝜎
√
2𝜋

𝑒𝑥𝑝(− (𝑦 − 𝑎)2

2 * 𝜎2
)𝑑𝑦, 𝑥 ∈ 𝑅.

8.2. oneMKL Domains 1628

oneAPI Specification, Release 1.4-provisional-rev-1

class gaussian

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = gaussian_method::by_default>
class gaussian {
public:

using method_type = Method;
using result_type = RealType;
gaussian();
explicit gaussian(RealType mean, RealType stddev);
RealType mean() const;
RealType stddev() const;

};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::gaussian_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::gaussian_method::by_default

• oneapi::mkl::rng::gaussian_method::box_muller

• oneapi::mkl::rng::gaussian_method::box_muller2

• oneapi::mkl::rng::gaussian_method::icdf

See description of the methods in Distributions methods template parameter

Class Members

Routine Description
gaussian() Default constructor
explicit gaussian(RealType mean, RealType stddev) Constructor with parameters
RealType mean() const Method to obtain mean value
RealType stddev() const Method to obtain standard deviation value

8.2. oneMKL Domains 1629

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

gaussian::method_type = Method

Description

The type which defines transformation method for generation.

gaussian::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gaussian::gaussian()

Description

Default constructor for distribution, parameters set as mean = 0.0, stddev = 1.0.

explicit gaussian::gaussian(RealType mean, RealType stddev)

Description

Constructor with parameters. mean is a mean value, stddev is a standard deviation value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when stddev ≤ static_cast<RealType>(0.0)

Characteristics

RealType gaussian::mean() const

8.2. oneMKL Domains 1630

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter mean - mean value.

RealType gaussian::stddev() const

Return Value

Returns the distribution parameter stddev - standard deviation value.

Parent topic: Host Distributions

exponential

Class is used for generation of exponentially distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers exponentially dis-
tributed with displacement 𝑎 and scalefactor 𝛽, where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =

{︂ 1
𝛽 𝑒𝑥𝑝(−

𝑥−𝑎
𝛽), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =

{︂
1− 𝑒𝑥𝑝(−𝑥−𝑎

𝛽), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

class exponential

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = exponential_method::by_default>
class exponential {
public:

using method_type = Method;
using result_type = RealType;
exponential();
explicit exponential(RealType a, RealType beta);
RealType a() const;
RealType beta() const;

};
}

8.2. oneMKL Domains 1631

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::exponential_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::exponential_method::by_default

• oneapi::mkl::rng::exponential_method::icdf

• oneapi::mkl::rng::exponential_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
exponential() Default constructor
explicit exponential(RealType a, RealType beta) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scalefactor

Member types

exponential::method_type = Method

Description

The type which defines transformation method for generation.

exponential::result_type = RealType

Description

The type which defines type of generated random numbers.

8.2. oneMKL Domains 1632

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors

exponential::exponential()

Description

Default constructor for distribution, parameters set as a = 0.0, beta = 1.0.

explicit exponential::exponential(RealType a, RealType beta)

Description

Constructor with parameters. a is a displacement, beta is a scalefactor.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑏𝑒𝑡𝑎 ≤ static_cast<RealType>(0.0)

Characteristics

RealType exponential::a() const

Return Value

Returns the distribution parameter a - displacement.

RealType exponential::beta() const

Return Value

Returns the distribution parameter beta - scalefactor value.

Parent topic: Host Distributions

laplace

Class is used for generation of Laplace distributed real types random numbers.

8.2. oneMKL Domains 1633

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Laplace distributed
with mean value (or average) 𝑎, and scalefactor (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0. The scalefactor value determines the
standard deviation as 𝜎 = 𝛽

√
2.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =
1√
2𝛽

𝑒𝑥𝑝(−|𝑥− 𝑎|
𝛽

), 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =

{︃
1
2𝑒𝑥𝑝(−

|𝑥−𝑎|
𝛽), 𝑥 ≥ 𝑎

1− 1
2𝑒𝑥𝑝(−

|𝑥−𝑎|
𝛽), 𝑥 < 𝑎

class laplace

Syntax

template<typename RealType = float, typename Method = laplace_method::by_default>
class laplace {
public:

using method_type = Method;
using result_type = RealType;
laplace();
explicit laplace(RealType a, RealType b);
RealType a() const;
RealType b() const;

};

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::laplace_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::laplace_method::by_default

• oneapi::mkl::rng::laplace_method::icdf

See description of the methods in Distributions methods template parameter.

8.2. oneMKL Domains 1634

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
laplace() Default constructor
explicit laplace(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain mean value
RealType b() const Method to obtain scalefactor value

Member types

laplace::method_type = Method

Description

The type which defines transformation method for generation.

laplace::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

laplace::laplace()

Description

Default constructor for distribution, parameters set as a = 0.0, and beta = 1.0.

explicit laplace::laplace(RealType a, RealType b)

Description

Constructor with parameters. a is a mean value, beta is a scalefactor value.

8.2. oneMKL Domains 1635

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

Characteristics

RealType laplace::a() const

Return Value

Returns the distribution parameter a - mean value.

RealType laplace::b() const

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Host Distributions

weibull

Class is used for generation of Weibull distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Weibull distributed
with displacement 𝑎, scalefactor 𝛽, and shape 𝛼, where 𝑎, 𝛽, 𝛼 ∈ 𝑅;𝛼 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛼,𝛽(𝑥) =

{︂ 𝛼
𝛽𝛼 (𝑥− 𝑎)𝛼−1𝑒𝑥𝑝((−𝑥−𝑎

𝛽)𝛼), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛼,𝛽(𝑥) =

{︂
1− 𝑒𝑥𝑝((−𝑥−𝑎

𝛽)𝛼), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

class weibull

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = weibull_method::by_default>
class weibull {
public:

using method_type = Method;
(continues on next page)

8.2. oneMKL Domains 1636

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

using result_type = RealType;
weibull();
explicit weibull(RealType alpha, RealType a, RealType b);
RealType alpha() const;
RealType a() const;
RealType beta() const;

};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::weibull_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::weibull_method::by_default

• oneapi::mkl::rng::weibull_method::icdf

• oneapi::mkl::rng::weibull_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
weibull() Default constructor
explicit weibull(RealType alpha, RealType a, RealType beta) Constructor with parameters
RealType alpha() const Method to obtain shape value
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scalefactor value

Member types

weibull::method_type = Method

8.2. oneMKL Domains 1637

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines transformation method for generation.

weibull::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

weibull::weibull()

Description

Default constructor for distribution, parameters set as alpha = 1.0, a = 0.0, and b = 1.0.

explicit weibull::weibull(RealType alpha, RealType a, RealType beta)

Description

Constructor with parameters. alpha is a shape value, a is a displacement value, beta is a scalefactor value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑎𝑙𝑝ℎ𝑎 ≤ static_cast<RealType>(0.0), or 𝑏𝑒𝑡𝑎 ≤ static_cast<RealType>(0.0)

Characteristics

RealType weibull::alpha() const

Return Value

Returns the distribution parameter alpha - shape value.

RealType weibull::a() const

8.2. oneMKL Domains 1638

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter a - displacement value.

RealType weibull::beta() const

Return Value

Returns the distribution parameter beta - scalefactor value.

Parent topic: Host Distributions

cauchy

Class is used for generation of Cauchy distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Cauchy distributed
with displacement 𝑎, and scale parameter (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =
1

𝜋𝛽(1 + (𝑥−𝑎𝛽)2)
, 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =
1

2
+

1

𝜋
arctan (

𝑥− 𝑎

𝛽
), 𝑥 ∈ 𝑅.

class cauchy

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = cauchy_method::by_default>
class cauchy {
public:

using method_type = Method;
using result_type = RealType;
cauchy();
explicit cauchy(RealType a, RealType b);
RealType a() const;
RealType b() const;

};
}

8.2. oneMKL Domains 1639

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::cauchy_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::cauchy_method::by_default

• oneapi::mkl::rng::cauchy_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
cauchy() Default constructor
explicit cauchy(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType b() const Method to obtain scalefactor value

Member types

cauchy::method_type = Method

Description

The type which defines transformation method for generation.

cauchy::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

cauchy::cauchy()

8.2. oneMKL Domains 1640

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Default constructor for distribution, parameters set as a = 0.0, and b = 1.0.

explicit cauchy::cauchy(RealType a, RealType b)

Description

Constructor with parameters. a is a displacement value, b is a scalefactor value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

Characteristics

RealType cauchy::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType cauchy::b() const

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Host Distributions

rayleigh

Class is used for generation of Rayleigh distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Rayleigh distributed
with displacement 𝑎, and scalefactor (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The Rayleigh distribution is a special case of the weibull distribution, where the shape parameter alpha = 2 .

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =

{︃
2(𝑥−𝑎)

𝛽2 𝑒𝑥𝑝(− (𝑥−𝑎)2)
𝛽2), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =

{︃
1− 𝑒𝑥𝑝(− (𝑥−𝑎)2)

𝛽2), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

8.2. oneMKL Domains 1641

oneAPI Specification, Release 1.4-provisional-rev-1

class rayleigh

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = rayleigh_method::by_default>
class rayleigh {
public:

using method_type = Method;
using result_type = RealType;
rayleigh();
explicit rayleigh(RealType a, RealType b);
RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::rayleigh_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::rayleigh_method::by_default

• oneapi::mkl::rng::rayleigh_method::icdf

• oneapi::mkl::rng::rayleigh_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
rayleigh() Default constructor
explicit rayleigh(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType b() const Method to obtain scalefactor value

8.2. oneMKL Domains 1642

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

rayleigh::method_type = Method

Description

The type which defines transformation method for generation.

rayleigh::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

rayleigh::rayleigh()

Description

Default constructor for distribution, parameters set as a = 0.0, and b = 1.0.

explicit rayleigh::rayleigh(RealType a, RealType b)

Description

Constructor with parameters. a is a displacement value, b is a scalefactor value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

Characteristics

RealType rayleigh::a() const

8.2. oneMKL Domains 1643

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter a - displacement value.

RealType rayleigh::b() const

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Host Distributions

lognormal

Class is used for generation of lognormally distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers lognormally dis-
tributed with mean (𝑚, 𝑎) and standard deviation (𝑠, 𝜎) of subject normal distribution, displacement (𝑑𝑖𝑠𝑝𝑙, 𝑏), and
scalefactor (𝑠𝑐𝑎𝑙𝑒, 𝛽), where 𝑎, 𝜎, 𝑏, 𝛽 ∈ 𝑅;𝜎 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝜎,𝑏,𝛽(𝑥) =

{︃
1

𝜎(𝑥−𝑏)
√
2𝜋

𝑒𝑥𝑝(− [𝑙𝑛((𝑥−𝑏)/𝛽)−𝑎]2
2*𝜎2), 𝑥 > 𝑏

0, 𝑥 ≤ 𝑏

The cumulative distribution function is as follows:

𝐹𝑎,𝜎,𝑏,𝛽(𝑥) =

{︂
Φ((𝑙𝑛((𝑥−𝑏)/𝛽)−𝑎)𝜎), 𝑥 > 𝑏

0, 𝑥 ≤ 𝑏

class lognormal

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = lognormal_method::by_default>
class lognormal {
public:

using method_type = Method;
using result_type = RealType;
lognormal();
explicit lognormal(RealType m, RealType s, RealType displ = static_cast<RealType>(0.

→˓0), RealType scale = static_cast<RealType>(1.0));
RealType m() const;
RealType s() const;
RealType displ() const;
RealType scale() const;

};
}

8.2. oneMKL Domains 1644

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::lognormal_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::lognormal_method::by_default

• oneapi::mkl::rng::lognormal_method::box_muller2

• oneapi::mkl::rng::lognormal_method::icdf

• oneapi::mkl::rng::lognormal_method::box_muller2_accurate

• oneapi::mkl::rng::lognormal_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
lognormal() Default constructor
explicit lognormal(RealType m, RealType s, RealType displ =
static_cast<RealType>(0.0), RealType scale = static_cast<RealType>(1.0))

Constructor with parame-
ters

RealType m() const Method to obtain mean
value

RealType s() const Method to obtain standard
deviation value

RealType displ() const Method to obtain dis-
placement value

RealType scale() const Method to obtain scalefac-
tor value

Member types

lognormal::method_type = Method

Description

The type which defines transformation method for generation.

lognormal::result_type = RealType

8.2. oneMKL Domains 1645

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines type of generated random numbers.

Constructors

lognormal::lognormal()

Description

Default constructor for distribution, parameters set as m = 0.0, s = 1.0, displ = 0.0, scale = 1.0.

explicit lognormal::lognormal(RealType m, RealType s, RealType displ = static_cast
→˓<RealType>(0.0), RealType scale = static_cast<RealType>(1.0))

Description

Constructor with parameters. m is a mean value, s is a standard deviation value, displ is a displacement value, scale is
a scalefactor value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑠 ≤ static_cast<RealType>(0.0), or 𝑠𝑐𝑎𝑙𝑒 ≤ static_cast<RealType>(0.0)

Characteristics

RealType lognormal::m() const

Return Value

Returns the distribution parameter m - mean value.

RealType lognormal::s() const

Return Value

Returns the distribution parameter s - standard deviation value.

RealType lognormal::displ() const

8.2. oneMKL Domains 1646

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter displ - displacement value.

RealType lognormal::scale() const

Return Value

Returns the distribution parameter scale - scalefactor value.

Parent topic: Host Distributions

gumbel

Class is used for generation of Gumbel distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Gumbel distributed
with displacement 𝑎, and scalefactor (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =
1

𝛽
𝑒𝑥𝑝(−𝑥− 𝑎

𝛽
)𝑒𝑥𝑝(−𝑒𝑥𝑝(𝑥− 𝑎

𝛽
)), 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) = 1− 𝑒𝑥𝑝(−𝑒𝑥𝑝(𝑥− 𝑎

𝛽
)), 𝑥 ∈ 𝑅.

class gumbel

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = gumbel_method::by_default>
class gumbel {
public:

using method_type = Method;
using result_type = RealType;
gumbel();
explicit gumbel(RealType a, RealType b);
RealType a() const;
RealType b() const;

};
}

8.2. oneMKL Domains 1647

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::gumbel_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::gumbel_method::by_default

• oneapi::mkl::rng::gumbel_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
gumbel() Default constructor
explicit gumbel(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType b() const Method to obtain scalefactor value

Member types

gumbel::method_type = Method

Description

The type which defines transformation method for generation.

gumbel::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gumbel::gumbel()

8.2. oneMKL Domains 1648

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Default constructor for distribution, parameters set as a = 0.0, and beta = 1.0.

explicit gumbel::gumbel(RealType a, RealType b)

Description

Constructor with parameters. a is a displacement value, beta is a scalefactor value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

Characteristics

RealType gumbel::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType gumbel::b() const

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Host Distributions

gamma

Class is used for generation of gamma distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers gamma distributed
with shape 𝛼, displacement 𝑎, and scale parameter 𝛽, where 𝑎, 𝛼, 𝛽 ∈ 𝑅;𝛼 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛼,𝛽(𝑥) =

{︂
1

Γ(𝛼)𝛽𝛼 (𝑥− 𝑎)𝛼−1𝑒−(𝑥−𝑎)/𝛽 , 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛼,𝛽(𝑥) =

{︂ ∫︀ 𝑥

𝑎
1

Γ(𝛼)𝛽𝛼 (𝑦 − 𝑎)𝛼−1𝑒−(𝑦−𝑎)/𝛽𝑑𝑦, 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

8.2. oneMKL Domains 1649

oneAPI Specification, Release 1.4-provisional-rev-1

class gamma

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = gamma_method::by_default>
class gamma {
public:

using method_type = Method;
using result_type = RealType;
gamma();
explicit gamma(RealType alpha, RealType a, RealType beta);
RealType alpha() const;
RealType a() const;
RealType beta() const;

};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::gamma_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::gamma_method::by_default

• oneapi::mkl::rng::gamma_method::marsaglia

• oneapi::mkl::rng::gamma_method::marsaglia_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
gamma() Default constructor
explicit gamma(RealType alpha, RealType a, RealType beta) Constructor with parameters
RealType alpha() const Method to obtain shape value
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scale value

8.2. oneMKL Domains 1650

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

gamma::method_type = Method

Description

The type which defines transformation method for generation.

gamma::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gamma::gamma()

Description

Default constructor for distribution, parameters set as alpha = 1.0, a = 0.0, and beta = 1.0.

explicit gamma::gamma(RealType alpha, RealType a, RealType beta)

Description

Constructor with parameters. alpha is a shape value, a is a displacement value, beta is a scale parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑎𝑙𝑝ℎ𝑎 ≤ static_cast<RealType>(0.0), or 𝑏𝑒𝑡𝑎 ≤ static_cast<RealType>(0.0)

Characteristics

RealType gamma::alpha() const

8.2. oneMKL Domains 1651

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter alpha - shape value.

RealType gamma::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType gamma::beta() const

Return Value

Returns the distribution parameter beta - scale parameter.

Parent topic: Host Distributions

beta

Class is used for generation of beta distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers beta distributed with
shape parameters 𝑝 and 𝑞, displacement 𝛼 and scale parameter (𝑏, 𝛽), where 𝑝, 𝑞. 𝛼, 𝛽 ∈ 𝑅; 𝑝 > 0; 𝑞 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑝,𝑞,𝛼,𝛽(𝑥) =

{︂ 1
𝐵(𝑝,𝑞)*𝛽𝑝+𝑞−1 (𝑥− 𝑎)𝑝−1 * (𝛽 + 𝛼− 𝑥)𝑞−1, 𝛼 ≤ 𝑥 < 𝛼+ 𝛽

0, 𝑥 < 𝛼, 𝑥 ≥ 𝛼+ 𝛽

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎨⎩
0, 𝑥 < 𝛼∫︀ 𝑥

𝛼
1

𝐵(𝑝,𝑞)*𝛽𝑝+𝑞−1 (𝑦 − 𝛼)𝑝−1 * (𝛽 + 𝛼− 𝑦)𝑞−1𝑑𝑦, 𝛼 ≤ 𝑥 < 𝛼+ 𝛽, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝛼+ 𝛽

Where 𝐵(𝑝, 1) is the complete beta function.

class beta

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = beta_method::by_default>
class beta {
public:

using method_type = Method;
using result_type = RealType;

(continues on next page)

8.2. oneMKL Domains 1652

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

beta();
explicit beta(RealType p, RealType q, RealType a, RealType b);
RealType p() const;
RealType q() const;
RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::beta_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::beta_method::by_default

• oneapi::mkl::rng::beta_method::cja

• oneapi::mkl::rng::beta_method::cja_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
beta() Default constructor
explicit beta(RealType p, RealType q, RealType a, RealType b) Constructor with parameters
RealType p() const Method to obtain shape p
RealType q() const Method to obtain shape q
RealType a() const Method to obtain displacement 𝛼
RealType b() const Method to obtain scalefactor 𝛽

Member types

beta::method_type = Method

8.2. oneMKL Domains 1653

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines transformation method for generation.

beta::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

beta::beta()

Description

Default constructor for distribution, parameters set as p = 1.0, q = 0.0, 𝛼 = 1.0, 𝛽 = 1.0.

explicit beta::beta(RealType p, RealType q, RealType a, RealType b)

Description

Constructor with parameters. p and q are shapes, 𝛼 is a displacement, 𝛽 is a scalefactor.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑝 ≤ 0.0𝑓 , or 𝑞 ≤ 0.0𝑓 , or 𝛽 ≤ 0.0𝑓

Characteristics

RealType beta::p() const

Return Value

Returns the distribution parameter p - shape.

RealType beta::q() const

8.2. oneMKL Domains 1654

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter q - shape.

RealType beta::a() const

Return Value

Returns the distribution parameter 𝛼 - displacement.

RealType beta::b() const

Return Value

Returns the distribution parameter 𝛽 - scalefactor.

Parent topic: Host Distributions

chi_square

Class is used for generation of chi-square distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers chi-square distributed
with 𝑛 degrees of freedom, 𝑛 ∈ 𝑁 ;𝑛 > 0.

The probability distribution is given by:

𝑓𝑛(𝑥) =

{︃
𝑥

𝑛−2
2 𝑒−

𝑥
2

2𝑛/2Γ(𝑛/2)
, 𝑥 ≥ 0

0, 𝑥 < 0

The cumulative distribution function is as follows:

𝐹𝑛(𝑥) =

{︃ ∫︀ 𝑥

0
𝑦

𝑛−2
2 𝑒−

𝑥
2

2𝑛/2Γ(𝑛/2)
𝑑𝑦, 𝑥 ≥ 0

0, 𝑥 < 0

class chi_square

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = chi_square_method::by_default>
class chi_square {
public:

using method_type = Method;
using result_type = RealType;
chi_square();
explicit chi_square(std::int32_t n);

(continues on next page)

8.2. oneMKL Domains 1655

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int32_t n() const;
};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::chi_square_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::chi_square_method::by_default

• oneapi::mkl::rng::chi_square_method::gamma_based

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
chi_square() Default constructor
explicit chi_square(std::int32_t n) Constructor with parameters
std::int32_t n() const Method to obtain number of degrees of freedom n

Member types

chi_square::method_type = Method

Description

The type which defines transformation method for generation.

chi_square::result_type = RealType

8.2. oneMKL Domains 1656

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines type of generated random numbers.

Constructors

chi_square::chi_square()

Description

Default constructor for distribution, parameters set as n = 5.

explicit chi_square::chi_square(std::int32_t n)

Description

Constructor with parameters. n is the number of degrees of freedom.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑛 < 1

Characteristics

std::int32_t chi_square::n() const

Return Value

Returns the distribution parameter n - number of degrees of freedom.

Parent topic: Host Distributions

gaussian_mv

Class is used for generation of multivariate normally distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide n random numbers 𝑑-variate normally
distributed, with mean 𝑎 and variance-covariance matrix 𝐶, where 𝑎 ∈ 𝑅𝑑; 𝐶 is dxd symmetric positive matrix.

The probability density function is given by:

𝑓𝑎,𝐶(𝑥) =
1√︀

𝑑𝑒𝑡(2𝜋𝐶)
𝑒𝑥𝑝(−1/2(𝑥− 𝑎)𝑇𝐶−1(𝑥− 𝑎)).

8.2. oneMKL Domains 1657

oneAPI Specification, Release 1.4-provisional-rev-1

class gaussian_mv

Let SequenceContainerOrView be a type that can be one of C++ Sequence containers or C++ Views (span, mdspan).
It’s implementation defined which type SequenceContainerOrView represents.

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = std::int32_t, layout Layout = layout::packed, typename␣
→˓Method = gaussian_mv_method::by_default>
class gaussian_mv {
public:

using method_type = Method;
using result_type = RealType;
explicit gaussian_mv(std::uint32_t dimen, SequenceContainerOrView<RealType> mean,␣

→˓SequenceContainerOrView<RealType> matrix);
std::int32_t dimen() const;
SequenceContainerOrView<RealType> mean() const;
SequenceContainerOrView<RealType> matrix() const;

};
}

Template parameters

typename RealType

Type of the produced values. Supported types:

• float

• double

Template parameters

oneapi::mkl::rng::layout Layout

Matrix layout:

• oneapi::mkl::rng::layout::full

• oneapi::mkl::rng::layout::packed

• oneapi::mkl::rng::layout::diagonal

typename Method = oneapi::mkl::rng::gaussian_mv_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::gaussian_mv_method::by_default

• oneapi::mkl::rng::gaussian_mv_method::box_muller

• oneapi::mkl::rng::gaussian_mv_method::box_muller2

• oneapi::mkl::rng::gaussian_mv_method::icdf

See description of the methods in Distributions methods template parameter.

8.2. oneMKL Domains 1658

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
explicit gaussian_mv(std::uint32_t dimen, SequenceCon-
tainerOrView<RealType> mean, SequenceContainerOrView<RealType>
matrix)

Constructor with parameters

std::int32_t dimen() const Method to obtain number of dimen-
sions in output random vectors

SequenceContainerOrView<double> mean() const Method to obtain mean vector a of
dimension d.

SequenceContainerOrView<double> matrix() const Method to obtain variance-
covariance matrix C

Member types

gaussian_mv::method_type = Method

Description

The type which defines transformation method for generation.

gaussian_mv::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

explicit gaussian_mv::gaussian_mv(std::uint32_t dimen, SequenceContainerOrView<RealType>␣
→˓mean, SequenceContainerOrView<RealType> matrix)

Description

Constructor with parameters. dimen is the number of dimensions, mean is a mean vector, matrix is a variance-
covariance matrix.

8.2. oneMKL Domains 1659

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑚𝑒𝑎𝑛.𝑠𝑖𝑧𝑒() ≤ 0, or 𝑚𝑎𝑡𝑟𝑖𝑥.𝑠𝑖𝑧𝑒() ≤ 0

Characteristics

std::int32_t gaussian_mv::dimen() const

Return Value

Returns the distribution parameter dimen.

SequenceContainerOrView<double> gaussian_mv::mean() const

Return Value

Returns the mean vector.

SequenceContainerOrView<double> gaussian_mv::matrix() const

Return Value

Returns the variance-covariance matrix.

Parent topic: Host Distributions

uniform (discrete)

Class is used for generation of uniformly distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers uniformly distributed
over the interval [𝑎, 𝑏), where 𝑎, 𝑏 are the left and right bounds of the interval, respectively, and 𝑎, 𝑏 ∈ 𝑅; 𝑎 < 𝑏.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) =
1

𝑏− 𝑎
, 𝑘 ∈ {𝑎, 𝑎+ 1, ..., 𝑏− 1}

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎨⎩
0, 𝑥 < 𝑎

⌊𝑥−𝑎+1⌋
𝑏−𝑎 , 𝑎 ≤ 𝑥 < 𝑏, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝑏

8.2. oneMKL Domains 1660

oneAPI Specification, Release 1.4-provisional-rev-1

class uniform

Syntax

namespace oneapi::mkl::rng {
template<typename Method = uniform_method::by_default>
class uniform<std::int32_t, Method> {
public:

using method_type = Method;
using result_type = std::int32_t;
uniform();
explicit uniform(std::int32_t a, std::int32_t b);
std::int32_t a() const;
std::int32_t b() const;

};
}

Template parameters

typename Method = oneapi::mkl::rng::uniform_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::uniform_method::by_default

• oneapi::mkl::rng::uniform_method::standard

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
uniform() Default constructor
explicit uniform(std::int32_t a, std::int32_t b) Constructor with parameters
std::int32_t a() const Method to obtain left bound a
std::int32_t b() const Method to obtain right bound b

Member types

method_type = Method

8.2. oneMKL Domains 1661

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines transformation method for generation.

result_type = std::int32_t

Description

The type which defines type of generated random numbers.

Constructors

uniform()

Description

Default constructor for distribution, parameters set as a = 0, b = std::numeric_limits<std::int32_t>::max().

uniform(std::int32_t a, std::int32_t b)

Description

Constructor with parameters. a is a left bound, b is a right bound, assume 𝑎 < 𝑏.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑎 ≥ 𝑏

Characteristics

a() const

Return Value

Returns the distribution parameter a - left bound.

b() const

8.2. oneMKL Domains 1662

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter b - right bound.

Parent topic: Host Distributions

uniform_bits

Class is used for generation of uniformly distributed bits in 32/64-bit chunks.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide uniformly distributed bits in 32/64-bit
chunks. It is designed to ensure each bit in the 32/64-bit chunk is uniformly distributed. Can be not supported by the
specific engine.

class uniform_bits

Syntax

namespace oneapi::mkl::rng {
template<typename UIntType = std::uint32_t>
class uniform_bits {
public:

using result_type = UIntType;
};
}

Template parameters

typename UIntType

Type of the produced values. Supported types:

• std::uint32_t

• std::uint64_t

Member types

uniform_bits::result_type = UIntType

8.2. oneMKL Domains 1663

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines type of generated random numbers.

Parent topic: Host Distributions

bits

Class is used for generation of underlying engine integer recurrence.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide integer random numbers. Each integer
can be treated as a vector of several bits. In a truly random generator, these bits are random, while in pseudorandom
generators this randomness can be violated.

class bits

Syntax

namespace oneapi::mkl::rng {
template<typename UIntType = std::uint32_t>
class bits {
public:

using result_type = UIntType;
};
}

Template parameters

typename UIntType

Type of the produced values. Supported types:

• std::uint32_t

Member types

bits::result_type = UIntType

8.2. oneMKL Domains 1664

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines type of generated random numbers.

Parent topic: Host Distributions

bernoulli

Class is used for generation of Bernoulli distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Bernoulli distributed
with probability 𝑝 of a single trial success, where 𝑝 ∈ 𝑅; 0 ≤ 𝑝; 𝑝 ≤ 1.

The probability distribution is given by:

𝑃 (𝑋 = 1) = 𝑝

𝑃 (𝑋 = 0) = 1− 𝑝

The cumulative distribution function is as follows:

𝐹𝑝(𝑥) =

⎧⎨⎩ 0, 𝑥 < 0
1− 𝑝, 0 ≤ 𝑥 < 1, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 1

class bernoulli

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = bernoulli_method::by_default>
class bernoulli {
public:

using method_type = Method;
using result_type = IntType;
bernoulli();
explicit bernoulli(float p);
float p() const;

};
}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

8.2. oneMKL Domains 1665

oneAPI Specification, Release 1.4-provisional-rev-1

typename Method = oneapi::mkl::rng::bernoulli_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::bernoulli_method::by_default

• oneapi::mkl::rng::bernoulli_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
bernoulli() Default constructor
explicit bernoulli(float p) Constructor with parameters
float p() const Method to obtain probability p

Member types

bernoulli::method_type = Method

Description

The type which defines transformation method for generation.

bernoulli::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

bernoulli::bernoulli()

Description

Default constructor for distribution, parameters set as p = 0.5f.

explicit bernoulli::bernoulli(float p)

8.2. oneMKL Domains 1666

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Constructor with parameters. p is a probability.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when p > 1.0f, or p < 0.0f

Characteristics

float p() const

Return Value

Returns the distribution parameter p - probability.

Parent topic: Host Distributions

geometric

Class is used for generation of geometrically distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers geometrically dis-
tributed with probability 𝑝 of a single success trial, where 𝑝 ∈ 𝑅; 0 < 𝑝 < 1.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) = 𝑝 * (1− 𝑝)𝑘, 𝑘 = {0, 1, 2, ...}.

The cumulative distribution function is as follows:

𝐹𝑝(𝑥) =

{︂
0, 𝑥 < 0

1− (1− 𝑝)⌊𝑥+1⌋, 𝑥 ≥ 0

class geometric

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = geometric_method::by_default>
class geometric {
public:

using method_type = Method;
using result_type = IntType;
geometric();
explicit geometric(float p);

(continues on next page)

8.2. oneMKL Domains 1667

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

float p() const;
};
}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::geometric_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::geometric_method::by_default

• oneapi::mkl::rng::geometric_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
geometric() Default constructor
explicit geometric(float p) Constructor with parameters
float p() const Method to obtain probability value

Member types

geometric::method_type = Method

Description

The type which defines transformation method for generation.

geometric::result_type = IntType

8.2. oneMKL Domains 1668

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines type of generated random numbers.

Constructors

geometric::geometric()

Description

Default constructor for distribution, parameters set as p = 0.5.

explicit geometric::geometric(float p)

Description

Constructor with parameters. p is a probability value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑝 ≥ 1.0𝑓 , or 𝑝 ≤ 0.0𝑓

Characteristics

float geometric::p() const

Return Value

Returns the distribution parameter p - probability value.

Parent topic: Host Distributions

binomial

Class is used for generation of binomially distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers binomially distributed
with a number of independent Bernoulli trials 𝑚, and with probability 𝑝 of a single trial success, where 𝑝 ∈ 𝑅; 0 ≤
𝑝 ≤ 1,𝑚 ∈ 𝑁 .

A binomially distributed variate represents the number of successes in 𝑚 independent Bernoulli trials with probability
of a single trial success 𝑝.

8.2. oneMKL Domains 1669

oneAPI Specification, Release 1.4-provisional-rev-1

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) = 𝐶𝑘
𝑚𝑝𝑘(1− 𝑝)𝑚−𝑘, 𝑘 ∈ {0, 1, ...,𝑚}

The cumulative distribution function is as follows:

𝐹𝑚,𝑝(𝑥) =

⎧⎨⎩
0, 𝑥 < 0∑︀⌊𝑥⌋

𝑘=0 𝐶
𝑘
𝑚𝑝𝑘(1− 𝑝)𝑚−𝑘, 0 ≤ 𝑥 < 𝑚, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝑚

class binomial

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = binomial_method::by_default>
class binomial {
public:

using method_type = Method;
using result_type = IntType;
binomial();
explicit binomial(std::int32_t ntrial, double p);
std::int32_t ntrial() const;
double p() const;

};
}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

typename Method = oneapi::mkl::rng::binomial_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::binomial_method::by_default

• oneapi::mkl::rng::binomial_method::btpe

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
binomial() Default constructor
explicit binomial(std::int32_t ntrial, double p) Constructor with parameters
std::int32_t ntrial() const Method to obtain number of independent trials m
double p() const Method to obtain success probability of a single trial p

8.2. oneMKL Domains 1670

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

binomial::method_type = Method

Description

The type which defines transformation method for generation.

binomial::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

binomial::binomial()

Description

Default constructor for distribution, parameters set as m = 5, p = 0.5.

explicit binomial::binomial(std::int32_t ntrial, double p)

Description

Constructor with parameters. ntrial is the number of independent trials, p is the success probability of a single trial.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑝 > 1.0, or 𝑝 < 0.0, or 𝑛𝑡𝑟𝑖𝑎𝑙 < 1

Characteristics

std::int32_t binomial::ntrial() const

8.2. oneMKL Domains 1671

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter m - number of independent trials.

double binomial::p() const

Return Value

Returns the distribution parameter p - success probability of a single trial.

Parent topic: Host Distributions

hypergeometric

Class is used for generation of hypergeometrically distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers hypergeometrically
distributed with lot size 𝑙, size of sampling 𝑠, and number of marked elements in the lot𝑚, where 𝑙,𝑚, 𝑠 ∈ 𝑁

⋃︀
{0}; 𝑙 ≥

𝑚𝑎𝑥(𝑠,𝑚).

Consider a lot of 𝑙 elements comprising 𝑚 marked and 𝑙 - 𝑚 unmarked elements. A trial sampling without replacement
of exactly 𝑠 elements from this lot helps to define the hypergeometric distribution, which is the probability that the group
of 𝑠 elements contains exactly 𝑘 marked elements.

The probability distribution is given by:

𝑃(𝑋 = 𝑘) =
𝐶𝑘

𝑚𝐶𝑠−𝑘
𝑙−𝑚

𝐶𝑠
𝑙

, 𝑘 ∈ {𝑚𝑎𝑥(0, 𝑠+𝑚− 𝑙), ...,𝑚𝑖𝑛(𝑠,𝑚)}.

The cumulative distribution function is as follows:

𝐹𝑙,𝑠,𝑚(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < 𝑚𝑎𝑥(0, 𝑠+𝑚− 𝑙)∑︀⌊𝑥⌋

𝑘=𝑚𝑎𝑥(0,𝑠+𝑚−𝑙)
𝐶𝑘

𝑚𝐶𝑠−𝑘
𝑙−𝑚

𝐶𝑠
𝑙

,𝑚𝑎𝑥(0, 𝑠+𝑚− 𝑙) ≤ 𝑥 ≤ 𝑚𝑖𝑛(𝑠,𝑚)

1, 𝑥 > 𝑚𝑖𝑛(𝑠,𝑚)

class hypergeometric

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = hypergeometric_method::by_
→˓default>
class hypergeometric {
public:

using method_type = Method;
using result_type = IntType;
hypergeometric();
explicit hypergeometric(std::int32_t l, std::int32_T s, std::int32_T m);
std::int32_t s() const;

(continues on next page)

8.2. oneMKL Domains 1672

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int32_t m() const;
std::int32_t l() const;

};
}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::hypergeometric_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::hypergeometric_method::by_default

• oneapi::mkl::rng::hypergeometric_method::h2pe

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
hypergeometric() Default constructor
explicit hypergeometric(std::int32_t l, std::int32_T s,
std::int32_T m)

Constructor with parameters

std::int32_t s() const Method to obtain lot size
std::int32_t m() const Method to obtain size of sampling without re-

placement
std::int32_t l() const Method to obtain number of marked elements

Member types

hypergeometric::method_type = Method

Description

The type which defines transformation method for generation.

hypergeometric::result_type = IntType

8.2. oneMKL Domains 1673

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines type of generated random numbers.

Constructors

hypergeometric::hypergeometric()

Description

Default constructor for distribution, parameters set as l = 1, s = 1, m = 1.

explicit hypergeometric::hypergeometric(std::int32_t l, std::int32_T s, std::int32_T m)

Description

Constructor with parameters. l is a lot size, s is a size of sampling without replacement, m is a number of marked
elements.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑠 < 0, or 𝑚 < 0, or 𝑙 < (𝑠 > 𝑚?𝑠 : 𝑚)

Characteristics

std::int32_t hypergeometric::l() const

Return Value

Returns the distribution parameter l - lot size value.

std::int32_t hypergeometric::s() const

Return Value

Returns the distribution parameter s - size of sampling without replacement.

std::int32_t hypergeometric::m() const

8.2. oneMKL Domains 1674

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter m - number of marked elements.

Parent topic: Host Distributions

poisson

Class is used for generation of Poisson distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Poisson distributed
with distribution parameter 𝜆, where 𝜆 ∈ 𝑅;𝜆 > 0;.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
.

The cumulative distribution function is as follows:

𝐹𝜆(𝑥) =

{︂ ∑︀⌊𝑥⌋
𝑘=0

𝜆𝑘𝑒−𝜆

𝑘! , 𝑥 ≥ 0
0, 𝑥 < 0

class poisson

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = poisson_method::by_default>
class poisson {
public:

using method_type = Method;
using result_type = IntType;
poisson();
explicit poisson(double lambda);
double lambda() const;

};
}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

typename Method = oneapi::mkl::rng::poisson_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::poisson_method::by_default

8.2. oneMKL Domains 1675

oneAPI Specification, Release 1.4-provisional-rev-1

• oneapi::mkl::rng::poisson_method::ptpe

• oneapi::mkl::rng::poisson_method::gaussian_icdf_based

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
poisson() Default constructor
explicit poisson(double lambda) Constructor with parameters
double lambda() const Method to obtain distribution parameter

Member types

poisson::method_type = Method

Description

The type which defines transformation method for generation.

poisson::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

poisson::poisson()

Description

Default constructor for distribution, parameters set as lambda = 0.5.

8.2. oneMKL Domains 1676

oneAPI Specification, Release 1.4-provisional-rev-1

explicit poisson::poisson(double lambda)

Description

Constructor with parameters. lambda is a distribution parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑙𝑎𝑚𝑏𝑑𝑎 ≤ 0.0

Characteristics

double poisson::lambda() const

Return Value

Returns the distribution parameter lambda.

Parent topic: Host Distributions

poisson_v

Class is used for generation of Poisson distributed integer types random numbers with varying mean.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide n random numbers Poisson distributed,
with distribution parameter 𝜆𝑖, where 𝜆𝑖 ∈ 𝑅;𝜆𝑖 > 0; 𝑖 = 1, ..., 𝑛.

The probability distribution is given by:

𝑃 (𝑋𝑖 = 𝑘) =
𝜆𝑘
𝑖 𝑒
−𝜆𝑖

𝑘!
, 𝑘 ∈ {0, 1, 2, ...}.

The cumulative distribution function is as follows:

𝐹𝜆𝑖(𝑥) =

{︃ ∑︀⌊𝑥⌋
𝑘=0

𝜆𝑘
𝑖 𝑒

−𝜆𝑖

𝑘! , 𝑥 ≥ 0
0, 𝑥 < 0

8.2. oneMKL Domains 1677

oneAPI Specification, Release 1.4-provisional-rev-1

class poisson_v

Let SequenceContainerOrView be a type that can be one of C++ Sequence containers or C++ Views (span, mdspan).
It’s implementation defined which type SequenceContainerOrView represents.

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = poisson_v_method::by_default>
class poisson_v {
public:

using method_type = Method;
using result_type = IntType;
explicit poisson_v(SequenceContainerOrView<double> lambda);
SequenceContainerOrView<double> lambda() const;

};
}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

typename Method = oneapi::mkl::rng::poisson_v_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::poisson_v_method::by_default

• oneapi::mkl::rng::poisson_v_method::gaussian_icdf_based

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
explicit poisson_v(SequenceContainerOrView<double> lambda) Constructor with parameters
SequenceContainerOrView<double> lambda() const Method to obtain distribution parameter

Member types

poisson_v::method_type = Method

8.2. oneMKL Domains 1678

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines transformation method for generation.

poisson_v::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

explicit poisson_v::poisson_v(SequenceContainerOrView<double> lambda)

Description

Constructor with parameters. lambda is a distribution parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑙𝑎𝑚𝑏𝑑𝑎.𝑠𝑖𝑧𝑒() ≤ 1

Characteristics

SequenceContainerOrView<double> poisson_v::lambda() const

Return Value

Returns the distribution parameter lambda.

Parent topic: Host Distributions

negative_binomial

Class is used for generation of negative binomially distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers negative binomially
distributed with distribution parameters 𝑎 and 𝑝, where 𝑝, 𝑎 ∈ 𝑅; 0 ≤ 𝑝 ≤ 1, 𝑎 > 0.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) = 𝐶𝑘
𝑎+𝑘−1𝑝

𝑎(1− 𝑝)𝑘, 𝑘 ∈ {0, 1, 2, ...}

8.2. oneMKL Domains 1679

oneAPI Specification, Release 1.4-provisional-rev-1

The cumulative distribution function is as follows:

𝐹𝑎,𝑝(𝑥) =

{︂ ∑︀⌊𝑥⌋
𝑘=0 𝐶

𝑘
𝑎+𝑘−1𝑝

𝑎(1− 𝑝)𝑘, 𝑥 ≥ 0, 𝑥 ∈ 𝑅
0, 𝑥 < 0

class negative_binomial

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = negative_binomial_method::by_
→˓default>
class negative_binomial {
public:

using method_type = Method;
using result_type = IntType;
negative_binomial();
explicit negative_binomial(double a, double p);
double a() const;
double p() const;

};
}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::negative_binomial_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::negative_binomial_method::by_default

• oneapi::mkl::rng::negative_binomial_method::nbar

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
negative_binomial() Default constructor
explicit negative_binomial(double a, double p) Constructor with parameters
double a() const Method to obtain the first distribution parameter a
double p() const Method to obtain the second distribution parameter p

8.2. oneMKL Domains 1680

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

negative_binomial::method_type = Method

Description

The type which defines transformation method for generation.

negative_binomial::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

negative_binomial::negative_binomial()

Description

Default constructor for distribution, parameters set as a = 0.1, p = 0.5.

explicit negative_binomial::negative_binomial(double a, double p)

Description

Constructor with parameters. a is the first distribution parameter, p is the second distribution parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑝 ≥ 1.0, or 𝑝 ≤ 0.0, or 𝑎 ≤ 0.0

Characteristics

double negative_binomial::a() const

8.2. oneMKL Domains 1681

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter a - the first distribution parameter.

double negative_binomial::p() const

Return Value

Returns the distribution parameter p - the second distribution parameter.

Parent topic: Host Distributions

multinomial

Class is used for generation of multinomially distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide n random numbers multinomially
distributed, with independent trials (𝑛𝑡𝑟𝑖𝑎𝑙,𝑚) and possible mutually exclusive outcomes 𝑘, with corresponding prob-
abilities 𝑝𝑖, where 𝑝𝑖 ∈ 𝑅; 0 ≤ 𝑝𝑖 ≤ 1;𝑚, 𝑘 ∈ 𝑁 .

The probability distribution is given by:

𝑃 (𝑋1 = 𝑥1, ..., 𝑋𝑘 = 𝑥𝑘) =
𝑚!

Π𝑘
𝑖=1𝑥𝑖!

Π𝑘
𝑖=1𝑝

𝑥𝑖
𝑖 , 0 ≤ 𝑥𝑖 ≤ 𝑚,

𝑘∑︁
𝑖=1

𝑥𝑖 = 𝑚

class multinomial

Let SequenceContainerOrView be a type that can be one of C++ Sequence containers or C++ Views (span, mdspan).
It’s implementation defined which type SequenceContainerOrView represents.

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = multinomial_method::by_
→˓default>
class multinomial {
public:

using method_type = Method;
using result_type = IntType;
explicit multinomial(double ntrial, SequenceContainerOrView<double> p);
std::int32_t ntrial() const;
SequenceContainerOrView<double> p() const;

};
}

8.2. oneMKL Domains 1682

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::multinomial_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::multinomial_method::by_default

• oneapi::mkl::rng::multinomial_method::poisson_icdf_based

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
explicit multinomial(double ntrial, SequenceCon-
tainerOrView<double> p)

Constructor with parameters

std::int32_t ntrial() const Method to obtain number of independent trials
SequenceContainerOrView<double> p() const Method to obtain a probability parameter of possi-

ble outcomes

Member types

multinomial::method_type = Method

Description

The type which defines the transformation method for generation.

multinomial::result_type = IntType

Description

The type which defines the type of generated random numbers.

8.2. oneMKL Domains 1683

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors

explicit multinomial::multinomial(double ntrial, SequenceContainerOrView<double> p)

Description

Constructor with parameters. ntrial is a number of independent trials, p is a probability parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑛𝑡𝑟𝑖𝑎𝑙 < 0, or 𝑝.𝑠𝑖𝑧𝑒() < 1

Characteristics

std::int32_t multinomial::ntrial() const

Return Value

Returns the distribution parameter ntrial.

SequenceContainerOrView<double> multinomial::p() const

Return Value

Returns the distribution parameter p.

Parent topic: Host Distributions

Bibliography

For more information about the RNG functionality, refer to the following publications:

• RNG

[Bratley88]
Bratley P. and Fox B.L. Implementing Sobol’s Quasirandom Sequence Generator, ACM Transactions on
Mathematical Software, Vol. 14, No. 1, Pages 88-100, March 1988.

[Bratley92]
Bratley P., Fox B.L., and Niederreiter H. Implementation and Tests of Low-Discrepancy Sequences, ACM
Transactions on Modeling and Computer Simulation, Vol. 2, No. 3, Pages 195-213, July 1992.

[Coddington94]
Coddington, P. D. Analysis of Random Number Generators Using Monte Carlo Simulation. Int. J. Mod.
Phys. C-5, 547, 1994.

[L’Ecuyer99]
L’Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure.
Mathematics of Computation, 68, 225, 249-260, 1999.

8.2. oneMKL Domains 1684

oneAPI Specification, Release 1.4-provisional-rev-1

[L’Ecuyer99a]
L’Ecuyer, Pierre. Good Parameter Sets for Combined Multiple Recursive Random Number Generators.
Operations Research, 47, 1, 159-164, 1999.

[Kirkpatrick81]
Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence Random Number Generator. Journal of
Computational Physics, V. 40. 517-526, 1981.

[Matsumoto98]
Matsumoto, M., and Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator, ACM Transactions on Modeling and Computer Simulation, Vol. 8,
No. 1, Pages 3-30, January 1998.

[Matsumoto00]
Matsumoto, M., and Nishimura, T. Dynamic Creation of Pseudorandom Number Generators, 56-69, in:
Monte Carlo and Quasi-Monte Carlo Methods 1998, Ed. Niederreiter, H. and Spanier, J., Springer 2000,
http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/DC/dc.html.

[NAG]
NAG Numerical Libraries. http://www.nag.co.uk/numeric/numerical_libraries.asp

[Saito08]
Saito, M., and Matsumoto, M. SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number
Generator. Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Pages 607 – 622, 2008.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html

[Salmon11]
Salmon, John K., Morales, Mark A., Dror, Ron O., and Shaw, David E., Parallel Random Numbers: As
Easy as 1, 2, 3. SC ‘11 Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011.

[Sobol76]
Sobol, I.M., and Levitan, Yu.L. The production of points uniformly distributed in a multidimensional cube.
Preprint 40, Institute of Applied Mathematics, USSR Academy of Sciences, 1976 (In Russian).

[MT2203]
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html.

[FIPS-197]
Federal Information Processing Standards Publication 197, ADVANCED ENCRYPTION STANDARD
(AES)

Parent topic: Random Number Generators

Random Number Generators Device Routines

The main purpose of Device routines is to make them callable from your SYCL kernels; however, there are no limitations
to be called from the Host. For example:

sycl::queue queue;

queue.submit([&](sycl::handler& cgh) {
cgh.parallel_for(range,[=](...) {

oneapi::mkl::rng::device::routine(...); // calling routine from user's kernel code
});

});
(continues on next page)

8.2. oneMKL Domains 1685

http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/DC/dc.html
http://www.nag.co.uk/numeric/numerical_libraries.asp
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::rng::device::routine(...); // calling routine from host

Structure

RNG domain contains two classes types:

• Engines (basic random number generators) classes, which holds the state of generator and is a source of indepen-
dent and identically distributed random variables. Refer to Host Engines (Basic Random Number Generators)
for a detailed description.

• Distribution classes templates (transformation classes) for different types of statistical distributions, for example,
uniform, normal (Gaussian), binomial, etc. These classes contain all of the distribution’s parameters (including
generation method). Refer to Device Distributions for a detailed description of the distributions.

The RNG domain also contains two types of free functions:

• Generation routines. The current routines are used to obtain random numbers from a given engine with proper
statistics defined by a given distribution. Refer to the Device Generate Routines section for a detailed description.

• Service routines. The routines are used to modify the engine state. Refer to Device Service Routines for a
description of these routines.

Engine classes work with both generation and service routines. Distribution classes are used in generation routines
only. Refer to the oneMKL RNG Device Usage Model section for the description of typical RNG scenario.

oneMKL RNG Device Usage Model

• Example of Scalar Random Numbers Generation

• Example of Vector Random Numbers Generation

A typical usage model for device routines is the same as described in oneMKL RNG Host Usage Model:

1. Create and initialize the object for basic random number generator.

2. Create and initialize the object for distribution generator.

3. Call the generate routine to get random numbers with appropriate statistical distribution.

Example of Scalar Random Numbers Generation

#include "oneapi/mkl/rng/device.hpp"

int main() {
sycl::queue q;
// Prepare a memory for random numbers
// Submit a kernel to generate on device
q.submit([&](sycl::handler& cgh) {

// ...
cgh.parallel_for(n, [=](size_t idx) {

// Create an engine object
(continues on next page)

8.2. oneMKL Domains 1686

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::rng::device::philox4x32x10<> engine(seed, idx);
// Create a distribution object
oneapi::mkl::rng::device::uniform<float> distr;
// Call generate function to obtain scalar random number
float res = oneapi::mkl::rng::device::generate(distr, engine);
// ...

});
});
// ...

}

Example of Vector Random Numbers Generation

#include "oneapi/mkl/rng/device.hpp"

int main() {
sycl::queue q;
// Prepare an array for random numbers
// Submit a kernel to generate on device
q.submit([&](sycl::handler& cgh) {

// ...
cgh.parallel_for((n / vec_size), [=](size_t idx) {

// Create an engine object
oneapi::mkl::rng::device::philox4x32x10<vec_size> engine(seed, idx * vec_

→˓size);
// Create a distribution object
oneapi::mkl::rng::device::uniform<float> distr;
// Call generate function to obtain random numbers
sycl::vec<float, vec_size> res = oneapi::mkl::rng::device::generate(distr,␣

→˓engine);
// ...

});
});
// ...

}

Parent topic: Random Number Generators Device Routines

8.2. oneMKL Domains 1687

oneAPI Specification, Release 1.4-provisional-rev-1

Device Generate Routines

Use the generate routine to obtain random numbers from a given engine with proper statistics of a given distribution.

generate

Description

Entry point to obtain random numbers from a given engine with proper statistics of a given distribution.

Syntax

namespace oneapi::mkl::rng::device {
template<typename Distr, typename Engine>
auto generate(Distr& distr, Engine& engine) ->
typename std::conditional<Engine::vec_size == 1, typename Distr::result_type,

sycl::vec<typename Distr::result_type, Engine::vec_size>>
→˓::type
}

Template Parameters

Distr
Type of distribution which is used for random number generation.

Engine
Type of engine which is used for random number generation.

Input Parameters

distr
Distribution object. See Device Distributions for details.

engine
Engine object. See Device Engines (Basic Random Number Generators) for details.

Return Value

Returns Distr::result_type if Engine::vec_size == 1 or sycl::vec<typename Distr::result_type, Engine::vec_size> with
generated random numbers.

Parent topic: Device Generate Routines

8.2. oneMKL Domains 1688

oneAPI Specification, Release 1.4-provisional-rev-1

Device Engines (Basic Random Number Generators)

oneMKL RNG provides following device pseudorandom number generators:

Routine Description
mrg32k3a The combined multiple recursive pseudorandom number generator

MRG32k3a [L’Ecuyer99]
philox4x32x10 Philox4x32-10 counter-based pseudorandom number generator with

a period of 2128 PHILOX4X32X10 [Salmon11]
mcg31m1 The 31-bit multiplicative congruential pseudorandom number gen-

erator MCG(1132489760, 232 − 1) [L’Ecuyer99a].
mcg59 The 59-bit multiplicative congruential pseudorandom number gen-

erator MCG(1313, 259) from NAG Numerical Libraries [NAG].

Parent topic: Random Number Generators Device Routines

mrg32k3a

The combined multiple recursive pseudorandom number generator MRG32k3a.

Description

MRG32k3a engine is a 32-bit combined multiple recursive generator with two components of order 3 [L’Ecuyer99a].
MRG32k3a combined generator meets the requirements for modern RNGs, such as good multidimensional uniformity,
or a long period (𝑝 ≈ 2191).

Generation algorithm

𝑥𝑛 = 𝑎11𝑥𝑛−1 + 𝑎12𝑥𝑛−2 + 𝑎13𝑥𝑛−3(𝑚𝑜𝑑 𝑚1)

𝑦𝑛 = 𝑎21𝑦𝑛−1 + 𝑎22𝑦𝑛−2 + 𝑎23(𝑚𝑜𝑑 𝑚2)

𝑧𝑛 = 𝑥𝑛 − 𝑦𝑛(𝑚𝑜𝑑 𝑚1)

𝑢𝑛 = 𝑧𝑛/𝑚1

𝑎11 = 0, 𝑎12 = 1403580, 𝑎13 = −810728,𝑚1 = 232 − 209

𝑎21 = 527612, 𝑎22 = 0, 𝑎23 = −1370589,𝑚2 = 232 − 22853

class mrg32k3a

Syntax

namespace oneapi::mkl::rng::device {
template<std::int32_t VecSize = 1>
class mrg32k3a {
public:
static constexpr std::uint32_t default_seed = 1;
static constexpr std::int32_t vec_size = VecSize;

(continues on next page)

8.2. oneMKL Domains 1689

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

mrg32k3a();
mrg32k3a(std::uint32_t seed, std::uint64_t offset = 0);
mrg32k3a(std::initializer_list<std::uint32_t> seed, std::uint64_t offset = 0);
mrg32k3a(std::uint32_t seed, std::initializer_list<std::uint64_t> offset);
mrg32k3a(std::initializer_list<std::uint32_t> seed, std::initializer_list

→˓<std::uint64_t> offset);
};

}

Class Template Parameters

VecSize
Describes the size of vector which will be produced by generate function by this engine. VecSize values may
be 1, 2, 3, 4, 8, 16 as sycl::vec class size. By default VecSize = 1, for this case, a single random number is
returned by the generate function.

Class Members

Routine Description
mrg32k3a() Default constructor
mrg32k3a(std::uint32_t seed, std::uint64_t offset = 0) Constructor for common seed initialization of the engine

and common number of skipped elements
mrg32k3a(std::initializer_list<std::uint32_t> seed,
std::uint64_t offset = 0)

Constructor for extended seed initialization of the engine
and common number of skipped elements

mrg32k3a(std::uint32_t seed,
std::initializer_list<std::uint64_t> offset)

Constructor for common seed initialization of the engine
and extended number of skipped elements

mrg32k3a(std::initializer_list<std::uint32_t> seed,
std::initializer_list<std::uint64_t> offset)

Constructor for extended seed initialization of the engine
and extended number of skipped elements

Constructors

mrg32k3a::mrg32k3a()

mrg32k3a::mrg32k3a(std::uint32_t seed, std::uint64_t offset = 0)

Input Parameters

seed
The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑥−3 = 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 1 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 2 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 3 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑦−2 = 𝑦−1 = 1

8.2. oneMKL Domains 1690

oneAPI Specification, Release 1.4-provisional-rev-1

if 𝑛 = 4 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 5 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4]𝑚𝑜𝑑 𝑚2, 𝑦−1 = 1

if 𝑛 ⩾ 6 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4]𝑚𝑜𝑑 𝑚2, 𝑦−1 = 𝑠𝑒𝑒𝑑[5]𝑚𝑜𝑑 𝑚2

if the values prove to be 𝑥−3 = 𝑥−2 = 𝑥−1 = 0, assume 𝑥−3 = 1

if the values prove to be 𝑦−3 = 𝑦−2 = 𝑦−1 = 0, assume 𝑦−3 = 1.

offset
Number of skipped elements.

mrg32k3a::mrg32k3a(std::initializer_list<std::uint32_t> seed, std::uint64_t offset = 0)

Input Parameters

seed
Initial conditions of the engine state.

offset
Number of skipped elements.

mrg32k3a::mrg32k3a(std::uint32_t seed, std::initializer_list<std::uint64_t> offset)

Input Parameters

seed
The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑥−3 = 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 1 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 2 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 3 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 4 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 5 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4]𝑚𝑜𝑑 𝑚2, 𝑦−1 = 1

if 𝑛 ⩾ 6 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0]𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1]𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2]𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3]𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4]𝑚𝑜𝑑 𝑚2, 𝑦−1 = 𝑠𝑒𝑒𝑑[5]𝑚𝑜𝑑 𝑚2

if the values prove to be 𝑥−3 = 𝑥−2 = 𝑥−1 = 0, assume 𝑥−3 = 1

if the values prove to be 𝑦−3 = 𝑦−2 = 𝑦−1 = 0, assume 𝑦−3 = 1.

offset
Number of skipped elements. Offset is calculated as: num_to_skip [0]+ num_to_skip [1]*264 + num_to_skip
[2]* 2128 + . . . + num_to_skip [n-1]*264 *(n-1).

8.2. oneMKL Domains 1691

oneAPI Specification, Release 1.4-provisional-rev-1

mrg32k3a::mrg32k3a(std::initializer_list<std::uint32_t> seed, std::initializer_list
→˓<std::uint64_t> offset)

Input Parameters

seed
Initial conditions of the engine state.

offset
Number of skipped elements. Offset is calculated as: num_to_skip [0]+ num_to_skip [1]*264 + num_to_skip
[2]* 2128 + . . . + num_to_skip [n-1]*264 *(n-1).

Parent topic: Device Engines (Basic Random Number Generators)

philox4x32x10

A Philox4x32-10 counter-based pseudorandom number generator [Salmon11].

Description

The Philox4x32x10 engine is a keyed family of generator of counter-based BRNG. The state consists of 128-bit integer
counter 𝑐 and two 32-bits keys 𝑘0 and 𝑘1.

Generation algorithm

The generator has 32-bit integer output obtained in the following way [Salmon11]:

1. 𝑐𝑛 = 𝑐𝑛−1 + 1

2. 𝜔𝑛 = 𝑓(𝑐𝑛), where 𝑓 is a function that takes 128-bit argument and returns a 128-bit number. The
returned number is obtained as follows:

2.1. The argument 𝑐 is interpreted as four 32-bit numbers 𝑐 = 𝐿1𝑅1𝐿0𝑅0, where 𝐴𝐵𝐶𝐷 = 𝐴 · 296 +𝐵 ·
264 + 𝐶 · 232 +𝐷, put 𝑘00 = 𝑘0, 𝑘

0
1 = 𝑘1.

2.2. The following recurrence is calculated:

𝐿𝑖+1
1 = 𝑚𝑢𝑙𝑙𝑜(𝑅𝑖

1, 0𝑥𝐷2511𝐹53)

𝑅𝑖+1
1 = 𝑚𝑢𝑙ℎ𝑖(𝑅𝑖

0, 0𝑥𝐶𝐷9𝐸8𝐷57)⊕ 𝑘𝑖0 ⊕ 𝐿𝑖
0

𝐿𝑖+1
0 = 𝑚𝑢𝑙𝑙𝑜(𝑅𝑖

0, 0𝑥𝐶𝐷9𝐸8𝐷57)

𝑅𝑖+1
0 = 𝑚𝑢𝑙ℎ𝑖(𝑅𝑖

1, 0𝑥𝐷2511𝐹53)⊕ 𝑘𝑖1 ⊕ 𝐿𝑖
1

𝑘𝑖+1
0 = 𝑘𝑖0 + 0𝑥𝐵𝐵67𝐴𝐸85

𝑘𝑖+1
1 = 𝑘𝑖1 +0𝑥9𝐸3779𝐵9, where 𝑚𝑢𝑙ℎ𝑖(𝑎, 𝑏) and 𝑚𝑢𝑙𝑙𝑜(𝑎, 𝑏) are high and low parts of the 𝑎 · 𝑏 product

respectively.

2.3. Put 𝑓(𝑐) = 𝐿𝑁
1 𝑅𝑁

1 𝐿𝑁
0 𝑅𝑁

0 , where 𝑁 = 10

3. Integer output: 𝑟4𝑛+𝑘 = 𝜔𝑛(𝑘), where 𝜔𝑛(𝑘) is the k-th 32-bit integer in quadruple 𝜔𝑛, 𝑘 = 0, 1, 2, 3

4. Real output: 𝑢𝑛 = (𝑖𝑛𝑡)𝑟𝑛/2
32 + 1/2

8.2. oneMKL Domains 1692

oneAPI Specification, Release 1.4-provisional-rev-1

class philox4x32x10

Syntax

namespace oneapi::mkl::rng::device {
template<std::int32_t VecSize = 1>
class philox4x32x10 {
public:
static constexpr std::uint64_t default_seed = 1;
static constexpr std::int32_t vec_size = VecSize;

philox4x32x10();
philox4x32x10(std::uint64_t seed, std::uint64_t offset = 0);
philox4x32x10(std::initializer_list<std::uint64_t> seed, std::uint64_t offset = 0);
philox4x32x10(std::uint64_t seed, std::initializer_list<std::uint64_t> offset);
philox4x32x10(std::initializer_list<std::uint64_t> seed, std::initializer_list

→˓<std::uint64_t> offset);
};

}

Class Template Parameters

VecSize
Describes the size of vector which will be produced by generate function by this engine. VecSize values may
be 1, 2, 3, 4, 8, 16 as sycl::vec class size. By default VecSize = 1, for this case, a single random number is
returned by the generate function.

Class Members

Routine Description
philox4x32x10() Default constructor
philox4x32x10(std::uint32_t seed, std::uint64_t offset =
0)

Constructor for common seed initialization of the engine
and common number of skipped elements

philox4x32x10(std::initializer_list<std::uint32_t>
seed, std::uint64_t offset = 0)

Constructor for extended seed initialization of the engine
and common number of skipped elements

philox4x32x10(std::uint32_t seed,
std::initializer_list<std::uint64_t> offset)

Constructor for common seed initialization of the engine
and extended number of skipped elements

philox4x32x10(std::initializer_list<std::uint32_t>
seed, std::initializer_list<std::uint64_t> offset)

Constructor for extended seed initialization of the engine
and extended number of skipped elements

8.2. oneMKL Domains 1693

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors

philox4x32x10::philox4x32x10()

philox4x32x10::philox4x32x10(std::uint32_t seed, std::uint64_t offset = 0)

Input Parameters

seed
The initial conditions of the generator state, assume 𝑘 = 𝑠𝑒𝑒𝑑, 𝑐 = 0, where 𝑘 is a 64-bit key, 𝑐 is a 128-bit
counter.

offset
Number of skipped elements.

philox4x32x10::philox4x32x10(std::initializer_list<std::uint32_t> seed, std::uint64_t␣
→˓offset = 0)

Input Parameters

seed
The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑘 = 0, 𝑐 = 0

if 𝑛 = 1 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 0

if 𝑛 = 2 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1]

if 𝑛 = 3 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1] + 𝑠𝑒𝑒𝑑[2] · 264

for 𝑛 > 3 following arguments are ignored.

offset
Number of skipped elements.

philox4x32x10::philox4x32x10(std::uint32_t seed, std::initializer_list<std::uint64_t>␣
→˓offset)

Input Parameters

seed
The initial conditions of the generator state, assume 𝑘 = 𝑠𝑒𝑒𝑑, 𝑐 = 0, where 𝑘 is a 64-bit key, 𝑐 is a 128-bit
counter.

offset
Number of skipped elements. Offset is calculated as: num_to_skip [0]+ num_to_skip [1]*264 + num_to_skip
[2]* 2128 + . . . + num_to_skip [n-1]*264 *(n-1).

philox4x32x10::philox4x32x10(std::initializer_list<std::uint32_t> seed, std::initializer_
→˓list<std::uint64_t> offset)

8.2. oneMKL Domains 1694

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

seed
The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑘 = 0, 𝑐 = 0

if 𝑛 = 1 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 0

if 𝑛 = 2 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1]

if 𝑛 = 3 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1] + 𝑠𝑒𝑒𝑑[2] · 264

for 𝑛 > 3 following arguments are ignored.

offset
Number of skipped elements. Offset is calculated as: num_to_skip [0]+ num_to_skip [1]*264 + num_to_skip
[2]* 2128 + . . . + num_to_skip [n-1]*264 *(n-1).

Parent topic: Device Engines (Basic Random Number Generators)

mcg31m1

The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 232 − 1) [L’Ecuyer99a].

Description

The mcg31m1 engine is a 31-bit multiplicative congruential generator [L’Ecuyer99]. The mcg31m1 generator belongs
to linear congruential generators with the period length of approximately 231. Such generators are still used as default
random number generators in various software systems, mainly due to the simplicity of the portable versions imple-
mentation, speed, and compatibility with the earlier systems versions. However, their period length does not meet the
requirements for modern basic generators. Still, the mcg31m1 generator possesses good statistic properties and you
may successfully use it to generate random numbers of different distributions for small samplings.

Generation algorithm

𝑥𝑛 = 𝑎𝑥𝑛−1(𝑚𝑜𝑑 𝑚)

𝑢𝑛 = 𝑥𝑛/𝑚

𝑎 = 1132489760,𝑚 = 231 − 1

class mcg31m1

Syntax

namespace oneapi::mkl::rng::device {
template<std::int32_t VecSize = 1>
class mcg31m1 {
public:
static constexpr std::uint32_t default_seed = 1;
static constexpr std::int32_t vec_size = VecSize;

mcg31m1();
mcg31m1(std::uint32_t seed, std::uint64_t offset = 0);

(continues on next page)

8.2. oneMKL Domains 1695

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

};
}

Class Template Parameters

VecSize
Describes the size of vector which will be produced by generate function by this engine. VecSize values may
be 1, 2, 3, 4, 8, 16 as sycl::vec class size. By default VecSize = 1, for this case, a single random number is
returned by the generate function.

Class Members

Routine Description
mcg31m1() Default constructor
mcg31m1(std::uint32_t seed,
std::uint64_t offset = 0)

Constructor for common seed initialization of the engine and common
number of skipped elements

Constructors

mcg31m1::mcg31m1()

mcg31m1::mcg31m1(std::uint32_t seed, std::uint64_t offset = 0)

Input Parameters

seed
The initial conditions of the generator state, assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 0𝑥7𝐹𝐹𝐹𝐹𝐹𝐹𝐹 , if 𝑥0 = 0, assume
𝑥0 = 1.

offset
Number of skipped elements.

Parent topic: Device Engines (Basic Random Number Generators)

mcg59

The 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259) from NAG Numerical Li-
braries.

8.2. oneMKL Domains 1696

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The mcg59 engine is a 59-bit multiplicative congruential generator from NAG Numerical Libraries NAG. The mcg59
generator belongs to linear congruential generators with the period length of approximately 257.

Generation algorithm

𝑥𝑛 = 𝑎𝑥𝑛−1(𝑚𝑜𝑑 𝑚)

𝑢𝑛 = 𝑥𝑛/𝑚

𝑎 = 1313,𝑚 = 259

class mcg59

Syntax

namespace oneapi::mkl::rng::device {
template<std::int32_t VecSize = 1>
class mcg59 {
public:
static constexpr std::uint32_t default_seed = 1;
static constexpr std::int32_t vec_size = VecSize;

mcg59();
mcg59(std::uint64_t seed, std::uint64_t offset = 0);

};
}

Class Template Parameters

VecSize
Describes the size of vector which will be produced by generate function by this engine. VecSize values may
be 1, 2, 3, 4, 8, 16 as sycl::vec class size. By default VecSize = 1, for this case, a single random number is
returned by the generate function.

Class Members

Routine Description
mcg59() Default constructor
mcg59(std::uint64_t seed,
std::uint64_t offset = 0)

Constructor for common seed initialization of the engine and common
number of skipped elements

8.2. oneMKL Domains 1697

oneAPI Specification, Release 1.4-provisional-rev-1

Constructors

mcg59::mcg59()

mcg59::mcg59(std::uint64_t seed, std::uint64_t offset = 0)

Input Parameters

seed
The initial conditions of the generator state, assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 259, if 𝑥0 = 0, assume 𝑥0 = 1.

offset
Number of skipped elements.

Parent topic: Device Engines (Basic Random Number Generators)

Device Distributions

oneMKL RNG routines are used to generate random numbers with different types of distributions. Each function group
is introduced below by the type of underlying distribution and contains a short description of its functionality, as well
as specifications of the call sequence and the explanation of input and output parameters. The Device Continuous
Distribution Generators table and Device Discrete Distribution Generators table mention random number generator
routines with data types and output distributions, and sets correspondence between data types of the generator routines
and the basic random number generators.

Device Continuous Distribution Generators

Type of Distribution Data Types BRNG Data Type Description
uniform (Continu-
ous)

float, double float, double Uniform continuous distribution on the interval [a,b)

gaussian float, double float, double Normal (Gaussian) distribution
exponential float, double float, double Exponential distribution
lognormal float, double float, double Lognormal distribution
beta float, double float, double Beta distribution
gamma float, double float, double Gamma distribution

Device Discrete Distribution Generators

Type of Distribution Data Types BRNG Data Type Description
uniform (Discrete) integer float Uniform discrete distribution on the interval [a,b)
bits integer integer Bits of underlying BRNG integer sequence
uniform_bits integer integer Uniformly distributed bits in 32/64-bit chunks
poisson integer integer Poisson distribution
bernoulli integer integer Bernoulli distribution

NOTE: In case of integer check desired distribution for supported data types.

Parent topic: Random Number Generators Device Routines

8.2. oneMKL Domains 1698

oneAPI Specification, Release 1.4-provisional-rev-1

Distributions Template Parameter Method

Method Type Distributions Math Description
uniform_method::standard
uniform_method::accurate

uniform Standard method.
uniform_method::accurate checks for
additional float and double data types.
For integer data types, it uses double as
a BRNG data type (float BRNG data type
is used in uniform_method::standard
method on GPU).

gaussian_method::box_muller2 gaussian Generates normally distributed ran-
dom numbers x1 and x2 through the
pair of uniformly distributed numbers
u1 and u2 according to the formu-
las: 𝑥1 =

√
−2 ln𝑢1 sin 2𝜋𝑢2𝑥2 =√

−2 ln𝑢1 cos 2𝜋𝑢2

exponential_method::icdf
exponential_method::icdf_accurate

exponential Inverse cumulative distribution function
(ICDF) method.

lognormal_method::box_muller2 lognormal Normally distributed random numbers x1
and x2 are produced through the pair
of uniformly distributed numbers u1 and
u2 according to the formulas: 𝑥1 =
−2 ln𝑢1 sin 2𝜋𝑢2 𝑥2 = −2 ln𝑢1 cos 2𝜋𝑢2

Then x1 and x2 are converted to lognormal
distribution.

bernoulli_method::icdf bernoulli Inverse cumulative distribution function
(ICDF) method.

poisson_method::devroye poisson Acceptance/rejection method for 𝜆 ≥ 27
with decomposition into four regions:

• Two parallelograms
• Triangle
• Left exponential tail
• Right exponential tail

NOTE: Methods provided for exposition purposes.

uniform (Continuous)

Generates random numbers with uniform distribution.

8.2. oneMKL Domains 1699

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The class object is used in generate function to provide random numbers uniformly distributed over the interval [a,
b), where a, b are the left and right bounds of the interval, respectively, and 𝑎, 𝑏 ∈ 𝑅; 𝑎 < 𝑏 a, b∈R ; a < b.

The probability density function is given by:

𝑓𝑎,𝑏(𝑥) =

{︃
1

𝑏−𝑎 , 𝑥 ∈ [𝑎, 𝑏)

1, 𝑥 /∈ [𝑎, 𝑏)
,−∞ < 𝑥 < +∞

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < 𝑎
𝑥−𝑎
𝑏−𝑎 , 𝑎 ≤ 𝑥 < 𝑏

1, 𝑥 ≥ 𝑏

,−∞ < 𝑥 < +∞

class uniform

Syntax

namespace oneapi::mkl::rng::device {
template<typename Type = float, typename Method = uniform_method::by_default>
class uniform {
public:
using method_type = Method;
using result_type = Type;

uniform();
explicit uniform(Type a, Type b);

Type a() const;
Type b() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method
Generation method. The specific values are as follows:

• oneapi::mkl::rng::device::uniform_method::by_default

• oneapi::mkl::rng::device::uniform_method::standard

• oneapi::mkl::rng::device::uniform_method::accurate

See description of the methods in Distributions methods template parameter

8.2. oneMKL Domains 1700

oneAPI Specification, Release 1.4-provisional-rev-1

Class Members

Routine Description
uniform() Default constructor
explicit uniform(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain left bound a
RealType b() const Method to obtain right bound b

Member types

uniform::method_type = Method

Description

The type which defines transformation method for generation.

uniform::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

uniform::uniform()

Description

Default constructor for distribution, parameters set as a = 0.0, b = 1.0.

explicit uniform::uniform(RealType a, RealType b)

Description

Constructor with parameters. a is a left bound, b is a right bound, assume 𝑎 < 𝑏.

8.2. oneMKL Domains 1701

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑎 ≥ 𝑏

Characteristics

RealType uniform::a() const

Return Value

Returns the distribution parameter a - left bound.

RealType uniform::b() const

Return Value

Returns the distribution parameter b - right bound.

Parent topic: Device Distributions

gaussian

Generates normally distributed random numbers.

Description

The gaussian class object is used in the generate and function to provide random numbers with normal (Gaussian)
distribution with mean (a) and standard deviation (stddev, 𝜎), where 𝑎, 𝜎 ∈ R;𝜎 > 0

The probability density function is given by:

𝑓𝑎,𝜎(𝑥) =
1

𝜎
√
2𝜋

exp

(︂
− (𝑦 − 𝑎)2

2𝜎2

)︂
𝑑𝑦,−∞ < 𝑥 < +∞

The cumulative distribution function is as follows:

𝐹𝑎,𝜎(𝑥) =

∫︁ 𝑥

−∞

1

𝜎
√
2𝜋

exp

(︂
− (𝑦 − 𝑎)2

2𝜎2

)︂
𝑑𝑦,−∞ < 𝑥 < +∞

The cumulative distribution function 𝐹𝑎,𝜎(𝑥) can be expressed in terms of standard normal distribution 𝜑(𝑥) as

𝐹𝑎,𝜎(𝑥) = 𝜑((𝑥− 𝑎)/𝜎)

8.2. oneMKL Domains 1702

oneAPI Specification, Release 1.4-provisional-rev-1

class gaussian

Syntax

namespace oneapi::mkl::rng::device {
template<typename RealType, typename Method>
class gaussian {
public:
using method_type = Method;
using result_type = RealType;

gaussian();
explicit gaussian(RealType mean, RealType stddev);

RealType mean() const;
RealType stddev() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method
Generation method. The specific values are as follows:

• oneapi::mkl::rng::device::gaussian_method::by_default

• oneapi::mkl::rng::device::gaussian_method::box_muller2

See description of the methods in Distributions methods template parameter

Class Members

Routine Description
gaussian() Default constructor
explicit gaussian(RealType mean, RealType stddev) Constructor with parameters
RealType mean() const Method to obtain left bound a
RealType stddev() const Method to obtain right bound b

8.2. oneMKL Domains 1703

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

gaussian::method_type = Method

Description

The type which defines transformation method for generation.

gaussian::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gaussian::gaussian()

Description

Default constructor for distribution, parameters set as mean = 0.0, stddev = 1.0.

explicit gaussian::gaussian(RealType a, RealType b)

Description

Constructor with parameters. mean is a mean value, stddev is a standard deviation value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when stddev ≤ 0

Characteristics

RealType gaussian::mean() const

8.2. oneMKL Domains 1704

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter mean - mean value.

RealType gaussian::stddev() const

Return Value

Returns the distribution parameter stddev - standard deviation value.

Parent topic: Device Distributions

lognormal

Generates lognormally distributed random numbers.

Description

The lognormal class object is used in the generate and function to provide random numbers with average of dis-
tribution (m, a) and standard deviation (s, 𝜎) of subject normal distribution, displacement (displ, b), and scalefactor
(scale, 𝛽), where 𝑎, 𝜎, 𝑏, 𝛽 ∈ R;𝜎 > 0, 𝛽 > 0.

The probability density function is given by:

𝑓𝑎,𝜎,𝑏,𝛽(𝑥) =

⎧⎨⎩ 1
𝜎(𝑥−𝑏)

√
2𝜋

exp

(︂
− ln(𝑥−𝑏

𝛽)−𝑎)2

2𝜎2

)︂
, 𝑥 > 𝑏

0, 𝑥 ≤ 𝑏

The cumulative distribution function is as follows:

𝐹𝑎,𝜎,𝑏,𝛽(𝑥) =

⎧⎨⎩Φ

(︂
ln(𝑥−𝑏

𝛽)−𝑎
𝜎

)︂
, 𝑥 > 𝑏

0, 𝑥 ≤ 𝑏

class lognormal

Syntax

namespace oneapi::mkl::rng::device {
template<typename RealType, typename Method>
class lognormal {
public:
using method_type = Method;
using result_type = RealType;

lognormal();
explicit lognormal(RealType m, RealType s, RealType displ = (RealType)0.0, RealType␣

→˓scale = (RealType)1.0);

RealType m() const;
RealType s() const;

(continues on next page)

8.2. oneMKL Domains 1705

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

RealType displ() const;
RealType scale() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::lognormal_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::device::lognormal_method::by_default

• oneapi::mkl::rng::device::lognormal_method::box_muller2

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
lognormal() Default constructor
explicit lognormal(RealType m, RealType s, RealType displ = (RealType)0.0, Re-
alType scale = (RealType)1.0)

Constructor with parameters

RealType m() const Method to obtain mean value
RealType s() const Method to obtain standard de-

viation value
RealType displ() const Method to obtain displacement

value
RealType scale() const Method to obtain scalefactor

value

Member types

lognormal::method_type = Method

8.2. oneMKL Domains 1706

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines transformation method for generation.

lognormal::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

lognormal::lognormal()

Description

Default constructor for distribution, parameters set as m = 0.0, s = 1.0, displ = 0.0, scale = 1.0.

explicit lognormal::lognormal(RealType m, RealType s, RealType displ = (RealType)0.0,␣
→˓RealType scale = (RealType)1.0)

Description

Constructor with parameters. m is a mean value, s is a standard deviation value, displ is a displacement value, scale is
a scalefactor value.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑠 ≤ 0, or 𝑠𝑐𝑎𝑙𝑒 ≤ 0

Characteristics

RealType lognormal::m() const

Return Value

Returns the distribution parameter m - mean value.

RealType lognormal::s() const

8.2. oneMKL Domains 1707

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter s - standard deviation value.

RealType lognormal::displ() const

Return Value

Returns the distribution parameter displ - displacement value.

RealType lognormal::scale() const

Return Value

Returns the distribution parameter scale - scalefactor value.

Parent topic: Device Distributions

exponential

Generates exponentially distributed random numbers.

Description

The exponential class object is used in the generate function to provide random numbers with exponential distri-
bution that has displacement 𝑎 and scalefactor 𝛽, where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The probability density function is given by:

𝑓𝑎,𝛽(𝑥) =

{︃
1
𝛽 exp(− (𝑥−𝑎)

𝛽), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎
,−∞ < 𝑥 < +∞

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =

{︃
1− exp(− (𝑥−𝑎)

𝛽), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎
,−∞ < 𝑥 < +∞

class exponential

Syntax

namespace oneapi::mkl::rng::device {
template<typename RealType, typename Method>
class exponential {
public:
using method_type = Method;
using result_type = RealType;

exponential();
(continues on next page)

8.2. oneMKL Domains 1708

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

explicit exponential(RealType a, RealType beta);

RealType a() const;
RealType beta() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::exponential_method::by_default
Generation method. The specific values are as follows:

• oneapi::mkl::rng::device::exponential_method::by_default

• oneapi::mkl::rng::device::exponential_method::icdf

• oneapi::mkl::rng::device::exponential_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
exponential() Default constructor
explicit exponential(RealType a, RealType beta) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scalefactor

Member types

exponential::method_type = Method

Description

The type which defines transformation method for generation.

exponential::result_type = RealType

8.2. oneMKL Domains 1709

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The type which defines type of generated random numbers.

Constructors

exponential::exponential()

Description

Default constructor for distribution, parameters set as a = 0.0, beta = 1.0.

explicit exponential::exponential(RealType a, RealType beta)

Description

Constructor with parameters. a is a displacement, beta is a scalefactor.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑏𝑒𝑡𝑎 ≤ 0

Characteristics

RealType exponential::a() const

Return Value

Returns the distribution parameter a - displacement.

RealType exponential::beta() const

Return Value

Returns the distribution parameter beta - scalefactor value.

Parent topic: Device Distributions

8.2. oneMKL Domains 1710

oneAPI Specification, Release 1.4-provisional-rev-1

uniform (Discrete)

Generates random numbers uniformly distributed over the interval [a, b).

Description

The uniform class object is used in generate and function to provide random numbers uniformly distributed over
the interval [a, b), where a, b are the left and right bounds of the interval respectively, and 𝑎, 𝑏 ∈ 𝑍; 𝑎 < 𝑏.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) =
1

𝑏− 𝑎
, 𝑘 ∈ {𝑎, 𝑎+ 1, . . . , 𝑏− 1}

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < 𝑎
𝑥−𝑎+1
𝑏−𝑎 , 𝑎 ≤ 𝑥 < 𝑏

1, 𝑥 ≥ 𝑏

, 𝑥 ∈ 𝑅

class uniform

Syntax

namespace oneapi::mkl::rng::device {
template<typename Type, typename Method>
class uniform<Type, Method> {
public:
using method_type = Method;
using result_type = Type;

uniform();
explicit uniform(Type a, Type b);

Type a() const;
Type b() const;

};
}

Template parameters

typename Type
Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

• std::int64_t

• std::uint64_t

typename Method = oneapi::mkl::rng::uniform_method::by_default
Transformation method, which will be used for generation. Supported types:

8.2. oneMKL Domains 1711

oneAPI Specification, Release 1.4-provisional-rev-1

• oneapi::mkl::rng::device::uniform_method::by_default

• oneapi::mkl::rng::device::uniform_method::standard

• oneapi::mkl::rng::device::uniform_method::accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
uniform() Default constructor
explicit uniform(Type a, Type b) Constructor with parameters
Type a() const Method to obtain left bound a
Type b() const Method to obtain right bound b

Constructors

uniform::uniform()

Description

Default constructor for distribution, parameters set as a = 0, b = (1 << 23) with uniform_method::standard or
std::numeric_limits<Type>::max() with uniform_method::accurate.

explicit uniform::uniform(Type a, Type b)

Description

Constructor with parameters. a is a left bound, b is a right bound, assume 𝑎 < 𝑏.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑎 ≥ 𝑏

Characteristics

uniform::a() const

8.2. oneMKL Domains 1712

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter a - left bound.

uniform::b() const

Return Value

Returns the distribution parameter b - right bound.

Parent topic: Device Distributions

bits

Generates bits of underlying engine (BRNG) integer sequence.

Description

The bits class object is used in generate and function to provide integer random values. Each integer can be treated
as a vector of several bits. In pseudorandom generators this randomness can be violated. See VS Notes for details.

class bits

Syntax

namespace oneapi::mkl::rng::device {
template<typename UIntType = std::uint32_t>
class bits {
using result_type = UIntType;

};
}

Template parameters

typename UIntType

Type of the produced values. Supported types:

• std::uint32_t for philox4x32x10, mrg32k3a and mcg31m1 engines.

• std::uint64_t for mcg59.

8.2. oneMKL Domains 1713

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

bits::result_type = UIntType

Description

The type which defines type of generated random numbers.

Parent topic: Device Distributions

uniform_bits

Generates uniformly distributed bits in 32/64-bit chunks.

Description

The uniform_bits class object is used in generate and function to generate uniformly distributed bits in 32/64-bit
chunks. It is designed to ensure each bit in the 32/64-bit chunk is uniformly distributed. This distribution is supported
for philox4x32x10 and mcg59 engines. When generating 64-bit chunks, twice as much engine offset needs to be
provided.

UIntType denotes the chunk size and can be std::uint32_t, std::uint64_t. See VS Notes for details.

class uniform_bits

Syntax

namespace oneapi::mkl::rng::device {
template<typename UIntType = std::uint32_t>
class uniform_bits {
using result_type = UIntType;

};
}

Template parameters

typename UIntType

Type of the produced values. Supported types:

• std::uint32_t

• std::uint64_t

8.2. oneMKL Domains 1714

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

uniform_bits::result_type = UIntType

Description

The type which defines type of generated random numbers.

Parent topic: Device Distributions

poisson

Generates Poisson distributed random values.

Description

The poisson class object is used in the generate and function to provide Poisson distributed random numbers with
distribution parameter 𝜆, where 𝜆 ∈ 𝑅;𝜆 > 0.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!

𝑘 ∈ {0, 1, 2, . . .}.

The cumulative distribution function is as follows:

𝐹𝜆(𝑥) =

{︃∑︀⌊𝑥⌋
𝑘=0

𝜆𝑘𝑒−𝜆

𝑘! , 𝑥 ≥ 0

0, 𝑥 < 0
, 𝑥 ∈ 𝑅

class poisson

Syntax

namespace oneapi::mkl::rng::device {
template<typename IntType, typename Method>
class poisson {
public:
using method_type = Method;
using result_type = IntType;

poisson();
explicit poisson(double lambda);

double lambda() const;
};

}

8.2. oneMKL Domains 1715

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::poisson_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::device::poisson_method::by_default

• oneapi::mkl::rng::device::poisson_method::devroye

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
poisson() Default constructor
explicit poisson(double lambda) Constructor with parameters
double lambda() const Method to obtain distribution parameter

Member types

poisson::method_type = Method

Description

The type which defines transformation method for generation.

poisson::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

poisson::poisson()

8.2. oneMKL Domains 1716

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Default constructor for distribution, parameters set as lambda = 0.5.

explicit poisson::poisson(double lambda)

Description

Constructor with parameters. lambda is a distribution parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑙𝑎𝑚𝑏𝑑𝑎 ≤ 0

Characteristics

double poisson::lambda() const

Return Value

Returns the distribution parameter lambda.

Parent topic: Device Distributions

bernoulli

Generates Bernoulli distributed random values.

Description

The bernoulli class object is used in the generate and function to provide Bernoulli distributed random numbers
with probability p of a single trial success, where 𝑝 ∈ 𝑅; 0 ≤ 𝑝 ≤ 1.

The probability distribution is given by:

𝑃 (𝑋 = 1) = 𝑝

𝑃 (𝑋 = 0) = 1− 𝑝

The cumulative distribution function is as follows:

𝐹𝑝(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < 0

1− 𝑝, 0 ≤ 𝑥 < 1, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 1

8.2. oneMKL Domains 1717

oneAPI Specification, Release 1.4-provisional-rev-1

class bernoulli

Syntax

namespace oneapi::mkl::rng::device {
template<typename IntType, typename Method>
class bernoulli {
public:
using method_type = Method;
using result_type = IntType;

bernoulli();
explicit bernoulli(float p);

float p() const;
};

}

Template parameters

typename IntType

Type of the produced values. Supported types:

• std::int8_t

• std::uint8_t

• std::int16_t

• std::uint16_t

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::bernoulli_method::by_default
Transformation method, which will be used for generation. Supported types:

• oneapi::mkl::rng::bernoulli_method::by_default

• oneapi::mkl::rng::bernoulli_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
bernoulli() Default constructor
explicit bernoulli(float p) Constructor with parameters
float p() const Method to obtain probability p

8.2. oneMKL Domains 1718

oneAPI Specification, Release 1.4-provisional-rev-1

Member types

bernoulli::method_type = Method

Description

The type which defines transformation method for generation.

bernoulli::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

bernoulli::bernoulli()

Description

Default constructor for distribution, parameters set as p = 0.5f.

explicit bernoulli::bernoulli(float p)

Description

Constructor with parameters. p is a probability.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when p > 1, or p < 0

Characteristics

float bernoulli::p() const

8.2. oneMKL Domains 1719

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the distribution parameter p - probability.

Parent topic: Device Distributions

beta

Generates beta distributed random numbers.

Description

The beta class object is used in the generate function to provide random numbers with beta distribution that has
shape parameters 𝑝 and 𝑞, displacement 𝛼 and scale parameter (𝑏, 𝛽), where 𝑝, 𝑞. 𝛼, 𝛽 ∈ 𝑅; 𝑝 > 0; 𝑞 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑝,𝑞,𝛼,𝛽(𝑥) =

{︂ 1
𝐵(𝑝,𝑞)*𝛽𝑝+𝑞−1 (𝑥− 𝑎)𝑝−1 * (𝛽 + 𝛼− 𝑥)𝑞−1, 𝛼 ≤ 𝑥 < 𝛼+ 𝛽

0, 𝑥 < 𝛼, 𝑥 ≥ 𝛼+ 𝛽

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎨⎩
0, 𝑥 < 𝛼∫︀ 𝑥

𝛼
1

𝐵(𝑝,𝑞)*𝛽𝑝+𝑞−1 (𝑦 − 𝛼)𝑝−1 * (𝛽 + 𝛼− 𝑦)𝑞−1𝑑𝑦, 𝛼 ≤ 𝑥 < 𝛼+ 𝛽, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝛼+ 𝛽

Where 𝐵(𝑝, 1) is the complete beta function.

class beta

Syntax

namespace oneapi::mkl::rng::device {
template<typename RealType, typename Method>
class beta {
public:
using method_type = Method;
using result_type = RealType;

beta();
explicit beta(RealType p, RealType q, RealType a, RealType b);

RealType p() const;
RealType q() const;
RealType a() const;
RealType b() const;
std::size_t count_rejected_numbers() const;

};
}

8.2. oneMKL Domains 1720

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method
Generation method. The type is unspecified.

Class Members

Routine Description
beta() Default constructor
explicit beta(RealType p, RealType
q, RealType a, RealType b)

Constructor with parameters

RealType p() const Method to obtain shape p
RealType q() const Method to obtain shape q
RealType a() const Method to obtain displacement 𝛼
RealType b() const Method to obtain scale parameter 𝛽
size_t count_rejected_numbers()
const

Method to obtain amount of random numbers that were rejected during the last
generate function call. If no generate calls, 0 is returned.

Member types

beta::method_type = Method

Description

The type which defines transformation method for generation.

beta::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

beta::beta()

8.2. oneMKL Domains 1721

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Default constructor for distribution, parameters set as p = 1.0, q = 1.0, 𝛼 = 0.0, 𝛽 = 1.0.

explicit beta::beta(RealType p, RealType q, RealType a, RealType b)

Description

Constructor with parameters. p and q are shapes, 𝛼 is a displacement, 𝛽 is a scale parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑝 ≤ 0, or 𝑞 ≤ 0, or 𝛽 ≤ 0

Characteristics

RealType beta::p() const

Return Value

Returns the distribution parameter p - shape.

RealType beta::q() const

Return Value

Returns the distribution parameter q - shape.

RealType beta::a() const

Return Value

Returns the distribution parameter 𝛼 - displacement.

RealType beta::b() const

Return Value

Returns the distribution parameter 𝛽 - scale parameter value.

std::size_t beta::count_rejected_numbers() const

8.2. oneMKL Domains 1722

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Returns the amount of random numbers that were rejected during the last generate function call. If no generate
calls, 0 is returned.

Parent topic: Device Distributions

gamma

Generates gamma distributed random numbers.

Description

The gamma class object is used in the generate function to provide random numbers with gamma distribution that has
shape 𝛼, displacement 𝑎, and scale parameter 𝛽, where 𝑎, 𝛼, 𝛽 ∈ 𝑅;𝛼 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛼,𝛽(𝑥) =

{︂
1

Γ(𝛼)𝛽𝛼 (𝑥− 𝑎)𝛼−1𝑒−(𝑥−𝑎)/𝛽 , 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛼,𝛽(𝑥) =

{︂ ∫︀ 𝑥

𝑎
1

Γ(𝛼)𝛽𝛼 (𝑦 − 𝑎)𝛼−1𝑒−(𝑦−𝑎)/𝛽𝑑𝑦, 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

class gamma

Syntax

namespace oneapi::mkl::rng::device {
template<typename RealType, typename Method>
class gamma {
public:
using method_type = Method;
using result_type = RealType;

gamma();
explicit gamma(RealType alpha, RealType a, RealType beta);

RealType alpha() const;
RealType a() const;
RealType beta() const;
std::size_t count_rejected_numbers() const;

};
}

8.2. oneMKL Domains 1723

oneAPI Specification, Release 1.4-provisional-rev-1

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method
Generation method. The type is unspecified.

Class Members

Routine Description
gamma() Default constructor
explicit gamma(RealType alpha,
RealType a, RealType beta)

Constructor with parameters

RealType alpha() const Method to obtain shape value
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scale parameter
size_t count_rejected_numbers()
const

Method to obtain amount of random numbers that were rejected during the last
generate function call. If no generate calls, 0 is returned.

Member types

gamma::method_type = Method

Description

The type which defines transformation method for generation.

gamma::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gamma::gamma()

8.2. oneMKL Domains 1724

oneAPI Specification, Release 1.4-provisional-rev-1

Description

Default constructor for distribution, parameters set as alpha = 1.0, a = 0.0, beta = 1.0.

explicit gamma::gamma(RealType alpha, RealType a, RealType beta)

Description

Constructor with parameters. alpha is a shape, a is a displacement, beta is a scale parameter.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑎𝑙𝑝ℎ𝑎 ≤ 0 or 𝑏𝑒𝑡𝑎 ≤ 0

Characteristics

RealType gamma::alpha() const

Return Value

Returns the distribution parameter alpha - shape.

RealType gamma::a() const

Return Value

Returns the distribution parameter a - displacement.

RealType gamma::beta() const

Return Value

Returns the distribution parameter beta - scale parameter value.

std::size_t gamma::count_rejected_numbers() const

Return Value

Returns the amount of random numbers that were rejected during the last generate function call. If no generate
calls, 0 is returned.

Parent topic: Device Distributions

8.2. oneMKL Domains 1725

oneAPI Specification, Release 1.4-provisional-rev-1

Device Service Routines

Routine Description
skip_ahead Proceed state of engine by the skip-ahead method to skip a given

number of elements from the original sequence.

skip_ahead

Description

Proceed state of engine by the skip-ahead method.

The skip_ahead function supports the following interfaces to apply the skip-ahead method:

• Common interface

• Interface with a partitioned number of skipped elements

skip_ahead

Common Interface

namespace oneapi::mkl::rng::device {
template<typename Engine>
void skip_ahead (Engine& engine, std::uint64_t num_to_skip)

}

Template Parameters

Engine
Object of engine class, which supports the block-splitting method.

Input Parameters

engine
Engine which state would be skipped.

num_to_skip
Number of skipped elements.

8.2. oneMKL Domains 1726

oneAPI Specification, Release 1.4-provisional-rev-1

Interface with a partitioned number of skipped elements

namespace oneapi::mkl::rng::device {
template<typename Engine>
void skip_ahead (Engine& engine, std::initializer_list<std::uint64_t> num_to_skip)

}

Template Parameters

Engine
Object of engine class, which supports the block-splitting method.

Input Parameters

engine
Engine which state would be skipped.

num_to_skip
Partitioned number of skipped elements. The total number of skipped elements would be: 𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[0] +
𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[1] · 264 + ...+ 𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[1] · 264(𝑛−1), where n is a number of elements in num_to_skip list.

Parent topic: Device Service Routines

Parent topic: Random Number Generators Device Routines

Parent topic: Random Number Generators

Parent topic: Random Number Generators

8.2.5 Summary Statistics

The oneMKL provides a set of Summary Statistics routines that compute basic statistical estimates for single and double
precision multi-dimensional datasets.

Summary Statistics

Definitions

The oneMKL Summary Statistics domains consists of:

• Dataset structure. The structure consolidates the information of a multi-dimensional dataset (see detailed de-
scription in dataset).

• Computation routines. The routines are represented as free functions (see detailed description for each routine
in Summary Statistics Routines):

– Raw and central sums / moments up to the fourth order

– Variation coefficient

– Skewness and excess kurtosis (further referred as kurtosis)

– Minimum and maximum

Refer to oneMKL Summary Statistics Usage Model.

8.2. oneMKL Domains 1727

oneAPI Specification, Release 1.4-provisional-rev-1

oneMKL Summary Statistics Usage Model

Description

A typical algorithm for summary statistics is as follows:

1. Create and initialize an object for dataset.

2. Call the summary statistics routine to calculate the appropriate estimate.

The following example demonstrates how to calculate mean values for a 3-dimensional dataset filled with random
numbers. For dataset creation, the make_dataset helper function is used.

USM-based example

#include "oneapi/mkl/stats.hpp"

int main() {
sycl::queue queue;

constexpr std::size_t n_observations = 1000;
constexpr std::size_t n_dims = 3;

// allocate Unified Shared Memory for the dataset of the size n_observations * n_
→˓dims and fill it with any data
// allocate Unified Shared Memory for the mean output of the size n_dims

// create oneapi::mkl::stats::dataset
auto dataset = oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_

→˓major>(n_dims, n_observations, dataset_ptr);

// call statistics computation routine
auto event = oneapi::mkl::stats::mean(queue, dataset, mean_ptr);

// wait until computations are completed
event.wait();

// ...
}

Parent topic: Summary Statistics

dataset

The structure consolidates the information of a multi-dimensional dataset.

8.2. oneMKL Domains 1728

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The dataset struct object is used in Summary Statistics Routines as a multi-dimensional data storage. dataset struct
contains information about observations matrix and its size (dimensions x observations), observations weights and
indices for dimensions (defines dimensions to be processed).

structure dataset (Buffer version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout, typename Type>

struct dataset<ObservationsLayout, sycl::buffer<Type, 1>> {

explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_,
sycl::buffer<Type, 1> observations_, sycl::buffer<Type, 1> weights_ = {0}

→˓,
sycl::buffer<std::int64_t, 1> indices_ = {0});

std::int64_t n_dims;
std::int64_t n_observations;
sycl::buffer<Type, 1> observations;
sycl::buffer<Type, 1> weights = {0};
sycl::buffer<std::int64_t, 1> indices = {0};
static constexpr layout layout = ObservationsLayout;
};

}

Template parameters

typename Type
Type of the multi-dimensional data. Supported types:

• float

• double

oneapi::mkl::stats::layout ObservationsLayout
Type of the multi-dimensional data layout. Supported types:

• oneapi::mkl::stats::layout::row_major

• oneapi::mkl::stats::layout::col_major

8.2. oneMKL Domains 1729

oneAPI Specification, Release 1.4-provisional-rev-1

Struct Members

Routine De-
scrip-
tion

explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_, sycl::buffer<Type, 1> observations_,
sycl::buffer<Type, 1> weights_ = {0}, sycl::buffer<std::int64_t, 1> indices_ = {0})

Con-
struc-
tor

Constructors

explicit dataset::dataset(std::int64_t n_dims_, std::int64_t n_observations_,
sycl::buffer<Type, 1> observations_,
sycl::buffer<Type, 1> weights_ = {0},
sycl::buffer<std::int64_t, 1> indices_ = {0});

Description

Constructor with parameters.

• n_dims_ is the number of dimensions

• n_observations_ is the number of observations

• observations_ is the matrix of observations

• weights_ is an optional parameter, represents an array of weights for observations (of size n_observations). If
the parameter is not specified, each observation is assigned a weight equal 1.

• indices_ is an optional parameter, represents an array of dimensions that are processed (of size n_dims). If the
parameter is not specified, all dimensions are processed.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when n_dims_ ≤ 0, or n_observations_ ≤ 0, or observations_.get_count() == 0

structure dataset (USM version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout, typename Type>

struct dataset<Type*, ObservationsLayout> {
explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_, Type*␣

→˓observations_,
Type* weights_ = nullptr, std::int64_t* indices_ = nullptr);

std::int64_t n_dims;
(continues on next page)

8.2. oneMKL Domains 1730

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t n_observations;
Type* observations;
Type* weights = nullptr;
std::int64_t* indices = nullptr;
static constexpr layout layout = ObservationsLayout;
};

}

Template parameters

typename Type
Type of the multi-dimensional data. Supported types:

• float

• double

oneapi::mkl::stats::layout ObservationsLayout
Type of the multi-dimensional data layout. Supported types:

• oneapi::mkl::stats::layout::row_major

• oneapi::mkl::stats::layout::col_major

Struct Members

Routine De-
scrip-
tion

explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_, Type* observations_, Type*
weights_ = nullptr, std::int64_t* indices_ = nullptr)

Con-
structor

Constructors

explicit dataset::dataset(std::int64_t n_dims_, std::int64_t n_observations_,
Type* observations_,
Type* weights_ = nullptr,
std::int64_t* indices_ = nullptr);

Description

Constructor with parameters.

• n_dims_ is the number of dimensions

• n_observations_ is the number of observations

• observations_ is the matrix of observations

• weights_ is an optional parameter, represents an array of weights for observations (of size n_observations). If
the parameter is not specified, each observation is assigned a weight equal 1.

8.2. oneMKL Domains 1731

oneAPI Specification, Release 1.4-provisional-rev-1

• indices_ is an optional parameter, represents an array of dimensions that are processed (of size n_dims). If the
parameter is not specified, all dimensions are processed.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when n_dims_ ≤ 0, or n_observations_ ≤ 0, or observations_ == nullptr

Parent topic: Summary Statistics

Summary Statistics Routines

The oneMKL Summary Statistics routines calculate next estimates:

Routine Description
raw_sum Raw sums up to the fourth order
central_sum Central sums up to the fourth order
central_sum with provided mean Central sums up to the fourth order with provided mean
mean Mean value
raw_moment Raw moments up to the fourth order
central_moment Central moments up to the fourth order
central_moment with provided mean Central moments up to the fourth order with provided mean
variation Variation coefficient
variation with provided mean Variation coefficient with provided mean
skewness Skewness value
skewness with provided mean Skewness value with provided mean
kurtosis Kurtosis value
kurtosis with provided mean Kurtosis value with provided mean
min Min value
max Max value
min_max Min and max values

Parent topic: Summary Statistics

raw_sum

Entry point to compute raw sums up to the 4th order.

Description and Assumptions

The oneapi::mkl::stats::raw_sum function is used to compute an array of raw sums up to the 4th order (raw sums for
each dataset’s dimension).

raw_sum supports the following precisions for data:

T
float
double

8.2. oneMKL Domains 1732

oneAPI Specification, Release 1.4-provisional-rev-1

raw_sum (Buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void raw_sum(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> sum,
sycl::buffer<Type, 1> raw_sum_2 = {0},
sycl::buffer<Type, 1> raw_sum_3 = {0},
sycl::buffer<Type, 1> raw_sum_4 = {0});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

sum
sycl::buffer array of sum values.

raw_sum_2
Optional parameter. sycl::buffer array of 2nd order raw sum values.

raw_sum_3
Optional parameter. sycl::buffer array of 3rd order raw sum values.

raw_sum_4
Optional parameter. sycl::buffer array of 4th order raw sum values.

8.2. oneMKL Domains 1733

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when sum.get_count() == 0 & raw_sum_2.get_count() == 0 & raw_sum_3.get_count() ==
0 & raw_sum_4.get_count() == 0, or dataset object is invalid

raw_sum (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event raw_sum(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* sum,
Type* raw_sum_2 = nullptr,
Type* raw_sum_3 = nullptr,
Type* raw_sum_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

8.2. oneMKL Domains 1734

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

sum
Pointer to the array of sum values.

raw_sum_2
Optional parameter. Pointer to the array of the 2nd order raw sum values.

raw_sum_3
Optional parameter. Pointer to the array of the 3rd order raw sum values.

raw_sum_4
Optional parameter. Pointer to the array of the 2nd order raw sum values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when sum == nullptr & raw_sum_2 == nullptr & raw_sum_3 == nullptr & raw_sum_4 ==
nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_sum

Entry point to compute central sums up to the 4th order.

Description and Assumptions

The oneapi::mkl::stats::central_sum function is used to compute an array of central sums up to the 4th order (central
sums for each dataset’s dimension).

central_sum supports the following precisions for data:

T
float
double

central_sum (Buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void central_sum(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> central_sum_2,

(continues on next page)

8.2. oneMKL Domains 1735

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<Type, 1> central_sum_3 = {0},
sycl::buffer<Type, 1> central_sum_4 = {0});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

central_sum_2
sycl::buffer array of 2nd order central sum values.

central_sum_3
Optional parameter. sycl::buffer array of 3rd order central sum values.

central_sum_4
Optional parameter. sycl::buffer array of 4th order central sum values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_sum_2.get_count() == 0 & central_sum_3.get_count() == 0 & cen-
tral_sum_4.get_count() == 0, or dataset object is invalid

8.2. oneMKL Domains 1736

oneAPI Specification, Release 1.4-provisional-rev-1

central_sum (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_sum(
sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* central_sum_2,
Type* central_sum_3 = nullptr,
Type* central_sum_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_sum_2
Pointer to the array of the 2nd order central sum values.

central_sum_3
Optional parameter. Pointer to the array of the 3rd order central sum values.

central_sum_4
Optional parameter. Pointer to the array of the 2nd order central sum values.

8.2. oneMKL Domains 1737

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_sum_2 == nullptr & central_sum_3 == nullptr & central_sum_4 == nullptr,
or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_sum with provided mean

Entry point to compute central sums up to the 4th order with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::central_sum function is used to compute an array of central sums up to the 4th order (central
sums for each dataset’s dimension) with the provided mean values.

central_sum with provided mean supports the following precisions for data:

T
float
double

central_sum with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void central_sum(sycl::queue& queue,
sycl::buffer<Type, 1> mean,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> central_sum_2,
sycl::buffer<Type, 1> central_sum_3 = {0},
sycl::buffer<Type, 1> central_sum_4 = {0});

}

8.2. oneMKL Domains 1738

oneAPI Specification, Release 1.4-provisional-rev-1

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
sycl::buffer to the array of provided mean values.

data
Dataset which is used for computation.

Output Parameters

central_sum_2
sycl::buffer array of 2nd order central sum values.

central_sum_3
Optional parameter. sycl::buffer array of 3rd order central sum values.

central_sum_4
Optional parameter. sycl::buffer array of 4th order central sum values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_sum_2.get_count() == 0 & central_sum_3.get_count() == 0 & cen-
tral_sum_4.get_count() == 0, or mean.get_count() == 0, or dataset object is invalid

central_sum with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_sum(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* central_sum_2,
Type* central_sum_3 = nullptr,
Type* central_sum_4 = nullptr,

(continues on next page)

8.2. oneMKL Domains 1739

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {});
}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
Pointer to the array of provided mean values.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_sum_2
Pointer to the array of the 2nd order central sum values.

central_sum_3
Optional parameter. Pointer to the array of the 3rd order central sum values.

central_sum_4
Optional parameter. Pointer to the array of the 2nd order central sum values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_sum_2 == nullptr & central_sum_3 == nullptr & central_sum_4 == nullptr,
or mean == nullptr, or dataset object is invalid

8.2. oneMKL Domains 1740

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

mean

Entry point to compute mean values.

Description and Assumptions

The oneapi::mkl::stats::mean function is used to compute a mean array (mean value for each dataset’s dimension).

mean supports the following precisions for data:

T
float
double

mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void mean(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> mean);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1741

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

mean
sycl::buffer array of mean values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when mean.get_count() == 0, or dataset object is invalid

mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event mean(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* mean,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1742

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

mean
Pointer to the array of mean values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when mean == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

raw_moment

Entry point to compute raw moments up to the 4th order.

Description and Assumptions

The oneapi::mkl::stats::raw_moment function is used to compute array of raw moments up to the 4th order (raw mo-
ments for each dataset’s dimension).

raw_moment supports the following precisions for data:

T
float
double

8.2. oneMKL Domains 1743

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::stats::raw_moment (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

void raw_moment(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> mean,
sycl::buffer<Type, 1> raw_moment_2 = {0},
sycl::buffer<Type, 1> raw_moment_3 = {0},
sycl::buffer<Type, 1> raw_moment_4 = {0});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

mean
sycl::buffer array of mean values.

raw_moment_2
Optional parameter. sycl::buffer array of 2nd order raw moment values.

raw_moment_3
Optional parameter. sycl::buffer array of 3rd order raw moment values.

raw_moment_4
Optional parameter. sycl::buffer array of 4th order raw moment values.

8.2. oneMKL Domains 1744

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when mean.get_count() == 0 & raw_moment_2.get_count() == 0 &
raw_moment_3.get_count() == 0 & raw_moment_4.get_count() == 0, or dataset object is invalid

raw_moment (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event raw_moment(
sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* mean,
Type* raw_moment_2 = nullptr,
Type* raw_moment_3 = nullptr,
Type* raw_moment_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

8.2. oneMKL Domains 1745

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

mean
Pointer to the array of mean values.

raw_moment_2
Optional parameter. Pointer to the array of the 2nd order raw moment values.

raw_moment_3
Optional parameter. Pointer to the array of the 3rd order raw moment values.

raw_moment_4
Optional parameter. Pointer to the array of the 2nd order raw moment values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when mean == nullptr & raw_moment_2 == nullptr & raw_moment_3 == nullptr &
raw_moment_4 == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_moment

Entry point to compute central moments up to the 4th order.

Description and Assumptions

The oneapi::mkl::stats::central_moment function is used to compute an array of central moments up to the 4th order
(central moments for each dataset’s dimension).

central_moment supports the following precisions for data:

T
float
double

central_moment (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = oneapi::mkl::stats::method::fast, typename Type,

layout ObservationsLayout>
void central_moment(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,

(continues on next page)

8.2. oneMKL Domains 1746

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<Type, 1> central_moment_2,
sycl::buffer<Type, 1> central_moment_3 = {0},
sycl::buffer<Type, 1> central_moment_4 = {0});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

central_moment_2
sycl::buffer array of 2nd order central moment values.

central_moment_3
Optional parameter. sycl::buffer array of 3rd order central moment values.

central_moment_4
Optional parameter. sycl::buffer array of 4th order central moment values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_moment_2.get_count() == 0 & central_moment_3.get_count() == 0 & cen-
tral_moment_4.get_count() == 0, or dataset object is invalid

8.2. oneMKL Domains 1747

oneAPI Specification, Release 1.4-provisional-rev-1

central_moment (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_moment(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data, Type* central_moment_2,
Type* central_moment_3 = nullptr, Type* central_moment_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_moment_2
Pointer to the array of the 2nd order central moment values.

central_moment_3
Optional parameter. Pointer to the array of the 3rd order central moment values.

central_moment_4
Optional parameter. Pointer to the array of the 2nd order central moment values.

8.2. oneMKL Domains 1748

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_moment_2 == nullptr & central_moment_3 == nullptr & central_moment_4
== nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_moment with provided mean

Entry point to compute central moments up to the 4th order with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::central_moment function is used to compute an array of central moments up to the 4th order
(central moments for each dataset’s dimension) with the provided mean values.

central_moment with provided mean supports the following precisions for data:

T
float
double

central_moment with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void central_moment(sycl::queue& queue,
sycl::buffer<Type, 1> mean,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> central_moment_2,
sycl::buffer<Type, 1> central_moment_3 = {0},
sycl::buffer<Type, 1> central_moment_4 = {0});

}

8.2. oneMKL Domains 1749

oneAPI Specification, Release 1.4-provisional-rev-1

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
sycl::buffer to the array of provided mean values.

data
Dataset which is used for computation.

Output Parameters

central_moment_2
sycl::buffer array of 2nd order central moment values.

central_moment_3
Optional parameter. sycl::buffer array of 3rd order central moment values.

central_moment_4
Optional parameter. sycl::buffer array of 4th order central moment values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_moment_2.get_count() == 0 & central_moment_3.get_count() == 0 & cen-
tral_moment_4.get_count() == 0, or mean.get_count() == 0, or dataset object is invalid

central_moment with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_moment(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* central_moment_2,
Type* central_moment_3 = nullptr,
Type* central_moment_4 = nullptr,

(continues on next page)

8.2. oneMKL Domains 1750

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {});
}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
Pointer to the array of provided mean values.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_moment_2
Pointer to the array of the 2nd order central moment values.

central_moment_3
Optional parameter. Pointer to the array of the 3rd order central moment values.

central_moment_4
Optional parameter. Pointer to the array of the 2nd order central moment values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when central_moment_2 == nullptr & central_moment_3 == nullptr & central_moment_4
== nullptr or mean == nullptr, or dataset object is invalid

8.2. oneMKL Domains 1751

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

variation

Entry point to compute variation.

Description and Assumptions

The oneapi::mkl::stats::variation function is used to compute a variation array (variation for each dataset’s dimension).

variation supports the following precisions for data:

T
float
double

variation (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void variation(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> variation);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1752

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

variation
sycl::buffer array of variation values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when variation.get_count() == 0, or dataset object is invalid

variation (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event variation(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* variation,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1753

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

variation
Pointer to the array of variation values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when variation == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

variation with provided mean

Entry point to compute variation with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::variation function is used to compute an array of variation (variation for each dataset’s dimen-
sion) with the provided mean values.

variation with provided mean supports the following precisions for data:

T
float
double

8.2. oneMKL Domains 1754

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::mkl::stats::variation (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void variation(sycl::queue& queue, sycl::buffer<Type, 1> mean,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> variation);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
sycl::buffer to the array of provided mean values.

data
Dataset which is used for computation.

Output Parameters

variation
sycl::buffer array of variation values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when variation.get_count() == 0, or mean.get_count() == 0, or dataset object is invalid

8.2. oneMKL Domains 1755

oneAPI Specification, Release 1.4-provisional-rev-1

variation with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event variation(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* variation,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
Pointer to the array of provided mean values.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

variation
Pointer to the array of the variation values.

8.2. oneMKL Domains 1756

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when variation == nullptr, or mean == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

skewness

Entry point to compute skewness.

Description and Assumptions

The oneapi::mkl::stats::skewness function is used to compute a skewness array (skewness for each dataset’s dimension).

skewness supports the following precisions for data:

T
float
double

skewness (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void skewness(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> skewness);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1757

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

skewness
sycl::buffer array of skewness values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when skewness.get_count() == 0, or dataset object is invalid

skewness (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event skewness(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* skewness,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1758

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

skewness
Pointer to the array of skewness values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when skewness == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

skewness with provided mean

Entry point to compute skewness with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::skewness function is used to compute an array of skewness (skewness for each dataset’s dimen-
sion) with the provided mean values.

skewness with provided mean supports the following precisions for data:

T
float
double

8.2. oneMKL Domains 1759

oneAPI Specification, Release 1.4-provisional-rev-1

skewness with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void skewness(sycl::queue& queue,
sycl::buffer<Type, 1> mean,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> skewness);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
sycl::buffer to the array of provided mean values.

data
Dataset which is used for computation.

Output Parameters

skewness
sycl::buffer array of skewness values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when skewness.get_count() == 0, or mean.get_count() == 0, or dataset object is invalid

8.2. oneMKL Domains 1760

oneAPI Specification, Release 1.4-provisional-rev-1

skewness with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event skewness(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* skewness,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
Pointer to the array of provided mean values.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

skewness
Pointer to the array of the skewness values.

8.2. oneMKL Domains 1761

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when skewness == nullptr, or mean == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

kurtosis

Entry point to compute kurtosis.

Description and Assumptions

The oneapi::mkl::stats::kurtosis function is used to compute a kurtosis array (kurtosis for each dataset’s dimension).

kurtosis supports the following precisions for data:

T
float
double

kurtosis (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>
void kurtosis(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> kurtosis);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1762

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

kurtosis
sycl::buffer array of kurtosis values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when kurtosis.get_count() == 0, or dataset object is invalid

kurtosis (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event kurtosis(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* kurtosis,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1763

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

kurtosis
Pointer to the array of kurtosis values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when kurtosis == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

kurtosis with provided mean

Entry point to compute kurtosis with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::kurtosis function is used to compute an array of kurtosis (kurtosis for each dataset’s dimension)
with the provided mean values.

kurtosis with provided mean supports the following precisions for data:

T
float
double

8.2. oneMKL Domains 1764

oneAPI Specification, Release 1.4-provisional-rev-1

kurtosis with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type,

layout ObservationsLayout>
void oneapi::mkl::stats::kurtosis(sycl::queue& queue,
sycl::buffer<Type, 1> mean,
const oneapi::mkl::stats::dataset<sycl::buffer<Type, 1>, ObservationsLayout>& data,
sycl::buffer<Type, 1> kurtosis);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
sycl::buffer to the array of provided mean values.

data
Dataset which is used for computation.

Output Parameters

kurtosis
sycl::buffer array of kurtosis values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when kurtosis.get_count() == 0, or mean.get_count() == 0, or dataset object is invalid

8.2. oneMKL Domains 1765

oneAPI Specification, Release 1.4-provisional-rev-1

kurtosis with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

sycl::event kurtosis(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* kurtosis,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

mean
Pointer to the array of provided mean values.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

kurtosis
Pointer to the array of the kurtosis values.

8.2. oneMKL Domains 1766

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when kurtosis == nullptr, or mean == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

min

Entry point to compute min values.

Description and Assumptions

The oneapi::mkl::stats::min function is used to compute min arrays (min value for each dataset’s dimension).

min supports the following precisions for data:

T
float
double

min (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

void min(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> min);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1767

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

min
sycl::buffer array of min values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when min.get_count() == 0, or dataset object is invalid

min (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

sycl::event min(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* min,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1768

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

min
Pointer to the array of min values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when min == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

max

Entry point to compute max values.

Description and Assumptions

The oneapi::mkl::stats::max function is used to compute a max values arrays (max value for each dataset’s dimension).

max supports the following precisions for data:

T
float
double

8.2. oneMKL Domains 1769

oneAPI Specification, Release 1.4-provisional-rev-1

max (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void max(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> max);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

max
sycl::buffer array of max values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when max.get_count() == 0, or dataset object is invalid

8.2. oneMKL Domains 1770

oneAPI Specification, Release 1.4-provisional-rev-1

max (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event max(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* max,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

max
Pointer to the array of max values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when max == nullptr, or dataset object is invalid

8.2. oneMKL Domains 1771

oneAPI Specification, Release 1.4-provisional-rev-1

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

min_max

Entry point to compute min and max values.

Description and Assumptions

The oneapi::mkl::stats::min_max function is used to compute min and max arrays (min and max values for each dataset’s
dimension).

min_max supports the following precisions for data:

T
float
double

min_max (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void min_max(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> min,
sycl::buffer<Type, 1> max);

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1772

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

Output Parameters

min
sycl::buffer array of min values.

max
sycl::buffer array of max values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when min.get_count() == 0, or max.get_count() == 0, or dataset object is invalid

min_max (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event min_max(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* min,
Type* max,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method
Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type
Data precision.

ObservationsLayout
Data layout. The specific values are described in dataset.

8.2. oneMKL Domains 1773

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

queue
The queue where the routine should be executed.

data
Dataset which is used for computation.

dependencies
Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

min
Pointer to the array of min values.

max
Pointer to the array of max values.

Throws

oneapi::mkl::invalid_argument
Exception is thrown when min == nullptr, or max == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

Service Routines

Routine Description
make_dataset Creates a dataset from the provided parameters

Parent topic: Summary Statistics

make_dataset

Entry point to create a dataset from the provided parameters.

8.2. oneMKL Domains 1774

oneAPI Specification, Release 1.4-provisional-rev-1

Description and Assumptions

The oneapi::mkl::stats::make_dataset function is used to create a dataset from the provided storage of the observations
matrix, the number of dimensions and observations, and other parameters.

make_dataset supports the following precisions for data:

T
float
double

make_dataset (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout = layout::row_major, typename Type>

dataset<sycl::buffer<Type, 1>, ObservationsLayout> make_dataset(
std::int64_t n_dims,
std::int64_t n_observations,
sycl::buffer<Type, 1> observations,
sycl::buffer<Type, 1> weights = {0},
sycl::buffer<std::int64_t, 1> indices = {0});

}

Template Parameters

ObservationsLayout
Data layout. The specific values are described in dataset.

Type
Data precision.

Input Parameters

n_dims
The number of dimensions.

n_observations
The number of observations.

observations
Matrix of observations.

weights
Optional parameter. Array of weights of size n_observations. Elements of the array are non-negative members.
If the parameter is not specified, each observation has weight equal to 1.

indices
Optional parameter. Array of vector components that are processed. The size of the array is n_dims. If the
parameter is not specified, all components are processed.

8.2. oneMKL Domains 1775

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when :math: n_dims leq 0, or :math: n_observations leq 0, or observations.get_count() ==
0

Return Value

Dataset holding specified parameters.

make_dataset (USM version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout = layout::row_major, typename Type>

dataset<Type*, ObservationsLayout> make_dataset(std::nt64_t
n_dims, std::int64_t n_observations,
Type* observations, Type* weights = nullptr, std::int64_t* indices = nullptr);

}

Template Parameters

ObservationsLayout
Data layout. The specific values are described in dataset.

Type
Data precision.

Input Parameters

n_dims
The number of dimensions.

n_observations
The number of observations.

observations
Matrix of observations.

weights
Optional parameter. Array of weights of size n_observations. Elements of the array are non-negative members.
If the parameter is not specified, each observation has weight equal to 1.

indices
Optional parameter. Array of vector components that are processed. Size of array is n_dims. If the parameter is
not specified, all components are processed.

8.2. oneMKL Domains 1776

oneAPI Specification, Release 1.4-provisional-rev-1

Throws

oneapi::mkl::invalid_argument
Exception is thrown when 𝑛_𝑑𝑖𝑚𝑠 ≤ 0, or 𝑛_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 0, or observations == nullptr

Return Value

Dataset holding specified parameters.

Parent topic: Service Routines

Parent topic: Summary Statistics

8.2.6 Vector Math

oneMKL Vector Mathematics functions (VM) compute a mathematical function of each of the vector elements. VM in-
cludes a set of functions (arithmetic, power, trigonometric, exponential, hyperbolic, special, and rounding) that operate
on vectors of real and complex numbers.

Vector Math

Application programs that improve performance with VM include nonlinear programming software, computation of
integrals, financial calculations, computer graphics, and many others.

VM functions fall into the following groups according to the operations they perform:

• VM Mathematical Functions compute values of mathematical functions, such as sine, cosine, exponential, or
logarithm, on vectors stored contiguously in memory.

• VM Service Functions set/get the accuracy modes and the error codes, and create error handlers for mathematical
functions.

The VM mathematical functions take an input vector as an argument, compute values of the respective function element-
wise, and return the results in an output vector. All the VM mathematical functions can perform in-place operations,
where the input and output arrays are at the same memory locations.

• Special Value Notations

Special Value Notations

This defines notations of special values for complex functions. The definitions are provided in text, tables, or formulas.

• z, z1, z2, etc. denote complex numbers.

• i, i2=-1 is the imaginary unit.

• x, X, x1, x2, etc. denote real imaginary parts.

• y, Y, y1, y2, etc. denote imaginary parts.

• X and Y represent any finite positive IEEE-754 floating point
values, if not stated otherwise.

• Quiet NaN and signaling NaN are denoted with QNAN and SNAN,
respectively.

• The IEEE-754 positive infinities or floating-point numbers are
denoted with a + sign before X, Y, etc.

8.2. oneMKL Domains 1777

oneAPI Specification, Release 1.4-provisional-rev-1

• The IEEE-754 negative infinities or floating-point numbers are
denoted with a - sign before X, Y, etc.

CONJ(z) and CIS(z) are defined as follows:

CONJ(x+i·y)=x-i·y

CIS(y)=cos(y)+i·sin(y).

The special value tables show the result of the function for the z argument at the intersection of the RE(z) column and
the i*IM(z) row. If the function encounters a special point for the argument z, the lower part of this cell shows the
special point and the VM status value for this element. An empty cell indicates that this argument is normal and the
result is well-defined computationally.

Parent topic: Vector Math

VM Mathematical Functions

This section describes VM functions that compute values of mathematical functions on real and complex vector argu-
ments with unit increment.

Each function is introduced by its short name, a brief description of its purpose, and the calling sequence for each type
of data, as well as a description of the input/output arguments.

The input range of parameters is equal to the mathematical range of the input data type, unless the function description
specifies input threshold values, which mark off the precision overflow, as follows:

• FLT_MAX denotes the maximum number representable in single precision real data type

• DBL_MAX denotes the maximum number representable in double precision real data type

The following tables list the available mathematical functions grouped by category.

Arithmetic Routines Description
add Adds vector elements
sub Subtracts vector elements
sqr Squares vector elements
mul Multiplies vector elements
mulbyconj Multiplies elements of one vector by conjugated elements of the second

vector
conj Conjugates vector elements
abs Computes the absolute value of vector elements
arg Computes the argument of vector elements
linearfrac Performs linear fraction transformation of vectors
fmod Performs element by element computation of the modulus function of

vector a with respect to vector b
remainder Performs element by element computation of the remainder function on

the elements of vector a and the corresponding elements of vector b

Power and Root Routines Description
inv Inverts vector elements
div Divides elements of one vector by elements of the second vector
sqrt Computes the square root of vector elements
invsqrt Computes the inverse square root of vector elements

continues on next page

8.2. oneMKL Domains 1778

oneAPI Specification, Release 1.4-provisional-rev-1

Table 5 – continued from previous page
Power and Root Routines Description
cbrt Computes the cube root of vector elements
invcbrt Computes the inverse cube root of vector elements
pow2o3 Computes the cube root of the square of each vector element
pow3o2 Computes the square root of the cube of each vector element
pow Raises each vector element to the specified power
powx Raises each vector element to the constant power
powr Computes a to the power b for elements of two vectors, where the ele-

ments of vector argument a are all non-negative
hypot Computes the square root of sum of squares

Exponential and Logarithmic Routines Description
exp Computes the base e exponential of vector elements
exp2 Computes the base 2 exponential of vector elements
exp10 Computes the base 10 exponential of vector elements
expm1 Computes the base e exponential of vector elements decreased by 1
ln Computes the natural logarithm of vector elements
log2 Computes the base 2 logarithm of vector elements
log10 Computes the base 10 logarithm of vector elements
log1p Computes the natural logarithm of vector elements that are increased

by 1
logb Computes the exponents of the elements of input vector a

Trigonometric Routines Description
cos Computes the cosine of vector elements
sin Computes the sine of vector elements
sincos Computes the sine and cosine of vector elements
cis Computes the complex exponent of vector elements (cosine and sine

combined to complex value)
tan Computes the tangent of vector elements
acos Computes the inverse cosine of vector elements
asin Computes the inverse sine of vector elements
atan Computes the inverse tangent of vector elements
atan2 Computes the four-quadrant inverse tangent of ratios of the elements of

two vectors
cospi Computes the cosine of vector elements multiplied by 𝜋
sinpi Computes the sine of vector elements multiplied by 𝜋
tanpi Computes the tangent of vector elements multiplied by 𝜋
acospi Computes the inverse cosine of vector elements divided by 𝜋
asinpi Computes the inverse sine of vector elements divided by 𝜋
atanpi Computes the inverse tangent of vector elements divided by 𝜋
atan2pi Computes the four-quadrant inverse tangent of the ratios of the corre-

sponding elements of two vectors divided by 𝜋
cosd Computes the cosine of vector elements multiplied by 𝜋/180
sind Computes the sine of vector elements multiplied by 𝜋/180
tand Computes the tangent of vector elements multiplied by 𝜋/180

8.2. oneMKL Domains 1779

oneAPI Specification, Release 1.4-provisional-rev-1

Hyperbolic Routines Description
cosh Computes the hyperbolic cosine of vector elements
sinh Computes the hyperbolic sine of vector elements
tanh Computes the hyperbolic tangent of vector elements
acosh Computes the inverse hyperbolic cosine of vector elements
asinh Computes the inverse hyperbolic sine of vector elements
atanh Computes the inverse hyperbolic tangent of vector elements.

Special Routines Description
erf Computes the error function value of vector elements
erfc Computes the complementary error function value of vector elements
cdfnorm Computes the cumulative normal distribution function value of vector

elements
erfinv Computes the inverse error function value of vector elements
erfcinv Computes the inverse complementary error function value of vector el-

ements
cdfnorminv Computes the inverse cumulative normal distribution function value of

vector elements
lgamma Computes the natural logarithm for the absolute value of the gamma

function of vector elements
tgamma Computes the gamma function of vector elements
expint1 Computes the exponential integral of vector elements

Rounding Routines Description
floor Rounds towards minus infinity
ceil Rounds towards plus infinity
trunc Rounds towards zero infinity
round Rounds to nearest integer
nearbyint Rounds according to current mode
rint Rounds according to current mode and reports inexact result status
modf Computes the integer and fractional parts
frac Computes the fractional part

Miscellaneous Routines Description
copysign Returns vector of elements of one argument with signs changed to match

other argument elements
nextafter Returns vector of elements containing the next representable floating-

point values following the values from the elements of one vector in the
direction of the corresponding elements of another vector

fdim Returns vector containing the differences of the corresponding elements
of the vector arguments if the first is larger and +0 otherwise

fmax Returns the larger of each pair of elements of the two vector arguments
fmin Returns the smaller of each pair of elements of the two vector arguments
maxmag Returns the element with the larger magnitude between each pair of

elements of the two vector arguments
continues on next page

8.2. oneMKL Domains 1780

oneAPI Specification, Release 1.4-provisional-rev-1

Table 11 – continued from previous page
Miscellaneous Routines Description
minmag Returns the element with the smaller magnitude between each pair of

elements of the two vector arguments

Parent topic: Vector Math

abs

Computes absolute value of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event abs(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<R,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event abs(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
R* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

abs supports the following precisions.

T R
float float
double double
std::complex<float> float
std::complex<double> double

8.2. oneMKL Domains 1781

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The abs(a) function computes an absolute value of vector elements.

Argument Result Status code
+0 +0
-0 +0
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

abs(a) = hypot(RE(a), IM(a)).

The abs function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1782

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

acos

Computes inverse cosine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event acos(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event acos(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1783

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

acos supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The acos(a) function computes inverse cosine of vector elements.

Argument Result Status code
+0 +𝜋/2
-0 +𝜋/2
+1 +0
-1 +𝜋
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +3·𝜋/4-
i·∞

+𝜋/2-i·∞ +𝜋/2-i·∞ +𝜋/2-i·∞ +𝜋/2-i·∞ +𝜋/4-i·∞ QNAN-i·∞

+i·Y +𝜋-i·∞ +0-i·∞ QNAN+i·QNAN
+i·0 +𝜋-i·∞ +𝜋/2-i·0 +𝜋/2-i·0 +0-i·∞ QNAN+i·QNAN
-i·0 +𝜋+i·∞ +𝜋/2+i·0 +𝜋/2+i·0 +0+i·∞ QNAN+i·QNAN
-i·Y +𝜋+i·∞ +0+i·∞ QNAN+i·QNAN
-i·∞ +3𝜋/4+i·∞ +𝜋/2+i·∞ +𝜋/2+i·∞ +𝜋/2+i·∞ +𝜋/2+i·∞ +𝜋/4+i·∞ QNAN+i·∞
+i·NAN QNAN+i·∞QNAN+i·QNAN+𝜋/2+i·QNAN+𝜋/2+i·QNANQNAN+i·QNANQNAN+i·∞QNAN+i·QNAN

Notes:

• acos(CONJ(a))=CONJ(acos(a)).

8.2. oneMKL Domains 1784

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1785

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

acosh

Computes inverse hyperbolic cosine (nonnegative) of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event acosh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event acosh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

acosh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1786

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The acosh(a) function computes inverse hyperbolic cosine (nonnegative) of vector elements.

Argument Result Status code
+1 +0
a < +1 QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +∞ + 𝑖 ·
3𝜋
4

+∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/4 +∞+i·QNAN

+i·Y +∞+i·𝜋 +∞+i·0 QNAN+i·QNAN
+i·0 +∞+i·𝜋 +0+i·𝜋/2 +0+i·𝜋/2 +∞+i·0 QNAN+i·QNAN
-i·0 +∞+i·𝜋 +0+i·𝜋/2 +0+i·𝜋/2 +∞+i·0 QNAN+i·QNAN
-i·Y +∞+i·𝜋 +∞+i·0 QNAN+i·QNAN
-i·∞ +∞ − 𝑖 ·

3𝜋
4

+∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/4 +∞+i·QNAN

+i·NAN +∞+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Notes:

• acosh(CONJ(a))=CONJ(acosh(a)).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

8.2. oneMKL Domains 1787

oneAPI Specification, Release 1.4-provisional-rev-1

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

acospi

Computes the inverse cosine of vector elements divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event acospi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,

(continues on next page)

8.2. oneMKL Domains 1788

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event acospi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

acospi supports the following precisions.

T
float
double

Description

The acospi(a) function computes the inverse cosine of vector elements divided by 𝜋. For an argument a, the function
computes acos(a)/𝜋.

Argument Result Status code
+0 +1/2
-0 +1/2
+1 +0
-1 +1
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom

• ∞ QNAN oneapi::mkl::vm::status::errdom

QNAN QNAN
SNAN QNAN

8.2. oneMKL Domains 1789

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1790

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

add

Performs element by element addition of vector a and vector b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event add(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event add(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

add supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1791

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The add(a, b) function performs element by element addition of vector a and vector b.

Argument 1 Argument 2 Result Status code
+0 +0 +0
+0 -0 +0
-0 +0 +0
-0 -0 -0
+∞ +∞ +∞
+∞ -∞ QNAN
-∞ +∞ QNAN
-∞ -∞ -∞
SNAN any value QNAN
any value SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

add(x1+i*y1, x2+i*y2) = (x1+x2) + i*(y1+y2)

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

8.2. oneMKL Domains 1792

oneAPI Specification, Release 1.4-provisional-rev-1

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

arg

Computes argument of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event arg(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<R,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

(continues on next page)

8.2. oneMKL Domains 1793

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event arg(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
R* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

arg supports the following precisions.

T R
std::complex<float> float
std::complex<double> double

Description

The arg(a) function computes argument of vector elements.

See Special Value Notations for the conventions used in the table below.

RE(a) i·IM(a) -∞ -X -0 +0 +X +∞ NAN
+i·∞ +3·𝜋/4 +𝜋/2 +𝜋/2 +𝜋/2 +𝜋/2 +𝜋/4 NAN
+i·Y +𝜋 +𝜋/2 +𝜋/2 +0 NAN
+i·0 +𝜋 +𝜋 +𝜋 +0 +0 +0 NAN
-i·0 -𝜋 -𝜋 -𝜋 -0 -0 -0 NAN
-i·Y -𝜋 -𝜋/2 -𝜋/2 -0 NAN
-i·∞ -3·𝜋/4 -𝜋/2 -𝜋/2 -𝜋/2 -𝜋/2 -𝜋/4 NAN
+i·NAN NAN NAN NAN NAN NAN NAN NAN

Note

arg(a)=atan2(IM(a), RE(a))

The arg function does not generate any errors.

8.2. oneMKL Domains 1794

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1795

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

asin

Computes inverse sine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event asin(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event asin(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

asin supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1796

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The asin(a) function computes inverse sine of vector elements.

Argument Result Status code
+0 +0
-0 -0
+1 +𝜋/2
-1 -𝜋/2
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

asin(a) = -i*asinh(i*z).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1797

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

asinh

Computes inverse hyperbolic sine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event asinh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event asinh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,

(continues on next page)

8.2. oneMKL Domains 1798

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

asinh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The asinh(a) function computes inverse hyperbolic sine of vector elements.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ -∞+i·𝜋/4 -∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/4 +∞+i·QNAN
+i·Y -∞+i·0 +∞+i·0 QNAN+i·QNAN
+i·0 +∞+i·0 +0+i·0 +0+i·0 +∞+i·0 QNAN+i·QNAN
-i·0 -∞-i·0 -0-i·0 +0-i·0 +∞-i·0 QNAN-

i·QNAN
-i·Y -∞-i·0 +∞-i·0 QNAN+i·QNAN
-i·∞ -∞-i·𝜋/4 -∞-i·𝜋/2 -∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/4 +∞+i·QNAN
+i·NAN -

∞+i·QNAN
QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

The asinh(a) function does not generate any errors.

Notes:

• asinh(CONJ(a))=CONJ(asinh(a))

• asinh(-a)=-asinh(a).

8.2. oneMKL Domains 1799

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1800

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

asinpi

Computes the inverse sine of vector elements divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event asinpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event asinpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

asinpi supports the following precisions.

T
float
double

8.2. oneMKL Domains 1801

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The asinpi(a) function computes the inverse sine of vector elements divided by 𝜋. For an argument a, the function
computes asinpi(a)/𝜋.

Argument Result Status code
+0 +0
-0 -0
+1 +1/2
-1 -1/2
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1802

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atan

Computes inverse tangent of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atan(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atan(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,

(continues on next page)

8.2. oneMKL Domains 1803

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

atan supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The atan(a) function computes inverse tangent of vector elements.

Argument Result Status code
+0 +0
-0 -0
+∞ +𝜋/2
-∞ -𝜋/2
QNAN QNAN
SNAN QNAN

The atan function does not generate any errors.

Specifications for special values of the complex functions are defined according to the following formula

atan(a) = -i*atanh(i*a).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

8.2. oneMKL Domains 1804

oneAPI Specification, Release 1.4-provisional-rev-1

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atan2

Computes four-quadrant inverse tangent of elements of two vectors.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atan2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1805

oneAPI Specification, Release 1.4-provisional-rev-1

USM API:

namespace oneapi::mkl::vm {

sycl::event atan2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

ad2d supports the following precisions.

T
float
double

Description

The atan2(a, b) function computes four-quadrant inverse tangent of elements of two vectors.

The elements of the output vector are computed as the four-quadrant arctangent of a[i] / b[i].

Argument 1 Argument 2 Result Status code
-∞ -∞ -3*𝜋/4
-∞ b < +0 -𝜋/2
-∞ -0 -𝜋/2
-∞ +0 -𝜋/2
-∞ b > +0 -𝜋/2
-∞ +∞ -𝜋/4
a < +0 -∞ -𝜋
a < +0 -0 -𝜋/2
a < +0 +0 -𝜋/2
a < +0 +∞ -0
-0 -∞ -𝜋
-0 b < +0 -𝜋
-0 -0 -𝜋
-0 +0 -0
-0 b > +0 -0
-0 +∞ -0
+0 -∞ +𝜋
+0 b < +0 +𝜋
+0 -0 +𝜋
+0 +0 +0
+0 b > +0 +0
+0 +∞ +0
a > +0 -∞ +𝜋

continues on next page

8.2. oneMKL Domains 1806

oneAPI Specification, Release 1.4-provisional-rev-1

Table 12 – continued from previous page
Argument 1 Argument 2 Result Status code
a > +0 -0 +𝜋/2
a > +0 +0 +𝜋/2
a > +0 +∞ +0
+∞ -∞ +3*𝜋/4
+∞ b < +0 +𝜋/2
+∞ -0 +𝜋/2
+∞ +0 +𝜋/2
+∞ b > +0 +𝜋/2
+∞ +∞ +𝜋/4
a > +0 QNAN QNAN
a > +0 SNAN QNAN
QNAN b > +0 QNAN
SNAN b > +0 QNAN
QNAN QNAN QNAN
QNAN SNAN QNAN
SNAN QNAN QNAN
SNAN SNAN QNAN

The atan2(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

8.2. oneMKL Domains 1807

oneAPI Specification, Release 1.4-provisional-rev-1

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atan2pi

Computes the four-quadrant inverse tangent of the ratios of the corresponding elements of two vectors divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atan2pi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atan2pi(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1808

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

atan2pi supports the following precisions.

T
float
double

Description

The atan2pi(a, b) function computes the four-quadrant inverse tangent of the ratios of the corresponding elements of
two vectors divided by 𝜋.

For the elements of the output vector y, the function computers the four-quadrant arctangent of ai/bi, with the result
divided by 𝜋.

Argument 1 Argument 2 Result Status code
-∞ -∞ -3/4
-∞ b < +0 -1/2
-∞ -0 +1/2
-∞ +0 -1/2
-∞ x > +0 -1/2
-∞ +∞ -1/4
a < +0 -∞ -1
a < +0 -0 -1/2
a < +0 +0 -1/2
a < +0 +∞ -0
-0 -∞ -1
-0 b < +0 -1
-0 -0 -1
-0 +0 -0
-0 b > +0 -0
-0 +∞ -0
+0 -∞ +1
+0 b < +0 +1
+0 -0 +1
+0 +0 +0
+0 b > +0 +0
+0 +∞ +0
a > +0 -∞ +1
a > +0 -0 +1/2
x > +0 +0 +1/2
a > +0 +∞ +1/4

continues on next page

8.2. oneMKL Domains 1809

oneAPI Specification, Release 1.4-provisional-rev-1

Table 13 – continued from previous page
Argument 1 Argument 2 Result Status code
+∞ -∞ +3/4
+∞ b < +0 +1/2
+∞ -0 +1/2
+∞ +0 +1/2
+∞ b > +0 +1/2
+∞ +∞ +1/4
a > +0 QNAN QNAN
a > +0 SNAN QNAN
QNAN b > +0 QNAN
SNAN x > +0 QNAN
QNAN QNAN QNAN
QNAN SNAN QNAN
SNAN QNAN QNAN
SNAN SNAN QNAN

The atan2pi(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for

8.2. oneMKL Domains 1810

oneAPI Specification, Release 1.4-provisional-rev-1

possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atanh

Computes inverse hyperbolic tangent of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atanh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atanh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,

(continues on next page)

8.2. oneMKL Domains 1811

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

atanh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The atanh(a) function computes inverse hyperbolic tangent of vector elements.

Argument Result Status code
+1 +∞ oneapi::mkl::vm::status::sing
-1 -∞ oneapi::mkl::vm::status::sing
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞ oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ -0+i·𝜋/2 -0+i·𝜋/2 -0+i·𝜋/2 +0+i·𝜋/2 +0+i·𝜋/2 +0+i·𝜋/2 +0+i·𝜋/2
+i·Y -0+i·𝜋/2 +0+i·𝜋/2 QNAN+i·QNAN
+i·0 -0+i·𝜋/2 -0+i·0 +0+i·0 +0+i·𝜋/2 QNAN+i·QNAN
-i·0 -0-i·𝜋/2 -0-i·0 +0-i·0 +0-i·𝜋/2 QNAN-

i·QNAN
-i·Y -0-i·𝜋/2 +0-i·𝜋/2 QNAN+i·QNAN
-i·∞ -0-i·𝜋/2 -0-i·𝜋/2 -0-i·𝜋/2 +0-i·𝜋/2 +0-i·𝜋/2 +0-i·𝜋/2 +0-i·𝜋/2
+i·NAN -

0+i·QNAN
QNAN+i·QNAN-

0+i·QNAN
+0+i·QNAN QNAN+i·QNAN+0+i·QNAN QNAN+i·QNAN

Notes:

• atanh(±1±i*0)=±∞±i*0, and oneapi::mkl::vm::status::sing error is generated

• atanh(CONJ(a))=CONJ(atanh(a))

• atanh(-a)=-atanh(a).

8.2. oneMKL Domains 1812

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1813

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atanpi

Computes the inverse tangent of vector elements divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atanpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atanpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

atanpi supports the following precisions.

T
float
double

8.2. oneMKL Domains 1814

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The atanpi(a) function computes the inverse tangent of vector elements divided by 𝜋. For an argument a, the function
computes atan(a)/𝜋.

Argument Result Status code
+0 +0
-0 -0
+∞ +1/2
-∞ -1/2
QNAN QNAN
SNAN QNAN

The atanpi function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1815

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cbrt

Computes a cube root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cbrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cbrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1816

oneAPI Specification, Release 1.4-provisional-rev-1

cbrt supports the following precisions.

T
float
double

Description

The cbrt(a)function computes a cube root of vector elements.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN
+0 +0

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1817

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cdfnorm

Computes the cumulative normal distribution function values of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cdfnorm(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cdfnorm(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1818

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

cdfnorm supports the following precisions.

T
float
double

Description

The cdfnorm function computes the cumulative normal distribution function values for elements of the input vector a
and writes them to the output vector y.

The cumulative normal distribution function is defined as given by:

cdfnorm(𝑥) =
1√
2𝜋

∫︁ 𝑥

−∞
𝑒−

𝑡2

2 d𝑥

Useful relations for these functions:

erf(𝑥) + erfc(𝑥) = 1

cdfnorm(𝑥) =
1

2

(︂
1 + erf

(︂
𝑥√
2

)︂)︂
= 1− 1

2
erfc

(︂
𝑥√
2

)︂
where erf and erfc are the error and complementary error functions, respectively.

The following figure illustrates the relationships among the family of error functions (erf, erfc, cdfnorm).

cdfnorm Family Functions Relationship |

8.2. oneMKL Domains 1819

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result Status code
a < underflow +0 oneapi::mkl::vm::status::underflow
+∞ +1
-∞ +0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

8.2. oneMKL Domains 1820

oneAPI Specification, Release 1.4-provisional-rev-1

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cdfnorminv

Computes the inverse cumulative normal distribution function values of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cdfnorminv(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1821

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cdfnorminv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cdfnorminv supports the following precisions.

T
float
double

Description

The cdfnorminv(a) function computes the inverse cumulative normal distribution function values for elements of the
input vector a and writes them to the output vector y.

The inverse cumulative normal distribution function is defined as given by:

cdfnorminv(𝑥) = cdfnorm−1(𝑥)

where cdfnorm(𝑥) denotes the cumulative normal distribution function.

Useful relations:

erfcinv(𝑥) = erfinv(1− 𝑥)

cdfnorminv(𝑥) =
√
2 erfinv(2𝑥− 1)

=
√
2 erfcinv(2− 2𝑥)

where erfinv(𝑥) denotes the inverse error function and erfcinv(𝑥) denotes the inverse complementary error function.

The following figure illustrates the relationships among erfinv family functions (erfinv, erfcinv, cdfnorminv).

cdfnorminv Family Functions Relationship |

8.2. oneMKL Domains 1822

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result Status code
+0.5 +0
+1 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
+0 -∞ oneapi::mkl::vm::status::sing
a < -0 QNAN oneapi::mkl::vm::status::errdom
a > +1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1823

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

ceil

Computes an integer value rounded towards plus infinity for each vector element.

8.2. oneMKL Domains 1824

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event ceil(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event ceil(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

ceil supports the following precisions.

T
float
double

Description

The ceil(a) function computes an integer value rounded towards plus infinity for each vector element.

𝑦𝑖 = ⌈𝑎𝑖⌉

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The ceil function does not generate any errors.

8.2. oneMKL Domains 1825

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1826

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cis

Computes complex exponent of real vector elements (cosine and sine of real vector elements combined to complex
value).

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cis(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<R,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cis(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
R* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cis supports the following precisions.

T R
float std::complex<float>
double std::complex<double>

8.2. oneMKL Domains 1827

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The cis(a) function computes complex exponent of real vector elements (cosine and sine of real vector elements com-
bined to complex value).

Argument Result Status code

• 0
+1+i·0

• 0
+1-i·0

• ∞ QNAN+i·QNAN oneapi::mkl::vm::status::errdom

• ∞ QNAN+i·QNAN oneapi::mkl::vm::status::errdom

QNAN QNAN+i·QNAN
SNAN QNAN+i·QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for

8.2. oneMKL Domains 1828

oneAPI Specification, Release 1.4-provisional-rev-1

possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

conj

Performs element by element conjugation of the vector.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event conj(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event conj(
sycl::queue& exec_queue,

(continues on next page)

8.2. oneMKL Domains 1829

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

conj supports the following precisions.

T
std::complex<float>
std::complex<double>

Description

The conj function performs element by element conjugation of the vector.

No special values are specified. The conj function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1830

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

copysign

Returns vector of elements of one argument with signs changed to match other argument elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event copysign(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event copysign(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

(continues on next page)

8.2. oneMKL Domains 1831

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

copysign supports the following precisions.

T
float
double

Description

The copysign(a, b) function returns the first vector argument elements with the sign changed to match the sign of the
second vector argument’s corresponding elements.

Argument 1 Argument 2 Result Status code
any value positive value +any value
any value negative value -any value

The copysign(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

8.2. oneMKL Domains 1832

oneAPI Specification, Release 1.4-provisional-rev-1

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cos

Computes cosine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cos(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

8.2. oneMKL Domains 1833

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::vm {

sycl::event cos(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cos supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The cos(a) function computes cosine of vector elements.

Note that arguments abs(a[i]) ≤ 213 and abs(a[i]) ≤ 216 for single and double precisions, respectively, are
called fast computational path. These are trigonometric function arguments for which VM provides the best possible
performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and
Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on
the entire function domain. However, these functions provide less accuracy.

Argument Result VM status code
+0 +1
-0 +1
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

Cos(z) = Cosh(i*z).

8.2. oneMKL Domains 1834

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1835

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cosd

Computes the cosine of vector elements multiplied by 𝜋/180.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cosd(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cosd(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cosd supports the following precisions.

T
float
double

8.2. oneMKL Domains 1836

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The cosd(a) function is a degree argument trigonometric function. It computes the cosine of vector elements multiplied
by 𝜋/180. For an argument a, the function computes cos(𝜋*a/180).

Note that arguments abs(ai) ≤ 224 for single precision or abs(ai) ≤ 252 for double precision, they belong to the fast
computational path: trigonometric function arguments for which VM provides the best possible performance. Avoid
arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA)
functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance
(EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

Argument Result Status code
+0 +1
-0 +1
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1837

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cosh

Computes hyperbolic cosine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cosh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cosh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,

(continues on next page)

8.2. oneMKL Domains 1838

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cosh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The cosh(a) function computes hyperbolic cosine of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision -Log(FLT_MAX)-Log2 <a[i] < Log(FLT_MAX)+Log2
double precision -Log(DBL_MAX)-Log2 <a[i] < Log(DBL_MAX)+Log2

Argument Result Status code
+0 +1
-0 +1
X > overflow +∞ oneapi::mkl::vm::status::overflow
X < -overflow +∞ oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

+i·∞ +∞+i·QNAN QNAN+i·QNANQNAN-i·0 QNAN+i·0 QNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN
+i·Y +∞·Cos(Y)-

i·∞·Sin(Y)
+∞·CIS(Y) QNAN+i·QNAN

+i·0 +∞-i·0 +1-i·0 +1+i·0 +∞+i·0 QNAN+i·0
-i·0 +∞+i·0 +1+i·0 +1-i·0 +∞-i·0 QNAN-i·0
-i·Y +∞·Cos(Y)-

i·∞·Sin(Y)
+∞·CIS(Y) QNAN+i·QNAN

-i·∞ +∞+i·QNAN QNAN+i·QNANQNAN+i·0 QNAN-i·0 QNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN
+i·NAN +∞+i·QNAN QNAN+i·QNANQNAN+i·QNANQNAN-

i·QNAN
QNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Notes:

8.2. oneMKL Domains 1839

oneAPI Specification, Release 1.4-provisional-rev-1

• The complex cosh(a) function sets the VM status code to
oneapi::mkl::vm::status::overflow in the case of overflow, that is, when RE(a), IM(a) are finite
non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the
target precision.

• cosh(CONJ(a))=CONJ(cosh(a))

• cosh(-a)=cosh(a).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1840

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cospi

Computes the cosine of vector elements multiplied by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cospi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cospi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1841

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

cospi supports the following precisions.:

T
float
double

Description

The cospi(a) function computes the cosine of vector elements multiplied by 𝜋. For an argument a, the function computes
cos(𝜋*a).

Argument Result Status code
+0 +1
-0 +1
n + 0.5, for any integer n where n + 0.5 is representable +0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

If arguments abs(ai) ≤ 222 for single precision or abs(ai) ≤ 251 for double precision, they belong to the fast computa-
tional path: arguments for which VM provides the best possible performance. Avoid arguments which do not belong
to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do
not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the
entire function domain. However, these functions provide lower accuracy.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

8.2. oneMKL Domains 1842

oneAPI Specification, Release 1.4-provisional-rev-1

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

div

Performs element by element division of vector a by vector b

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event div(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1843

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event div(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

div supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The div(a, b) function performs element by element division of vector a by vector b.

Argument 1 Argument 2 Result VM status code
X > +0 +0 +∞ oneapi::mkl::vm::status::sing
X > +0 -0 -∞ oneapi::mkl::vm::status::sing
X < +0 +0 -∞ oneapi::mkl::vm::status::sing
X < +0 -0 +∞ oneapi::mkl::vm::status::sing
+0 +0 QNAN oneapi::mkl::vm::status::sing
-0 -0 QNAN oneapi::mkl::vm::status::sing
X > +0 +∞ +0
X > +0 -∞ -0
+∞ +∞ QNAN
-∞ -∞ QNAN
QNAN QNAN QNAN
SNAN SNAN QNAN

8.2. oneMKL Domains 1844

oneAPI Specification, Release 1.4-provisional-rev-1

Specifications for special values of the complex functions are defined according to the following formula

Div(x1+i*y1, x2+i*y2) = (x1+i*y1)*(x2-i*y2)/(x2*x2+y2*y2).

Overflow in a complex function occurs when x2+i*y2 is not zero, x1, x2, y1, y2 are finite numbers, but the real or
imaginary part of the exact result is so large that it does not fit the target precision. In that case, the function returns∞
in that part of the result, and sets the VM status code to oneapi::mkl::vm::status::overflow.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1845

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erf

Computes the error function value of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erf(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event erf(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1846

oneAPI Specification, Release 1.4-provisional-rev-1

erf supports the following precisions.

T
float
double

Description

The erf function computes the error function values for elements of the input vector a and writes them to the output
vector y.

The error function is defined as given by:

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

𝑒−𝑡
2

d𝑡

Useful relations:

erfc(𝑥) = 1− erf(𝑥)

where erfc is the complementary error function.

Φ(𝑥) =
1

2

(︁
1 + erf

(︁
𝑥/
√
2
)︁)︁

where

Φ(𝑥) =
1√
2𝜋

∫︁ 𝑥

0

exp(−𝑡2/2) d𝑡

is the cumulative normal distribution function.

Φ−1(𝑥) =
√
2 erf−1(2𝑥− 1)

where Φ−1(𝑥) and erf−1(𝑥) are the inverses to Φ(𝑥) and erf(𝑥), respectively.

The following figure illustrates the relationships among erf family functions (erf, erfc, cdfnorm).

erf Family Functions Relationship |

8.2. oneMKL Domains 1847

oneAPI Specification, Release 1.4-provisional-rev-1

Useful relations for these functions:

erf(𝑥) + erfc(𝑥) = 1

cdfnorm(𝑥) =
1

2

(︂
1 + erf

(︂
𝑥√
2

)︂)︂
= 1− 1

2
erfc

(︂
𝑥√
2

)︂

Argument Result Status code
+∞ +1
-∞ -1
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

8.2. oneMKL Domains 1848

oneAPI Specification, Release 1.4-provisional-rev-1

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erfc

Computes the complementary error function value of vector elements.

8.2. oneMKL Domains 1849

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erfc(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event erfc(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

erfc supports the following precisions.

T
float
double

Description

The erfc function computes the complementary error function values for elements of the input vector a and writes them
to the output vector y.

The complementary error function is defined as follows:

erfc(𝑥) =
2√
𝜋

∫︁ ∞
𝑥

𝑒−𝑡
2

d𝑡

8.2. oneMKL Domains 1850

oneAPI Specification, Release 1.4-provisional-rev-1

Useful relations:

erfc(𝑥) = 1− erf(𝑥)

Φ(𝑥) =
1

2

(︁
1 + erf

(︁
𝑥/
√
2
)︁)︁

where

Φ(𝑥) =
1√
2𝜋

∫︁ 𝑥

0

exp(−𝑡2/2) d𝑡

is the cumulative normal distribution function.

Φ−1(𝑥) =
√
2 erf−1(2𝑥− 1)

where Φ−1(𝑥) and erf−1(𝑥) are the inverses to Φ(𝑥) and erf(𝑥), respectively.

The following figure illustrates the relationships among erf family functions (erf, erfc, cdfnorm).

erfc Family Functions Relationship |

Useful relations for these functions:

erf(𝑥) + erfc(𝑥) = 1

cdfnorm(𝑥) =
1

2

(︂
1 + erf

(︂
𝑥√
2

)︂)︂
= 1− 1

2
erfc

(︂
𝑥√
2

)︂

8.2. oneMKL Domains 1851

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result Status code
a > underflow +0 oneapi::mkl::vm::status::underflow
+∞ +0
-∞ +2
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1852

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erfcinv

Computes the inverse complementary error function value of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erfcinv(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event erfcinv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1853

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

erfcinv supports the following precisions.

T
float
double

Description

The erfcinv(a) function computes the inverse complimentary error function values for elements of the input vector a
and writes them to the output vector y.

The inverse complementary error function is defined as given by:

erfcinv(𝑥) = erfinv(1− 𝑥)

Useful relations for these functions:

erfcinv(𝑥) = erfinv(1− 𝑥)

cdfnorminv(𝑥) =
√
2 erfinv(2𝑥− 1)

=
√
2 erfcinv(2− 2𝑥)

erfinv(𝑥) = erf−1(𝑥)

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

𝑒−𝑡
2

d𝑡

where erf(𝑥) denotes the error function and erfinv(𝑥) denotes the inverse error function.

The following figure illustrates the relationships among erfinv family functions (erfinv, erfcinv, cdfnorminv).

erfcinv Family Functions Relationship |

8.2. oneMKL Domains 1854

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result Status code
+1 +0
+2 -∞ oneapi::mkl::vm::status::sing
-0 +∞ oneapi::mkl::vm::status::sing
+0 +∞ oneapi::mkl::vm::status::sing
a < -0 QNAN oneapi::mkl::vm::status::errdom
a > +2 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1855

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erfinv

Computes inverse error function value of vector elements.

8.2. oneMKL Domains 1856

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erfinv(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event erfinv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

erfinv supports the following precisions.

T
float
double

Description

The erfinv(a) function computes the inverse error function values for elements of the input vector a and writes them to
the output vector y.

𝑦𝑖 = erf−1(𝑎)

where erf(𝑥) is the error function defined as given by:

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

𝑒−𝑡
2

d𝑡

Useful relations for these functions:

erfcinv(𝑥) = erfinv(1− 𝑥)

8.2. oneMKL Domains 1857

oneAPI Specification, Release 1.4-provisional-rev-1

cdfnorminv(𝑥) =
√
2 erfinv(2𝑥− 1)

=
√
2 erfcinv(2− 2𝑥)

erf−1(𝑥) = erfc−1(1− 𝑥)

where erfc is the complementary error function.

Φ(𝑥) =
1

2

(︁
1 + erf

(︁
𝑥/
√
2
)︁)︁

where

Φ(𝑥) =
1√
2𝜋

∫︁ 𝑥

0

exp(−𝑡2/2) d𝑡

is the cumulative normal distribution function.

Φ−1(𝑥) =
√
2 erf−1(2𝑥− 1)

where Φ−1(𝑥) and erf−1(𝑥) are the inverses to Φ(𝑥) and erf(𝑥), respectively.

The following figure illustrates the relationships among erfinv family functions (erfinv, erfcinv, cdfnorminv).

erfinv Family Functions Relationship |

Argument Result Status code
+0 +0
-0 -0
+1 +∞ oneapi::mkl::vm::status::sing
-1 -∞ oneapi::mkl::vm::status::sing
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

8.2. oneMKL Domains 1858

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1859

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

exp

Computes an exponential of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event exp(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event exp(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

exp supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1860

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The exp(a) function computes an exponential of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision a[i] < Log(FLT_MAX)
double precision a[i] < Log(DBL_MAX)

Argument Result Status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < underflow +0 oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ +0
QNAN QNAN
SNAN QNAN

+i·∞
+i·Y
+i·0
-i·0
-i·Y
-i·∞
+i·NAN

Notes:

• The complex exp(z) function sets the VM status code to
oneapi::mkl::vm::status::overflow in the case of overflow, that is, when both RE(z) and IM(z)
are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not
meet the target precision.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1861

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

exp10

Computes the base 10 exponential of vector elements.

8.2. oneMKL Domains 1862

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event exp10(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event exp10(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

exp10 supports the following precisions.

T
float
double

Description

The exp10(a) function computes the base 10 exponential of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision ai < log10(FLT_MAX)
double precision ai < log10(DBL_MAX)

8.2. oneMKL Domains 1863

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result VM status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < underflow +0 oneapi::mkl::vm::status::underflow
+∞ +∞
-∞ +0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1864

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

exp2

Computes the base 2 exponential of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event exp2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event exp2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1865

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

exp2 supports the following precisions.

T
float
double

Description

The exp2 function computes the base 2 exponential of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision ai < log2(FLT_MAX)
double precision ai < log2(DBL_MAX)

Argument Result Status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < underflow +0 oneapi::mkl::vm::status::underflow
+∞ +∞
-∞ +0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

8.2. oneMKL Domains 1866

oneAPI Specification, Release 1.4-provisional-rev-1

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

expint1

Computes the exponential integral of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event expint1(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1867

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event expint1(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

expint1 supports the following precisions.

T
float
double

Description

The expint1(a) function computes the exponential integral of vector elements of the input vector a and writes them to
the output vector y.

For positive real values x, this can be written as:

𝐸1(𝑥) =

∫︁ ∞
𝑥

𝑒−𝑡

𝑡
d𝑡 =

∫︁ ∞
1

𝑒−𝑥𝑡

𝑡
d𝑡

For negative real values x, the result is defined as NAN.

Argument Result Status code
x < +0 QNAN oneapi::mkl::vm::status::errdom
+0 +∞ oneapi::mkl::vm::status::sing
-0 +∞ oneapi::mkl::vm::status::sing
+∞ +0
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

8.2. oneMKL Domains 1868

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1869

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

expm1

Computes an exponential of vector elements decreased by 1. exp(a[i]) - 1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event expm1(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event expm1(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

expm1 supports the following precisions.

T
float
double

8.2. oneMKL Domains 1870

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The expm1(a) function computes an exponential of vector elements decreased by 1.

Argument Result Status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ -0
QNAN QNAN
SNAN QNAN

Data Type Threshold Limitations on Input Parameters
single precision a[i] < Log(FLT_MAX)
double precision a[i] < Log(DBL_MAX)

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for

8.2. oneMKL Domains 1871

oneAPI Specification, Release 1.4-provisional-rev-1

possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fdim

Returns vector containing the differences of the corresponding elements of the vector arguments if the first is larger
and +0 otherwise.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fdim(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

8.2. oneMKL Domains 1872

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::vm {

sycl::event fdim(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

fdim supports the following precisions.

T
float
double

Description

The fdim(a, b) function returns a vector containing the differences of the corresponding elements of the first and second
vector arguments if the first element is larger, and +0 otherwise.

Argument 1 Argument 2 Result Status code
any QNAN QNAN
any SNAN QNAN
QNAN any QNAN
SNAN any QNAN

The fdim(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1873

oneAPI Specification, Release 1.4-provisional-rev-1

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

floor

Computes an integer value rounded towards minus infinity for each vector element.

8.2. oneMKL Domains 1874

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event floor(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event floor(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

floor supports the following precisions.

T
float
double

Description

The floor(a)function computes an integer value rounded towards minus infinity for each vector element.

𝑦𝑖 = ⌊𝑎𝑖⌋

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The floor function does not generate any errors.

8.2. oneMKL Domains 1875

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1876

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fmax

Returns the larger of each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fmax(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event fmax(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

fmax supports the following precisions.

T
float
double

8.2. oneMKL Domains 1877

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The fmax(a, b) function returns a vector with element values equal to the larger value from each pair of corresponding
elements of the two vectors a and b: if a < bfmax(a, b) returns b, otherwise fmax(a, b) returns a.

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The fmax(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1878

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fmin

Returns the smaller of each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fmin(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event fmin(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

(continues on next page)

8.2. oneMKL Domains 1879

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

fmin supports the following precisions.

T
float
double

Description

The fmin(a, b) function returns a vector with element values equal to the smaller value from each pair of corresponding
elements of the two vectors a and b: if a > bfmin(a, b) returns b, otherwise fmin(a, b) returns a.

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The fmin(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

8.2. oneMKL Domains 1880

oneAPI Specification, Release 1.4-provisional-rev-1

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fmod

The fmod function performs element by element computation of the modulus function of vector awith respect to vector
b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fmod(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

8.2. oneMKL Domains 1881

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::vm {

sycl::event fmod(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

fmod supports the following precisions.

T
float
double

Description

The fmod (a, b) function computes the modulus function of each element of vector a, with respect to the corresponding
elements of vector b:

ai - bi*trunc(ai/bi)

In general, the modulus function fmod (ai, bi) returns the value ai - n*bi for some integer n such that if bi is
nonzero, the result has the same sign as ai and a magnitude less than the magnitude of bi.

Argument 1 Argument 2 Result Status code
a not NAN ±0 NAN oneapi::mkl::vm::status::sing
±∞ b not NAN NAN oneapi::mkl::vm::status::sing
±0 b̸= 0, not NAN ±0
a finite ±∞ a
NAN b
a NAN NAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

8.2. oneMKL Domains 1882

oneAPI Specification, Release 1.4-provisional-rev-1

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1883

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

frac

Computes a signed fractional part for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event frac(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event frac(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

frac supports the following precisions.

T
float
double

8.2. oneMKL Domains 1884

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The frac(a) function computes a signed fractional part for each vector element.

𝑦𝑖 =

{︃
𝑎𝑖 − ⌊𝑎𝑖⌋, 𝑎𝑖 ≥ 0

𝑎𝑖 − ⌈𝑎𝑖⌉, 𝑎𝑖 < 0

Argument Result Status code
+0 +0
-0 -0
+∞ +0
-∞ -0
QNAN QNAN
SNAN QNAN

The frac function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1885

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

hypot

Computes a square root of sum of two squared elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event hypot(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event hypot(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

(continues on next page)

8.2. oneMKL Domains 1886

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

hypot supports the following precisions.

T
float
double

Description

The function hypot(a, b) computes a square root of sum of two squared elements.

Argument 1 Argument 2 Result Status code
+0 +0 +0
-0 -0 +0
+∞ any value +∞
any value +∞ +∞
SNAN any value QNAN INVALID
any value SNAN QNAN INVALID
QNAN any value QNAN
any value QNAN QNAN

Data Type Threshold Limitations on Input Parameters
single precision abs(a[i]) < sqrt(FLT_MAX)abs(b[i]) < sqrt(FLT_MAX)
double precision abs(a[i]) < sqrt(DBL_MAX)abs(b[i]) < sqrt(DBL_MAX)

The hypot(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

8.2. oneMKL Domains 1887

oneAPI Specification, Release 1.4-provisional-rev-1

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

inv

Performs element by element inversion of the vector.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event inv(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,

(continues on next page)

8.2. oneMKL Domains 1888

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event inv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

inv supports the following precisions.

T
float
double

Description

The inv(a) function performs element by element inversion of the vector.

Argument Result VM status code
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
+∞ +0
-∞ -0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

8.2. oneMKL Domains 1889

oneAPI Specification, Release 1.4-provisional-rev-1

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

8.2. oneMKL Domains 1890

oneAPI Specification, Release 1.4-provisional-rev-1

invcbrt

Computes an inverse cube root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event invcbrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event invcbrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

invcbrt supports the following precisions.

T
float
double

Description

The invcbrt(a)function computes an inverse cube root of vector elements.

8.2. oneMKL Domains 1891

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result Status code
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
+∞ +0
-∞ -0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1892

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

invsqrt

Computes an inverse square root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event invsqrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event invsqrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1893

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

invsqrt supports the following precisions.

T
float
double

Description

The invsqrt(a) function computes an inverse square root of vector elements.

Argument Result VM status code
a < +0 QNAN oneapi::mkl::vm::status::errdom
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

8.2. oneMKL Domains 1894

oneAPI Specification, Release 1.4-provisional-rev-1

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

lgamma

Computes the natural logarithm of the absolute value of gamma function for vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event lgamma(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

8.2. oneMKL Domains 1895

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::vm {

sycl::event lgamma(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

lgamma supports the following precisions.

T
float
double

Description

The lgamma(a) function computes the natural logarithm of the absolute value of gamma function for elements of the
input vector a and writes them to the output vector y. Precision overflow thresholds for the lgamma function are beyond
the scope of this document. If the result does not meet the target precision, the function sets the VM status code to
oneapi::mkl::vm::status::overflow.

Argument Result VM status code
+1 +0
+2 +0
+0 +∞ oneapi::mkl::vm::status::sing
-0 +∞ oneapi::mkl::vm::status::sing
negative integer +∞ oneapi::mkl::vm::status::sing
-∞ +∞
+∞ +∞
a > overflow +∞ oneapi::mkl::vm::status::overflow
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

8.2. oneMKL Domains 1896

oneAPI Specification, Release 1.4-provisional-rev-1

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

8.2. oneMKL Domains 1897

oneAPI Specification, Release 1.4-provisional-rev-1

linearfrac

Performs linear fraction transformation of vectors a and b with scalar parameters.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event linearfrac(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
T scalea,
T shifta,
T scaleb,
T shiftb,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event linearfrac(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T scalea,
T shifta,
T scaleb,
T shiftb,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

linearfrac supports the following precisions.

T
float
double

8.2. oneMKL Domains 1898

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The linearfrac(a, b, scalea, shifta, scaleb, shiftb) function performs a linear fraction transformation of vector a by vector
b with scalar parameters: scaling multipliers scalea, scaleb and shifting addends shifta, shiftb:

y[i]=(scalea·a[i]+shifta)/(scaleb·b[i]+shiftb), i=1,2 . . . n

The linearfrac function is implemented in the EP accuracy mode only, therefore no special values
are defined for this function. If used in HA or LA mode, linearfrac sets the VM status code to
oneapi::mkl::vm::status::accuracy_warning. Correctness is guaranteed within the threshold limitations
defined for each input parameter (see the table below); otherwise, the behavior is unspecified.

Threshold Limitations on Input Parameters
2EMIN/2≤ |scalea| ≤ 2(EMAX-2)/2
2EMIN/2≤ |scaleb| ≤ 2(EMAX-2)/2
|shifta| ≤ 2EMAX-2
|shiftb| ≤ 2EMAX-2
2EMIN/2≤a[i] ≤ 2(EMAX-2)/2
2EMIN/2≤b[i] ≤ 2(EMAX-2)/2
a[i] ̸= - (shifta/scalea)*(1-𝛿1), |𝛿1| ≤ 21-(p-1)/2
b[i] ̸= - (shiftb/scaleb)*(1-𝛿2), |𝛿2| ≤ 21-(p-1)/2

EMINand EMAX are the minimum and maximum exponents and p is the number of significant bits (precision) for the
corresponding data type according to the ANSI/IEEE Standard 754-2008 ([Bibliography]):

• for single precisionEMIN = -126, EMAX = 127, p = 24

• for double precisionEMIN = -1022, EMAX = 1023, p =
53

The thresholds become less strict for common cases with scalea=0 and/or scaleb=0:

• ifscalea=0, there are no limitations for the values of a[i]
and shifta.

• ifscaleb=0, there are no limitations for the values of b[i]
and shiftb.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

scalea
Constant value for scaling multipliers of vector a

8.2. oneMKL Domains 1899

oneAPI Specification, Release 1.4-provisional-rev-1

shifta
Constant value for shifting addend of vector a

scaleb
Constant value for scaling multipliers of vector b

shiftb
Constant value for shifting addend of vector b

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The pointer a to the 1st input vector of size n.

b
The pointer b to the 2nd input vector of size n.

scalea
Constant value for scaling multipliers of vector a

shifta
Constant value for shifting addend of vector a

scaleb
Constant value for scaling multipliers of vector b

shiftb
Constant value for shifting addend of vector b

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1900

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

ln

Computes natural logarithm of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event ln(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event ln(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1901

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

ln supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The ln(a)function computes natural logarithm of vector elements.

Argument Result Status code
+1 +0
a <+0 QNAN oneapi::mkl::vm::status::errdom
+0 -∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +∞ + 𝑖 ·
3𝜋
4

+∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/4 +∞+i·QNAN

+i·Y +∞-i·𝜋 +∞+i·0 QNAN+i·QNAN
+i·0 +∞-i·𝜋 -∞+i·𝜋 -∞-i·0 +∞+i·0 QNAN+i·QNAN
-i·0 +∞-i·𝜋 -∞+i·𝜋 -∞-i·0 +∞-i·0 QNAN+i·QNAN
-i·Y +∞-i·𝜋 +∞-i·0 QNAN+i·QNAN
-i·∞ +∞ − 𝑖 ·

3𝜋
4

+∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/4 +∞+i·QNAN

+i·NAN +∞+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

8.2. oneMKL Domains 1902

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1903

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

log10

Computes the base 10 logarithm of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event log10(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event log10(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

log10 supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

8.2. oneMKL Domains 1904

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The log10(a) function computes the base 10 logarithm of vector elements.

Argument Result Status code
+1 +0
a <+0 QNAN oneapi::mkl::vm::status::errdom
+0 -∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +∞ +
𝑖 34

𝜋
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋4

1
ln 10

+∞+i·QNAN

+i·Y +∞ +
𝑖 𝜋
ln 10

+∞+i·0 QNAN+i·QNAN

+i·0 +∞ +
𝑖 𝜋
ln 10

−∞+𝑖 𝜋
ln 10 -∞+i·0 +∞+i·0 QNAN+i·QNAN

-i·0 +∞ −
𝑖 𝜋
ln 10

−∞−𝑖 𝜋
ln 10 -∞-i·0 +∞-i·0 QNAN-

i·QNAN
-i·Y +∞ −

𝑖 𝜋
ln 10

+∞-i·0 QNAN+i·QNAN

-i·∞ +∞ +
𝑖 34

𝜋
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋4

1
ln 10

+∞+i·QNAN

+i·NAN +∞+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

8.2. oneMKL Domains 1905

oneAPI Specification, Release 1.4-provisional-rev-1

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

log1p

Computes a natural logarithm of vector elements that are increased by 1. log(a[i] + 1)

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event log1p(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1906

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event log1p(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

log1p supports the following precisions.

T
float
double

Description

The log1p(a) function computes a natural logarithm of vector elements that are increased by 1.

Argument Result VM status code
-1 -∞ oneapi::mkl::vm::status::sing
a <-1 QNAN oneapi::mkl::vm::status::errdom
+0 +0
-0 -0
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

8.2. oneMKL Domains 1907

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1908

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

log2

Computes the base 2 logarithm of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event log2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event log2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

log2 supports the following precisions.

T
float
double

8.2. oneMKL Domains 1909

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The log2(a) function computes the base 2 logarithm of vector elements.

Argument Result Status code
+1 +0
a < +0 QNAN oneapi::mkl::vm::status::errdom
+0 -∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1910

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

logb

Computes the exponents of the elements of input vector a.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event logb(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event logb(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1911

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

logb supports the following precisions.

T
float
double

Description

The logb(a) function computes the exponents of the elements of the input vector a. For each element ai of vector a, this
is the integral part of log2|ai|. The returned value is exact and is independent of the current rounding direction mode.

Argument Result VM status code
+0 +∞ oneapi::mkl::vm::status::errdom
-0 -∞ oneapi::mkl::vm::status::errdom
-∞ +∞
+∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

8.2. oneMKL Domains 1912

oneAPI Specification, Release 1.4-provisional-rev-1

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

maxmag

Returns the element with the larger magnitude between each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event maxmag(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

8.2. oneMKL Domains 1913

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::vm {

sycl::event maxmag(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

maxmag supports the following precisions.

T
float
double

Description

The maxmag(a, b) function returns a vector with element values equal to the element with the larger magnitude from
each pair of corresponding elements of the two vectors a and b:

• If |a| > |b| maxmag(a, b) returns a,
otherwise maxmag(a, b) returns b.

• If |b| > |a| maxmag(a, b) returns b,
otherwise maxmag(a, b) returns a.

• Otherwise maxmag(a, b) behaves like fmax.

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The maxmag(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

8.2. oneMKL Domains 1914

oneAPI Specification, Release 1.4-provisional-rev-1

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

8.2. oneMKL Domains 1915

oneAPI Specification, Release 1.4-provisional-rev-1

minmag

Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event minmag(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event minmag(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

minmag supports the following precisions.

T
float
double

Description

The minmag(a, b) function returns a vector with element values equal to the element with the smaller magnitude from
each pair of corresponding elements of the two vectors a and b:

• If |a| < |b| minmag(a, b) returns a,
otherwise minmag(a, b) returns b.

• If |b| < |a| minmag(a, b) returns b,
otherwise minmag(a, b) returns a.

• Otherwise minmag behaves like fmin.

8.2. oneMKL Domains 1916

oneAPI Specification, Release 1.4-provisional-rev-1

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The minmag(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1917

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

modf

Computes a truncated integer value and the remaining fraction part for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event modf(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
sycl::buffer<T,1>& z,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event modf(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
T* z,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

(continues on next page)

8.2. oneMKL Domains 1918

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

modf supports the following precisions.

T
float
double

Description

The modf(a) function computes a truncated integer value and the remaining fraction part for each vector element.

𝑎𝑖 ≥ 0,

{︃
𝑦𝑖 = ⌊𝑎𝑖⌋
𝑧𝑖 = 𝑎𝑖 − ⌊𝑎𝑖⌋

𝑎𝑖 < 0,

{︃
𝑦𝑖 = ⌈𝑎𝑖⌉
𝑧𝑖 = 𝑎𝑖 − ⌈𝑎𝑖⌉

Argument Result 1 Result 2 Status code
+0 +0 +0
-0 -0 -0
+∞ +∞ +0
-∞ -∞ -0
SNAN QNAN QNAN
QNAN QNAN QNAN

The modf function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

8.2. oneMKL Domains 1919

oneAPI Specification, Release 1.4-provisional-rev-1

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n for truncated integer values.

z
The buffer z containing the output vector of size n for remaining fraction parts.

USM API:

y
Pointer y to the output vector of size n for truncated integer values.

z
Pointer z to the output vector of size n for remaining fraction parts.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

mul

Performs element by element multiplication of vector a and vector b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event mul(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,

(continues on next page)

8.2. oneMKL Domains 1920

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event mul(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

mul supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The mul(a, b) function performs element by element multiplication of vector a and vector b.

8.2. oneMKL Domains 1921

oneAPI Specification, Release 1.4-provisional-rev-1

Argument 1 Argument 2 Result Status code
+0 +0 +0
+0 -0 -0
-0 +0 -0
-0 -0 +0
+0 +∞ QNAN
+0 -∞ QNAN
-0 +∞ QNAN
-0 -∞ QNAN
+∞ +0 QNAN
+∞ -0 QNAN
-∞ +0 QNAN
-∞ -0 QNAN
+∞ +∞ +∞
+∞ -∞ -∞
-∞ +∞ -∞
-∞ -∞ +∞
SNAN any value QNAN
any value SNAN QNAN
QNAN non-SNAN QNAN
non-SNAN QNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

mul(x1+i*y1, x2+i*y2) = (x1*x2-y1*y2) + i*(x1*y2+y1*x2)

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1922

oneAPI Specification, Release 1.4-provisional-rev-1

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

mulbyconj

Performs element by element multiplication of vector a element and conjugated vector b element.

8.2. oneMKL Domains 1923

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event mulbyconj(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event mulbyconj(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

mulbyconj supports the following precisions.

T
std::complex<float>
std::complex<double>

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

8.2. oneMKL Domains 1924

oneAPI Specification, Release 1.4-provisional-rev-1

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

8.2. oneMKL Domains 1925

oneAPI Specification, Release 1.4-provisional-rev-1

nearbyint

Computes a rounded integer value in the current rounding mode for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event nearbyint(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event nearbyint(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

nearbyint supports the following precisions.

T
float
double

Description

The nearbyint(a) function computes a rounded integer value in a current rounding mode for each vector element.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

8.2. oneMKL Domains 1926

oneAPI Specification, Release 1.4-provisional-rev-1

The nearbyint function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1927

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

nextafter

Returns vector of elements containing the next representable floating-point values following the values from the ele-
ments of one vector in the direction of the corresponding elements of another vector.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event nextafter(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event nextafter(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

nextafter supports the following precisions.

T
float
double

8.2. oneMKL Domains 1928

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The nextafter(a, b) function returns a vector containing the next representable floating-point values following the first
vector argument elements in the direction of the second vector argument’s corresponding elements.

Arguments/Results Status code
Input vector argument element is finite and the corresponding result vector element
value is infinite

oneapi::mkl::vm::status::overflow

Result vector element value is subnormal or zero, and different from the corre-
sponding input vector argument element

oneapi::mkl::vm::status::underflow

Even though underflow or overflow can occur, the returned value is independent of the current rounding direction mode.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1929

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

pow

Computes a to the power b for elements of two vectors.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event pow(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event pow(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1930

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

pow supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The pow(a, b) function computes a to the power b for elements of two vectors.

The real function pow has certain limitations on the input range of a and b parameters. Specifically, if a[i] is positive,
then b[i] may be arbitrary. For negative a[i], the value of b[i] must be an integer (either positive or negative).

The complex function pow has no input range limitations.

Argument 1 Argument 2 Result Status code
+0 neg. odd integer +∞ oneapi::mkl::vm::status::errdom
-0 neg. odd integer -∞ oneapi::mkl::vm::status::errdom
+0 neg. even integer +∞ oneapi::mkl::vm::status::errdom
-0 neg. even integer +∞ oneapi::mkl::vm::status::errdom
+0 neg. non-integer +∞ oneapi::mkl::vm::status::errdom
-0 neg. non-integer +∞ oneapi::mkl::vm::status::errdom
-0 pos. odd integer +0
-0 pos. odd integer -0
+0 pos. even integer +0
-0 pos. even integer +0
+0 pos. non-integer +0
-0 pos. non-integer +0
-1 +∞ +1
-1 -∞ +1
+1 any value +1
+1 +0 +1
+1 -0 +1
+1 +∞ +1
+1 -∞ +1
+1 QNAN +1
any value +0 +1
+0 +0 +1
-0 +0 +1

continues on next page

8.2. oneMKL Domains 1931

oneAPI Specification, Release 1.4-provisional-rev-1

Table 14 – continued from previous page
Argument 1 Argument 2 Result Status code
+∞ +0 +1
-∞ +0 +1
QNAN +0 +1
any value -0 +1
+0 -0 +1
-0 -0 +1
+∞ -0 +1
-∞ -0 +1
QNAN -0 +1
a < +0 non-integer QNAN oneapi::mkl::vm::status::errdom
|a| < 1 -∞ +∞
+0 -∞ +∞ oneapi::mkl::vm::status::errdom
-0 -∞ +∞ oneapi::mkl::vm::status::errdom
|a| > 1 -∞ +0
+∞ -∞ +0
-∞ -∞ +0
|a| < 1 +∞ +0
+0 +∞ +0
-0 +∞ +0
|a| > 1 +∞ +∞
+∞ +∞ +∞
-∞ +∞ +∞
-∞ neg. odd integer -0
-∞ neg. even integer +0
-∞ neg. non-integer +0
-∞ pos. odd integer -∞
-∞ pos. even integer +∞
-∞ pos. non-integer +∞
+∞ b < +0 +0
+∞ b > +0 +∞
Big finite value* Big finite value* +/-∞ oneapi::mkl::vm::status::overflow
QNAN QNAN QNAN
QNAN SNAN QNAN
SNAN QNAN QNAN
SNAN SNAN QNAN

* Overflow in a real function is supported only in the HA/LA accuracy modes. The overflow occurs when x and y are
finite numbers, but the result is too large to fit the target precision. In this case, the function:

1. Returns∞ in the result.

2. Sets the VM status code to oneapi::mkl::vm::status::overflow.

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

The complex double precision versions of this function are implemented in the EP accuracy mode only. If used in HA
or LA mode, the functions set the VM status code to oneapi::mkl::vm::status::accuracy_warning.

8.2. oneMKL Domains 1932

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

8.2. oneMKL Domains 1933

oneAPI Specification, Release 1.4-provisional-rev-1

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

pow2o3

Computes the cube root of the square of each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event pow2o3(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event pow2o3(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

pow2o3 supports the following precisions.

T
float
double

8.2. oneMKL Domains 1934

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The pow2o3(a)function computes the cube root of the square of each vector element.

Argument Result Status code
+0 +0
-0 +0
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1935

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

pow3o2

Computes the square root of the cube of each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event pow3o2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event pow3o2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1936

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

pow3o2 supports the following precisions.

T
float
double

Description

The pow3o2(a)function computes the square root of the cube of each vector element.

Data Type Threshold Limitations on Input Parameters
single precision |ai| < (FLT_MAX)2/3
double precision |ai| < (FLT_MAX)2/3

Argument Result VM status code
a < +0 QNAN oneapi::mkl::vm::status::errdom
+0 +0
-0 -0
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

8.2. oneMKL Domains 1937

oneAPI Specification, Release 1.4-provisional-rev-1

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

powr

Computes a to the power b for elements of two vectors, where the elements of vector argument a are all non-negative.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event powr(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

8.2. oneMKL Domains 1938

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event powr(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

powr supports the following precisions.

T
float
double

Description

The powr(a, b) function raises each element of vector a by the corresponding element of vector b. The elements of a
are all nonnegative (ai≥ 0).

Data Type Threshold Limitations on Input Parameters
single precision ai < (FLT_MAX)1/``b`i`
double precision ai < (DBL_MAX)1/``b`i`

Special values and VM status code treatment for v?Powr function are the same as for pow, unless otherwise indicated
in this table:

8.2. oneMKL Domains 1939

oneAPI Specification, Release 1.4-provisional-rev-1

Argument 1 Argument 2 Result Status code
a < 0 any value b NAN oneapi::mkl::vm::status::errdom
0 < a <∞ ±0 1
±0 -∞ < b < 0 +∞
±0 -∞ +∞
±0 b > 0 +0
1 -∞ < b <∞ 1
±0 ±0 NAN
+∞ ±0 NAN
1 +∞ NAN
a≥ 0 NAN NAN
NAN any value b NAN
0 < a <1 -∞ +∞
a > 1 -∞ +0
0 ≤a < 1 +∞ +0
a > 1 +∞ +∞
+∞ b < +0 +0
+∞ b > +0 +∞
QNAN QNAN QNAN oneapi::mkl::vm::status::errdom
QNAN SNAN QNAN oneapi::mkl::vm::status::errdom
SNAN QNAN QNAN oneapi::mkl::vm::status::errdom
SNAN SNAN QNAN oneapi::mkl::vm::status::errdom

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

8.2. oneMKL Domains 1940

oneAPI Specification, Release 1.4-provisional-rev-1

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

powx

Computes vector a to the scalar power b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event powx(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
T b,
sycl::buffer<T,1>& y,

(continues on next page)

8.2. oneMKL Domains 1941

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event powx(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

powx supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The powx function computes a to the power b for a vector a and a scalar b.

The real function powx has certain limitations on the input range of a and b parameters. Specifically, if a[i] is positive,
then b may be arbitrary. For negative a[i], the value of b must be an integer (either positive or negative).

The complex function powx has no input range limitations.

Special values and VM status code treatment are the same as for the pow function.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

8.2. oneMKL Domains 1942

oneAPI Specification, Release 1.4-provisional-rev-1

b
Fixed value of power b.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Fixed value of power b.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1943

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

remainder

Performs element by element computation of the remainder function on the elements of vector a and the corresponding
elements of vector b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event remainder(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event remainder(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

remainder supports the following precisions.

T
float
double

8.2. oneMKL Domains 1944

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The remainder(a) function computes the remainder of each element of vector a, with respect to the corresponding
elements of vector b: compute the values of n such that

n = ai - n*bi

where n is the integer nearest to the exact value of ai/bi. If two integers are equally close to ai/bi, n is the even one. If
n is zero, it has the same sign as ai.

Argument 1 Argument 2 Result VM status code
a not NAN ±0 NAN oneapi::mkl::vm::status::errdom
±∞ b not NAN NAN
±0 b̸= 0, not NAN ±0
a finite ±∞ a
NAN b NAN
a NAN NAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

8.2. oneMKL Domains 1945

oneAPI Specification, Release 1.4-provisional-rev-1

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

rint

Computes a rounded integer value in the current rounding mode.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event rint(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

8.2. oneMKL Domains 1946

oneAPI Specification, Release 1.4-provisional-rev-1

namespace oneapi::mkl::vm {

sycl::event rint(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

rint supports the following precisions.

T
float
double

Description

The rint(a) function computes a rounded floating-point integer value using the current rounding mode for each vector
element.

The rounding mode affects the results computed for inputs that fall between consecutive integers. For example:

• f(0.5) = 0, for rounding modes set to round to nearest round
toward zero or to minus infinity.

• f(0.5) = 1, for rounding modes set to plus infinity.

• f(-1.5) = -2, for rounding modes set to round to nearest or to
minus infinity.

• f(-1.5) = -1, for rounding modes set to round toward zero or to
plus infinity.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The rint function does not generate any errors.

8.2. oneMKL Domains 1947

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1948

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

round

Computes a value rounded to the nearest integer for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event round(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event round(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

round supports the following precisions.

T
float
double

8.2. oneMKL Domains 1949

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The round(a) function computes a value rounded to the nearest integer for each vector element. Input elements that are
halfway between two consecutive integers are always rounded away from zero regardless of the rounding mode.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The round(a) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1950

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sin

Computes sine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sin(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sin(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1951

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

sin supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sin(a)function computes sine of vector elements.

Note that arguments abs(a[i]) ≤ 213 and abs(a[i]) ≤ 216 for single and double precisions respectively are
called fast computational path. These are trigonometric function arguments for which VM provides the best possible
performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and
Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on
the entire function domain. However, these functions provide less accuracy.

Argument Result VM status code
+0 +0
-0 -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

Sin(z) = -i*Sinh(i*z).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1952

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sincos

Computes sine and cosine of vector elements.

8.2. oneMKL Domains 1953

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sincos(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
sycl::buffer<T,1>& z,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sincos(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
T* z,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

sincos supports the following precisions.

T
float
double

Description

The sincos(a) function computes sine and cosine of vector elements.

Note that arguments abs(a[i]) ≤ 213and abs(a[i]) ≤ 216for single and double precisions respectively are
called fast computational path. These are trigonometric function arguments for which VM provides the best possi-
ble performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA)
and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast
on the entire function domain. However, these functions provide less accuracy.

8.2. oneMKL Domains 1954

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result 1 Result 2 Status code
+0 +0 +1
-0 -0 +1
+∞ QNAN QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN QNAN
SNAN QNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1955

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output sine vector of size n.

z
The buffer z containing the output cosine vector of size n.

USM API:

y
Pointer y to the output sine vector of size n.

z
The buffer z containing the output cosine vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sind

Computes the sine of vector elements multiplied by 𝜋/180.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sind(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sind(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,

(continues on next page)

8.2. oneMKL Domains 1956

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

sind supports the following precisions.

T
float
double

Description

The sind(a) function is a degree argument trigonometric function. It computes the sine of vector elements multiplied
by 𝜋/180. For an argument a, the function computes sin(𝜋*a/180).

Note that arguments abs(ai) ≤ 224 for single precision or abs(ai) ≤ 252 for double precision, they belong to the fast
computational path: trigonometric function arguments for which VM provides the best possible performance. Avoid
arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA)
functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance
(EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

Argument Result Status code
+0 +0
-0 -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1957

oneAPI Specification, Release 1.4-provisional-rev-1

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sinh

Computes hyperbolic sine of vector elements.

8.2. oneMKL Domains 1958

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sinh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sinh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

sinh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sinh(a) function computes hyperbolic sine of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision -Log(FLT_MAX)-Log(2) <a[i] < Log(FLT_MAX)+Log(2)
double precision -Log(DBL_MAX)-Log(2) <a[i] < Log(DBL_MAX)+Log(2)

8.2. oneMKL Domains 1959

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result Status code
+0 +0
-0 -0
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < -overflow -∞ oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

+i·∞ -∞+i·QNAN QNAN+i·QNAN-
0+i·QNAN

+0+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

+i·Y -∞·Cos(Y)+
i·∞·Sin(Y)

+∞·CIS(Y) QNAN+i·QNAN

+i·0 -∞+i·0 -0+i·0 +0+i·0 +∞+i·0 QNAN+i·0
-i·0 -∞-i·0 -0-i·0 +0-i·0 +∞-i·0 QNAN-i·0
-i·Y -∞·Cos(Y)+

i·∞·Sin(Y)
+∞·CIS(Y) QNAN+i·QNAN

-i·∞ -∞+i·QNAN QNAN+i·QNAN-
0+i·QNAN

+0+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

+i·NAN -∞+i·QNAN QNAN+i·QNAN-
0+i·QNAN

+0+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Notes:

• The complex sinh(a) function sets the VM status code to
oneapi::mkl::vm::status::overflow in the case of overflow, that is, when RE(a), IM(a) are finite non-zero
numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.

• sinh(CONJ(a))=CONJ(sinh(a))

• sinh(-a)=-sinh(a).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1960

oneAPI Specification, Release 1.4-provisional-rev-1

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sinpi

Computes the sine of vector elements multiplied by 𝜋.

8.2. oneMKL Domains 1961

oneAPI Specification, Release 1.4-provisional-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sinpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sinpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

sinpi supports the following precisions.

T
float
double

Description

The sinpi(a) function computes the sine of vector elements multiplied by 𝜋. For an argument a, the function computes
sin(𝜋*a).

Argument Result Status code
+0 +0
-0 -0
+n, positive integer +0
-n, negative integer -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

8.2. oneMKL Domains 1962

oneAPI Specification, Release 1.4-provisional-rev-1

If arguments abs(ai) ≤ 222 for single precision or abs(ai) ≤ 251 for double precision, they belong to the fast computa-
tional path: arguments for which VM provides the best possible performance. Avoid arguments which do not belong
to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do
not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the
entire function domain. However, these functions provide lower accuracy.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

8.2. oneMKL Domains 1963

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sqr

Performs element by element squaring of the vector.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sqr(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sqr(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1964

oneAPI Specification, Release 1.4-provisional-rev-1

sqr supports the following precisions.

T
float
double

Description

The sqr() function performs element by element squaring of the vector.

Argument Result Status code
+0 +0
-0 +0
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

The sqr function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing the input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1965

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sqrt

Computes a square root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sqrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sqrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

8.2. oneMKL Domains 1966

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

sqrt supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sqrt function computes a square root of vector elements.

Argument Result VM status code
a< +0 QNAN oneapi::mkl::vm::status::errdom
+0 +0
-0 -0
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞
+i·Y +0+i·∞ +∞+i·0
+i·0 +0+i·∞ +0+i·0 +0+i·0 +∞+i·0
-i·0 +0-i·∞ +0-i·0 +0-i·0 +∞-i·0
-i·Y +0-i·∞ +∞-i·0
-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞
+i·NAN

Notes:

• Sqrt(CONJ(z))=CONJ(Sqrt(z)).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

8.2. oneMKL Domains 1967

oneAPI Specification, Release 1.4-provisional-rev-1

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

8.2. oneMKL Domains 1968

oneAPI Specification, Release 1.4-provisional-rev-1

sub

Performs element by element subtraction of vector b from vector a.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sub(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

.. code-block:: cpp

namespace oneapi::mkl::vm {

sycl::event sub(
sycl::queue& exec_queue, std::int64_t n, const T a, const T *b, T y, std::vector<sycl::event>
const & depends = {}, oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler - {});

} // namespace oneapi::mkl::vm

sub supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sub(a, b) function performs element by element subtraction of vector a and vector b.

8.2. oneMKL Domains 1969

oneAPI Specification, Release 1.4-provisional-rev-1

Argument 1 Argument 2 Result Status code
+0 +0 +0
+0 -0 +0
-0 +0 +0
-0 -0 -0
+∞ +∞ QNAN
+∞ -∞ +∞
-∞ +∞ -∞
-∞ -∞ QNAN
SNAN any value QNAN
any value SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

sub(x1+i*y1, x2+i*y2) = (x1-x2) + i*(y1-y2)

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing 1st input vector of size n.

b
The buffer b containing 2nd input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the 1st input vector of size n.

8.2. oneMKL Domains 1970

oneAPI Specification, Release 1.4-provisional-rev-1

b
Pointer b to the 2nd input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tan

Computes tangent of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tan(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1971

oneAPI Specification, Release 1.4-provisional-rev-1

USM API:

namespace oneapi::mkl::vm {

sycl::event tan(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

tan supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The tan(a) function computes tangent of vector elements.

Note that arguments abs(a[i]) ≤ 213and abs(a[i]) ≤ 216for single and double precisions respectively are
called fast computational path. These are trigonometric function arguments for which VM provides the best possi-
ble performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA)
and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast
on the entire function domain. However, these functions provide less accuracy.

Argument Result Status code
+0 +0
-0 -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

Tan(z) = -i*Tanh(i*z).

8.2. oneMKL Domains 1972

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1973

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tand

Computes the tangent of vector elements multiplied by 𝜋/180.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tand(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tand(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

tand supports the following precisions.

T
float
double

8.2. oneMKL Domains 1974

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The tand(a) function computes the tangent of vector elements multiplied by 𝜋/180. For an argument x, the function
computes tan(𝜋*x/180).

Note that arguments abs(ai) ≤ 238 for single precision or abs(ai) ≤ 267 for double precision, they belong to the fast
computational path: trigonometric function arguments for which VM provides the best possible performance. Avoid
arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA)
functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance
(EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

Argument Result Status code
+0 +1
-0 +1
±∞ QNAN oneapi::mkl::vm::status::errdom
±∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1975

oneAPI Specification, Release 1.4-provisional-rev-1

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tanh

Computes hyperbolic tangent of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tanh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tanh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,

(continues on next page)

8.2. oneMKL Domains 1976

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

tanh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The tanh(a) function computes hyperbolic tangent of vector elements.

Argument Result Erro Code
+0 +0
-0 -0
+∞ +1
-∞ -1
QNAN QNAN
SNAN QNAN

+i·∞ -1+i·0 QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+1+i·0 QNAN+i·QNAN
+i·Y -

1+i·0·Tan(Y)
+1+i·0·Tan(Y)QNAN+i·QNAN

+i·0 -1+i·0 -0+i·0 +0+i·0 +1+i·0 QNAN+i·0
-i·0 -1-i·0 -0-i·0 +0-i·0 +1-i·0 QNAN-i·0
-i·Y -

1+i·0·Tan(Y)
+1+i·0·Tan(Y)QNAN+i·QNAN

-i·∞ -1-i·0 QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+1-i·0 QNAN+i·QNAN
+i·NAN -1+i·0 QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+1+i·0 QNAN+i·QNAN

Notes:

• tanh(CONJ(a))=CONJ(tanh(a))

• tanh(-a)=-tanh(a).

The tanh(a) function does not generate any errors.

8.2. oneMKL Domains 1977

oneAPI Specification, Release 1.4-provisional-rev-1

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

8.2. oneMKL Domains 1978

oneAPI Specification, Release 1.4-provisional-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tanpi

Computes the tangent of vector elements multiplied by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tanpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tanpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

tanpi supports the following precisions.

T
float
double

8.2. oneMKL Domains 1979

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The tanpi(a) function computes the tangent of vector elements multiplied by 𝜋. For an argument a, the function com-
putes tan(𝜋*a).

Argument Result Status code
+0 +0
-0 +0
n, even integer *copysign(0.0, n)
n, odd integer *copysign(0.0,

-n)
n + 0.5, for n even integer and n + 0.5 representable +∞
n + 0.5, for n odd integer and n + 0.5 representable -∞
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

The copysign(x, y) function returns the first vector argument x with the sign changed to match that of the second
argument y.

If arguments abs(ai) ≤ 2 13 for single precision or abs(ai) ≤ 2 67 for double precision, they belong to the fast compu-
tational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong
to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do
not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the
entire function domain. However, these functions provide lower accuracy.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

8.2. oneMKL Domains 1980

oneAPI Specification, Release 1.4-provisional-rev-1

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tgamma

Computes the gamma function of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tgamma(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1981

oneAPI Specification, Release 1.4-provisional-rev-1

USM API:

namespace oneapi::mkl::vm {

sycl::event tgamma(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

tgamma supports the following precisions.

T
float
double

Description

The tgamma(a) function computes the gamma function for elements of the input vector a and writes them to the output
vector y. Precision overflow thresholds for the tgamma function are beyond the scope of this document. If the result
does not meet the target precision, the function raises sets the VM status code to oneapi::mkl::vm::status::sing.

Argument Result Status code
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
negative integer QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
a > overflow +∞ oneapi::mkl::vm::status::sing
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

8.2. oneMKL Domains 1982

oneAPI Specification, Release 1.4-provisional-rev-1

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler
Sets local error handling mode for this function call. See the create_error_handler function for arguments and
their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

8.2. oneMKL Domains 1983

oneAPI Specification, Release 1.4-provisional-rev-1

trunc

Computes an integer value rounded towards zero for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event trunc(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event trunc(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

trunc supports the following precisions.

T
float
double

Description

The trunc(a) function computes an integer value rounded towards zero for each vector element.

𝑦𝑖 =

{︃
⌊𝑎𝑖⌋, 𝑎𝑖 ≥ 0

⌈𝑎𝑖⌉, 𝑎𝑖 < 0

8.2. oneMKL Domains 1984

oneAPI Specification, Release 1.4-provisional-rev-1

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The trunc function does not generate any errors.

Input Parameters

Buffer API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
The buffer a containing input vector of size n.

mode
Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue
The queue where the routine should be executed.

n
Specifies the number of elements to be calculated.

a
Pointer a to the input vector of size n.

depends
Vector of dependent events (to wait for input data to be ready).

mode
Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

8.2. oneMKL Domains 1985

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

Buffer API:

y
The buffer y containing the output vector of size n.

USM API:

y
Pointer y to the output vector of size n.

return value (event)
Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

VM Service Functions

The VM Service functions enable you to set/get the accuracy mode and error code. These functions are available both
in the Fortran and C interfaces. The table below lists available VM Service functions and their short description.

Function Short Name Description
set_mode Sets the VM mode for given queue
get_mode Gets the VM mode for given queue
set_status Sets the VM status code for given queue
get_status Gets the VM status code for given queue
clear_status Clears the VM status code for given queue
create_error_handler Creates the local VM error handler for a function

Parent topic: Vector Math

set_mode

Sets a new mode for VM functions according to the mode parameter and returns the previous VM mode.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::mode set_mode(
sycl::queue& exec_queue,
oneapi::mkl::vm::mode new_mode);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1986

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The set_mode function sets a new mode for VM functions according to the new_mode parameter and returns the
previous VM mode. The mode change has a global effect on all the VM functions within a queue.

The mode parameter is designed to control accuracy for a given queue.

Value of mode Description
Accuracy Control
oneapi::mkl::vm::mode::ha High accuracy versions of VM functions.
oneapi::mkl::vm::mode::la Low accuracy versions of VM functions.
oneapi::mkl::vm::mode::ep Enhanced performance accuracy versions of VM functions.
oneapi::mkl::vm::mode::not_defined VM mode not defined. This has no effect.

The assumed value of the mode parameter for a new queue, if set_mode is not called is
oneapi::mkl::vm::mode::ha.

Input Parameters

exec_queue
The queue where the routine should be executed.

new_mode
Specifies the VM mode to be set.

Output Parameters

return value (old_mode)
Specifies the former VM mode.

Parent topic: VM Service Functions

get_mode

Gets the VM mode.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::mode get_mode(
sycl::queue& exec_queue);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1987

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The function get_mode function returns the global VM mode parameter that controls accuracy for a given queue.

Value of mode Description
Accuracy Control
oneapi::mkl::vm::mode::haHigh accuracy versions of VM functions.
oneapi::mkl::vm::mode::laLow accuracy versions of VM functions.
oneapi::mkl::vm::mode::epEnhanced performance accuracy versions of VM functions.
oneapi::mkl::vm::mode::not_definedVM mode not defined. It means that no special provisions for accuracy have been

made for this queue. See set_mode for details.

Input Parameters

exec_queue
The queue where the routine should be executed.

Output Parameters

return value
The current global VM mode for the queue exec_queue.

Parent topic: VM Service Functions

set_status

Sets the global VM status according to new value and returns the previous VM status.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::status set_status(
sycl::queue& exec_queue,
oneapi::mkl::vm::status new_status);

} // namespace oneapi::mkl::vm

Description

The set_status function sets the global VM status to new value and returns the previous VM status code for a given
queue.

The global VM status is a single value and it registers the bitwise-OR of status codes that happened inside VM functions
run on the specific queue. For performance reasons, it might be done in non-atomic manner. The possible status codes
are listed in the table below.

8.2. oneMKL Domains 1988

oneAPI Specification, Release 1.4-provisional-rev-1

Status Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational status codes
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Input Parameters

exec_queue
The queue where the routine should be executed.

new_status
Specifies the VM status to be set.

Output Parameters

return value (old_status)
Specifies the former VM status.

Parent topic: VM Service Functions

get_status

Gets the VM status.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::status get_status(
sycl::queue& exec_queue);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1989

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The get_status function gets the VM status for a given queue.

The global VM status is a single value and it registers the bitwise-OR of status codes that happened inside VM functions
run on the specific queue. For performance reasons, it might be done in non-atomic manner. The possible status codes
are listed in the table below.

Status Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational status codes
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Input Parameters

exec_queue
The queue where the routine should be executed.

Output Parameters

return value (status)
Specifies the VM status.

Parent topic: VM Service Functions

clear_status

Resets the global VM status to oneapi::mkl::vm::status::success and returns the previous VM status code.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::status clear_status(
sycl::queue& exec_queue);

} // namespace oneapi::mkl::vm

8.2. oneMKL Domains 1990

oneAPI Specification, Release 1.4-provisional-rev-1

Description

The clear_status function sets the VM status code to oneapi::mkl::vm::status::success and returns the previous
VM status code for a given queue.

The global VM status is a single value and it registers the bitwise-OR of status codes that happened inside VM functions
run on the specific queue. For performance reasons, it might be done in non-atomic manner. The possible status codes
are listed in the table below.

Status code Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational status codes
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Input Parameters

exec_queue
The queue where the routine should be executed.

Output Parameters

return value (old_status)
Specifies the VM status code before the call.

Parent topic: VM Service Functions

create_error_handler

Creates an error handler for VM functions that support computational error handling.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

oneapi::mkl::vm::error_handler<T> create_error_handler(
sycl::buffer<oneapi::mkl::vm::status, 1> & status_array,
int64_t length = 1,
oneapi::mkl::vm::status status = oneapi::mkl::vm::status::not_defined,
T fixup = {},
bool copysign = false);

(continues on next page)

8.2. oneMKL Domains 1991

oneAPI Specification, Release 1.4-provisional-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

oneapi::mkl::vm::error_handler<T> create_error_handler(
oneapi::mkl::vm::status* status_array,
int64_t length = 1,
oneapi::mkl::vm::status status = oneapi::mkl::vm::status::not_defined,
T fixup = {},
bool copysign = false);

} // namespace oneapi::mkl::vm

create_error_handler supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

create_error_handler creates an computational error handler to be passed to VM functions that support computational
error handling.

A VM computational error handler supports three modes:

• Single status mode: all computational errors that happened during the execution of a function are being written
into one single status variable.

After the execution, the single value is either un-changed if no errors happened or contains bitwise-OR of initial
value and non-success status codes occurred during computation.

To enable this mode, status_array must point to any status-type array or buffer of 1 or more elements and
length must be 1.

• Multiple status mode: each non-successful status code is saved in status_array at the same index as the
argument causing the non-success status code.

Success status codes are not written to status_array. This means the array needs to be allocated and initialized
before function execution.

To enable this mode, status_array must have at least the same length as the argument and result vectors, and
length must be set to this length.

• Fixup mode: for all arguments that caused a specific error status, results are overwritten by a user-defined value.

To enable this mode, the target status and fixup values must be set. The fixup value is written to results for
each argument for which calculation resulted in the status status code.

To fix multiple error status codes, status can be provided with bitwise-OR of status codes.

8.2. oneMKL Domains 1992

oneAPI Specification, Release 1.4-provisional-rev-1

If copysign is set to true then the sign of fixup is set to the same sign as the argument that caused the status
code – a suitable option for symmetric math functions.

The following table lists the possible computational status code values.

Status code Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational Errors
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Notes:

• status_array must be allocated and initialized before calling VM functions in multiple status error handling
mode.

The array should be large enough to contain n status codes, where n is the same as the input/output vector size
for the VM function.

• If no arguments are passed to create_error_handler, then an empty object is created with all three error
handling modes disabled.

In this case, the VM math functions set the global status code only.

Input Parameters

status_array
Array to store status codes (should be a buffer for buffer API).

length
Length of the errarray. This is an optional argument, default value is 1.

status_code
Status code to match and fix the results. This is an optional argument, default value is
oneapi::mkl::vm::status::not_defined.

fixup
Fixup value for results. This is an optional argument, default value is 0.0.

copysign
Flag for setting the fixup value’s sign the same as the argument’s. This is an optional argument, default value
false.

8.2. oneMKL Domains 1993

oneAPI Specification, Release 1.4-provisional-rev-1

Output Parameters

return value
Specifies the error handler object to be created.

Parent topic: VM Service Functions

Exceptions

All VM mathematical functions throw exceptions in exceptional cases. The following table summarizes the conditions.

exception when thrown
oneapi::mkl::invalid_argument

buffer API:
n < 0;
y.get_count() < n;
z.get_count() < n; // for sincos

USM API:
n < 0;
any pointer argument is nullptr

oneapi::mkl::host_bad_alloc
USM API:

when internal copying to and from host memory
is used and corresponding allocation fails

oneapi::mkl::device_bad_alloc
USM API:

when internal copying to and from device memory
is used and corresponding allocation fails

Bibliography

For more information about the VM functionality, refer to the following publications:

• VM

[IEEE754]
IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-2008.

Parent topic: Vector Math

8.2. oneMKL Domains 1994

oneAPI Specification, Release 1.4-provisional-rev-1

8.3 oneMKL Appendix

8.3.1 Future considerations

The following items are being considered for future versions of this specification:

• Encapsulation of matrix and vector information in classes. Matrix storage information could also be encapsu-
lated.

• More human-readable names for linear algebra functionality, aligned with the P1673 C++ proposal.

• Broader support for row major layout.

• Alternative handling of computational failures.

8.3.2 Acknowledgment

The oneMKL Technical Advisory Board members provided valuable feedback to the specification and are thanked for
their contributions.

8.3. oneMKL Appendix 1995

https://github.com/oneapi-src/oneAPI-tab

CHAPTER

NINE

LEGAL NOTICES AND DISCLAIMERS

The content of this oneAPI Specification is licensed under the Creative Commons Attribution 4.0 International License.
Unless stated otherwise, the sample code examples in this document are released to you under the MIT license.

By opening an issue, providing feedback, or otherwise contributing to the specification, you agree that the UXL Founda-
tion will be free to use, disclose, reproduce, modify, license, or otherwise distribute your feedback at its sole discretion
without any obligations or restrictions of any kind, including without limitation, intellectual property rights or licensing
obligations.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

1996

https://creativecommons.org/licenses/by/4.0/legalcode
https://opensource.org/licenses/MIT

BIBLIOGRAPHY

[OpenCLSpec] Khronos OpenCL Working Group, The OpenCL Specification Version:2.1 Document Revision:24
Available from opencl-2.1.pdf

[SYCLSpec] Khronos®OpenCL™ Working Group — SYCL™ subgroup, SYCL™ Specification SYCL™ integrates
OpenCL™ devices with modern C++, Version 1.2.1 Available from sycl-1.2.1.pdf

[Lloyd82] Stuart P Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory 1982, 28
(2): 1982pp: 129–137.

[Bro07] Bro, R.; Acar, E.; Kolda, T. Resolving the sign ambiguity in the singular value decomposition. SANDIA
Report, SAND2007-6422, Unlimited Release, October, 2007.

[Bentley80] J. L. Bentley. Multidimensional Divide and Conquer. Communications of the ACM, 23(4):214–229,
1980.

[Friedman17] J. Friedman, T. Hastie, R. Tibshirani. The Elements of Statistical Learning Data Mining, Inference, and
Prediction. Springer, 2017.

[Zhang04] T. Zhang. Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algo-
rithms. ICML 2004: Proceedings Of The Twenty-First International Conference On Machine Learning,
919–926, 2004.

[Lang87] S. Lang. Linear Algebra. Springer-Verlag New York, 1987.

[Ping14] Ping Tak Peter and Eric Polizzi. FEAST as a Subspace Iteration Eigensolver Accelerated by Approximate
Spectral Projection. 2014.

[Demmel90] J. W. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Com-
put., 11 (1990), pp. 873-912.

1997

https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

INDEX

Symbols
~global_control (C++ function), 609
~graph (C++ function), 554
~null_mutex (C++ function), 904
~task_arena (C++ function), 620
~task_group_context (C++ function), 607
~task_scheduler_handle (C++ function), 611
~task_scheduler_observer (C++ function), 625

A
Accessor, 413
activate (C++ function), 564
active_value (C++ function), 609
add (C++ function), 533
allocate (C++ function), 889
API, 414
AsyncNodeBody::Body::~Body (C++ function), 512
AsyncNodeBody::Body::Body (C++ function), 512
AsyncNodeBody::Body::operator() (C++ function), 512
attach (C++ struct), 910
automatic (C++ member), 618

B
Batch mode, 413
begin (C++ function), 543
blocked_range (C++ function), 542
Body::~Body (C++ function), 500
Body::assign (C++ function), 504
Body::Body (C++ function), 500, 504
Body::operator() (C++ function), 500, 502–504
Body::reverse_join (C++ function), 504
broadcast_node (C++ function), 587
buffer_node (C++ function), 580
Builder, 413

C
cache_aligned_resource (C++ function), 890
cancel (C++ function), 554
cancel_group_execution (C++ function), 607

1998

oneAPI Specification, Release 1.4-provisional-rev-1

canceled (C macro), 615
capture_fp_settings (C++ function), 607
cast_to (C++ function), 601
Categorical feature, 411
Classification, 411
clear (C++ function), 538
Clustering, 411
collaborative_once_flag (C++ function), 521
Combine::operator() (C++ function), 505
complete (C macro), 615
composite_node (C++ function), 596
const_iterator (C++ type), 542
constraints (C++ struct), 618
constraints::constraints (C++ function), 619
constraints::core_type (C++ member), 619
constraints::max_concurrency (C++ member), 619
constraints::max_threads_per_core (C++ member), 619
constraints::numa_id (C++ member), 618
constraints::set_core_type (C++ function), 619
constraints::set_max_concurrency (C++ function), 619
constraints::set_max_threads_per_core (C++ function), 619
constraints::set_numa_id (C++ function), 619
Contiguous data, 413
ContinueNodeBody::Body::~Body (C++ function), 513
ContinueNodeBody::Body::Body (C++ function), 513
ContinueNodeBody::Body::operator() (C++ function), 513
Continuous feature, 411
core_types (C++ function), 909
CR::begin (C++ function), 512
CR::const_reference (C++ type), 511
CR::difference_type (C++ type), 511
CR::end (C++ function), 512
CR::grainsize (C++ function), 512
CR::iterator (C++ type), 511
CR::reference (C++ type), 511
CR::size_type (C++ type), 511
CR::value_type (C++ type), 511
CSV file, 411

D
Data format, 413
Data layout, 413
Data type, 413
Dataset, 411
deallocate (C++ function), 889
default_concurrency (C++ function), 909
Dimensionality reduction, 411
dnnl::algorithm (C++ enum), 73
dnnl::algorithm::binary_add (C++ enumerator), 76
dnnl::algorithm::binary_div (C++ enumerator), 76
dnnl::algorithm::binary_eq (C++ enumerator), 77
dnnl::algorithm::binary_ge (C++ enumerator), 77
dnnl::algorithm::binary_gt (C++ enumerator), 77
dnnl::algorithm::binary_le (C++ enumerator), 77

Index 1999

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::algorithm::binary_lt (C++ enumerator), 77
dnnl::algorithm::binary_max (C++ enumerator), 76
dnnl::algorithm::binary_min (C++ enumerator), 76
dnnl::algorithm::binary_mul (C++ enumerator), 76
dnnl::algorithm::binary_ne (C++ enumerator), 77
dnnl::algorithm::binary_sub (C++ enumerator), 76
dnnl::algorithm::convolution_auto (C++ enumerator), 73
dnnl::algorithm::convolution_direct (C++ enumerator), 73
dnnl::algorithm::convolution_winograd (C++ enumerator), 73
dnnl::algorithm::deconvolution_direct (C++ enumerator), 73
dnnl::algorithm::deconvolution_winograd (C++ enumerator), 73
dnnl::algorithm::eltwise_abs (C++ enumerator), 74
dnnl::algorithm::eltwise_bounded_relu (C++ enumerator), 74
dnnl::algorithm::eltwise_clip (C++ enumerator), 74
dnnl::algorithm::eltwise_clip_use_dst_for_bwd (C++ enumerator), 74
dnnl::algorithm::eltwise_elu (C++ enumerator), 74
dnnl::algorithm::eltwise_elu_use_dst_for_bwd (C++ enumerator), 74
dnnl::algorithm::eltwise_exp (C++ enumerator), 74
dnnl::algorithm::eltwise_exp_use_dst_for_bwd (C++ enumerator), 74
dnnl::algorithm::eltwise_gelu (C++ enumerator), 74
dnnl::algorithm::eltwise_gelu_erf (C++ enumerator), 74
dnnl::algorithm::eltwise_gelu_tanh (C++ enumerator), 74
dnnl::algorithm::eltwise_hardsigmoid (C++ enumerator), 74
dnnl::algorithm::eltwise_hardswish (C++ enumerator), 74
dnnl::algorithm::eltwise_linear (C++ enumerator), 74
dnnl::algorithm::eltwise_log (C++ enumerator), 74
dnnl::algorithm::eltwise_logistic (C++ enumerator), 75
dnnl::algorithm::eltwise_logistic_use_dst_for_bwd (C++ enumerator), 75
dnnl::algorithm::eltwise_mish (C++ enumerator), 75
dnnl::algorithm::eltwise_pow (C++ enumerator), 75
dnnl::algorithm::eltwise_relu (C++ enumerator), 75
dnnl::algorithm::eltwise_relu_use_dst_for_bwd (C++ enumerator), 75
dnnl::algorithm::eltwise_round (C++ enumerator), 75
dnnl::algorithm::eltwise_soft_relu (C++ enumerator), 75
dnnl::algorithm::eltwise_sqrt (C++ enumerator), 75
dnnl::algorithm::eltwise_sqrt_use_dst_for_bwd (C++ enumerator), 75
dnnl::algorithm::eltwise_square (C++ enumerator), 75
dnnl::algorithm::eltwise_swish (C++ enumerator), 75
dnnl::algorithm::eltwise_tanh (C++ enumerator), 75
dnnl::algorithm::eltwise_tanh_use_dst_for_bwd (C++ enumerator), 75
dnnl::algorithm::lbr_gru (C++ enumerator), 76
dnnl::algorithm::lrn_across_channels (C++ enumerator), 75
dnnl::algorithm::lrn_within_channel (C++ enumerator), 76
dnnl::algorithm::pooling_avg (C++ enumerator), 76
dnnl::algorithm::pooling_avg_exclude_padding (C++ enumerator), 76
dnnl::algorithm::pooling_avg_include_padding (C++ enumerator), 76
dnnl::algorithm::pooling_max (C++ enumerator), 76
dnnl::algorithm::reduction_max (C++ enumerator), 77
dnnl::algorithm::reduction_mean (C++ enumerator), 77
dnnl::algorithm::reduction_min (C++ enumerator), 77
dnnl::algorithm::reduction_mul (C++ enumerator), 77
dnnl::algorithm::reduction_norm_lp_max (C++ enumerator), 77
dnnl::algorithm::reduction_norm_lp_power_p_max (C++ enumerator), 78
dnnl::algorithm::reduction_norm_lp_power_p_sum (C++ enumerator), 78

Index 2000

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::algorithm::reduction_norm_lp_sum (C++ enumerator), 77
dnnl::algorithm::reduction_sum (C++ enumerator), 77
dnnl::algorithm::resampling_linear (C++ enumerator), 77
dnnl::algorithm::resampling_nearest (C++ enumerator), 77
dnnl::algorithm::softmax_accurate (C++ enumerator), 78
dnnl::algorithm::softmax_log (C++ enumerator), 78
dnnl::algorithm::undef (C++ enumerator), 73
dnnl::algorithm::vanilla_gru (C++ enumerator), 76
dnnl::algorithm::vanilla_lstm (C++ enumerator), 76
dnnl::algorithm::vanilla_rnn (C++ enumerator), 76
dnnl::batch_normalization_backward (C++ struct), 101
dnnl::batch_normalization_backward::batch_normalization_backward (C++ function), 102
dnnl::batch_normalization_backward::primitive_desc (C++ struct), 102
dnnl::batch_normalization_backward::primitive_desc::diff_dst_desc (C++ function), 103
dnnl::batch_normalization_backward::primitive_desc::diff_src_desc (C++ function), 103
dnnl::batch_normalization_backward::primitive_desc::diff_weights_desc (C++ function), 103
dnnl::batch_normalization_backward::primitive_desc::dst_desc (C++ function), 102
dnnl::batch_normalization_backward::primitive_desc::get_epsilon (C++ function), 103
dnnl::batch_normalization_backward::primitive_desc::get_flags (C++ function), 104
dnnl::batch_normalization_backward::primitive_desc::get_prop_kind (C++ function), 103
dnnl::batch_normalization_backward::primitive_desc::mean_desc (C++ function), 103
dnnl::batch_normalization_backward::primitive_desc::primitive_desc (C++ function), 102
dnnl::batch_normalization_backward::primitive_desc::src_desc (C++ function), 102
dnnl::batch_normalization_backward::primitive_desc::variance_desc (C++ function), 103
dnnl::batch_normalization_backward::primitive_desc::weights_desc (C++ function), 102
dnnl::batch_normalization_backward::primitive_desc::workspace_desc (C++ function), 103
dnnl::batch_normalization_forward (C++ struct), 99
dnnl::batch_normalization_forward::batch_normalization_forward (C++ function), 100
dnnl::batch_normalization_forward::primitive_desc (C++ struct), 100
dnnl::batch_normalization_forward::primitive_desc::dst_desc (C++ function), 100
dnnl::batch_normalization_forward::primitive_desc::get_epsilon (C++ function), 101
dnnl::batch_normalization_forward::primitive_desc::get_flags (C++ function), 101
dnnl::batch_normalization_forward::primitive_desc::get_prop_kind (C++ function), 101
dnnl::batch_normalization_forward::primitive_desc::mean_desc (C++ function), 101
dnnl::batch_normalization_forward::primitive_desc::primitive_desc (C++ function), 100
dnnl::batch_normalization_forward::primitive_desc::src_desc (C++ function), 100
dnnl::batch_normalization_forward::primitive_desc::variance_desc (C++ function), 101
dnnl::batch_normalization_forward::primitive_desc::weights_desc (C++ function), 100
dnnl::batch_normalization_forward::primitive_desc::workspace_desc (C++ function), 101
dnnl::binary (C++ struct), 105
dnnl::binary::binary (C++ function), 105
dnnl::binary::primitive_desc (C++ struct), 105
dnnl::binary::primitive_desc::dst_desc (C++ function), 106
dnnl::binary::primitive_desc::get_algorithm (C++ function), 106
dnnl::binary::primitive_desc::primitive_desc (C++ function), 106
dnnl::binary::primitive_desc::src0_desc (C++ function), 106
dnnl::binary::primitive_desc::src1_desc (C++ function), 106
dnnl::binary::primitive_desc::src_desc (C++ function), 106
dnnl::concat (C++ struct), 108
dnnl::concat::concat (C++ function), 108
dnnl::concat::primitive_desc (C++ struct), 108
dnnl::concat::primitive_desc::dst_desc (C++ function), 109
dnnl::concat::primitive_desc::primitive_desc (C++ function), 108
dnnl::concat::primitive_desc::src_desc (C++ function), 109

Index 2001

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::convolution_backward_data (C++ struct), 119
dnnl::convolution_backward_data::convolution_backward_data (C++ function), 120
dnnl::convolution_backward_data::primitive_desc (C++ struct), 120
dnnl::convolution_backward_data::primitive_desc::diff_dst_desc (C++ function), 122
dnnl::convolution_backward_data::primitive_desc::diff_src_desc (C++ function), 121
dnnl::convolution_backward_data::primitive_desc::get_algorithm (C++ function), 122
dnnl::convolution_backward_data::primitive_desc::get_dilations (C++ function), 122
dnnl::convolution_backward_data::primitive_desc::get_padding_l (C++ function), 122
dnnl::convolution_backward_data::primitive_desc::get_padding_r (C++ function), 122
dnnl::convolution_backward_data::primitive_desc::get_prop_kind (C++ function), 122
dnnl::convolution_backward_data::primitive_desc::get_strides (C++ function), 122
dnnl::convolution_backward_data::primitive_desc::primitive_desc (C++ function), 120, 121
dnnl::convolution_backward_data::primitive_desc::weights_desc (C++ function), 121
dnnl::convolution_backward_weights (C++ struct), 122
dnnl::convolution_backward_weights::convolution_backward_weights (C++ function), 123
dnnl::convolution_backward_weights::primitive_desc (C++ struct), 123
dnnl::convolution_backward_weights::primitive_desc::diff_bias_desc (C++ function), 126
dnnl::convolution_backward_weights::primitive_desc::diff_dst_desc (C++ function), 126
dnnl::convolution_backward_weights::primitive_desc::diff_weights_desc (C++ function), 126
dnnl::convolution_backward_weights::primitive_desc::get_algorithm (C++ function), 126
dnnl::convolution_backward_weights::primitive_desc::get_dilations (C++ function), 127
dnnl::convolution_backward_weights::primitive_desc::get_padding_l (C++ function), 127
dnnl::convolution_backward_weights::primitive_desc::get_padding_r (C++ function), 127
dnnl::convolution_backward_weights::primitive_desc::get_prop_kind (C++ function), 126
dnnl::convolution_backward_weights::primitive_desc::get_strides (C++ function), 126
dnnl::convolution_backward_weights::primitive_desc::primitive_desc (C++ function), 123–125
dnnl::convolution_backward_weights::primitive_desc::src_desc (C++ function), 126
dnnl::convolution_forward (C++ struct), 115
dnnl::convolution_forward::convolution_forward (C++ function), 115
dnnl::convolution_forward::primitive_desc (C++ struct), 115
dnnl::convolution_forward::primitive_desc::bias_desc (C++ function), 118
dnnl::convolution_forward::primitive_desc::dst_desc (C++ function), 118
dnnl::convolution_forward::primitive_desc::get_algorithm (C++ function), 119
dnnl::convolution_forward::primitive_desc::get_dilations (C++ function), 119
dnnl::convolution_forward::primitive_desc::get_padding_l (C++ function), 119
dnnl::convolution_forward::primitive_desc::get_padding_r (C++ function), 119
dnnl::convolution_forward::primitive_desc::get_prop_kind (C++ function), 119
dnnl::convolution_forward::primitive_desc::get_strides (C++ function), 119
dnnl::convolution_forward::primitive_desc::primitive_desc (C++ function), 115–117
dnnl::convolution_forward::primitive_desc::src_desc (C++ function), 118
dnnl::convolution_forward::primitive_desc::weights_desc (C++ function), 118
dnnl::deconvolution_backward_data (C++ struct), 132
dnnl::deconvolution_backward_data::deconvolution_backward_data (C++ function), 132
dnnl::deconvolution_backward_data::primitive_desc (C++ struct), 132
dnnl::deconvolution_backward_data::primitive_desc::diff_dst_desc (C++ function), 134
dnnl::deconvolution_backward_data::primitive_desc::diff_src_desc (C++ function), 133
dnnl::deconvolution_backward_data::primitive_desc::get_algorithm (C++ function), 134
dnnl::deconvolution_backward_data::primitive_desc::get_dilations (C++ function), 134
dnnl::deconvolution_backward_data::primitive_desc::get_padding_l (C++ function), 134
dnnl::deconvolution_backward_data::primitive_desc::get_padding_r (C++ function), 134
dnnl::deconvolution_backward_data::primitive_desc::get_prop_kind (C++ function), 134
dnnl::deconvolution_backward_data::primitive_desc::get_strides (C++ function), 134
dnnl::deconvolution_backward_data::primitive_desc::primitive_desc (C++ function), 132, 133
dnnl::deconvolution_backward_data::primitive_desc::weights_desc (C++ function), 134

Index 2002

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::deconvolution_backward_weights (C++ struct), 135
dnnl::deconvolution_backward_weights::deconvolution_backward_weights (C++ function), 135
dnnl::deconvolution_backward_weights::primitive_desc (C++ struct), 135
dnnl::deconvolution_backward_weights::primitive_desc::diff_bias_desc (C++ function), 138
dnnl::deconvolution_backward_weights::primitive_desc::diff_dst_desc (C++ function), 138
dnnl::deconvolution_backward_weights::primitive_desc::diff_weights_desc (C++ function), 138
dnnl::deconvolution_backward_weights::primitive_desc::get_algorithm (C++ function), 138
dnnl::deconvolution_backward_weights::primitive_desc::get_dilations (C++ function), 139
dnnl::deconvolution_backward_weights::primitive_desc::get_padding_l (C++ function), 139
dnnl::deconvolution_backward_weights::primitive_desc::get_padding_r (C++ function), 139
dnnl::deconvolution_backward_weights::primitive_desc::get_prop_kind (C++ function), 138
dnnl::deconvolution_backward_weights::primitive_desc::get_strides (C++ function), 139
dnnl::deconvolution_backward_weights::primitive_desc::primitive_desc (C++ function), 135–137
dnnl::deconvolution_backward_weights::primitive_desc::src_desc (C++ function), 138
dnnl::deconvolution_forward (C++ struct), 127
dnnl::deconvolution_forward::deconvolution_forward (C++ function), 127
dnnl::deconvolution_forward::primitive_desc (C++ struct), 127
dnnl::deconvolution_forward::primitive_desc::bias_desc (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::dst_desc (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::get_algorithm (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::get_dilations (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::get_padding_l (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::get_padding_r (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::get_prop_kind (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::get_strides (C++ function), 131
dnnl::deconvolution_forward::primitive_desc::primitive_desc (C++ function), 128–130
dnnl::deconvolution_forward::primitive_desc::src_desc (C++ function), 130
dnnl::deconvolution_forward::primitive_desc::weights_desc (C++ function), 130
dnnl::eltwise_backward (C++ struct), 145
dnnl::eltwise_backward::eltwise_backward (C++ function), 145
dnnl::eltwise_backward::primitive_desc (C++ struct), 145
dnnl::eltwise_backward::primitive_desc::diff_dst_desc (C++ function), 147
dnnl::eltwise_backward::primitive_desc::diff_src_desc (C++ function), 147
dnnl::eltwise_backward::primitive_desc::get_algorithm (C++ function), 147
dnnl::eltwise_backward::primitive_desc::get_alpha (C++ function), 147
dnnl::eltwise_backward::primitive_desc::get_beta (C++ function), 148
dnnl::eltwise_backward::primitive_desc::get_prop_kind (C++ function), 147
dnnl::eltwise_backward::primitive_desc::primitive_desc (C++ function), 146
dnnl::eltwise_backward::primitive_desc::src_desc (C++ function), 147
dnnl::eltwise_forward (C++ struct), 143
dnnl::eltwise_forward::eltwise_forward (C++ function), 143
dnnl::eltwise_forward::primitive_desc (C++ struct), 143
dnnl::eltwise_forward::primitive_desc::dst_desc (C++ function), 144
dnnl::eltwise_forward::primitive_desc::get_algorithm (C++ function), 145
dnnl::eltwise_forward::primitive_desc::get_alpha (C++ function), 145
dnnl::eltwise_forward::primitive_desc::get_beta (C++ function), 145
dnnl::eltwise_forward::primitive_desc::get_prop_kind (C++ function), 145
dnnl::eltwise_forward::primitive_desc::primitive_desc (C++ function), 143, 144
dnnl::eltwise_forward::primitive_desc::src_desc (C++ function), 144
dnnl::engine (C++ struct), 31
dnnl::engine::engine (C++ function), 32
dnnl::engine::get_count (C++ function), 32
dnnl::engine::get_kind (C++ function), 32
dnnl::engine::kind (C++ enum), 31

Index 2003

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::engine::kind::any (C++ enumerator), 31
dnnl::engine::kind::cpu (C++ enumerator), 31
dnnl::engine::kind::gpu (C++ enumerator), 31
dnnl::error (C++ struct), 29
dnnl::graph::graph (C++ struct), 262
dnnl::graph::graph::add_op (C++ function), 262
dnnl::graph::graph::finalize (C++ function), 262
dnnl::graph::graph::get_partitions (C++ function), 262
dnnl::graph::graph::graph (C++ function), 262
dnnl::graph::graph::is_finalized (C++ function), 262
dnnl::graph::logical_tensor (C++ struct), 249
dnnl::graph::logical_tensor::data_type (C++ enum), 249
dnnl::graph::logical_tensor::data_type::bf16 (C++ enumerator), 249
dnnl::graph::logical_tensor::data_type::boolean (C++ enumerator), 250
dnnl::graph::logical_tensor::data_type::f16 (C++ enumerator), 249
dnnl::graph::logical_tensor::data_type::f32 (C++ enumerator), 249
dnnl::graph::logical_tensor::data_type::s32 (C++ enumerator), 249
dnnl::graph::logical_tensor::data_type::s8 (C++ enumerator), 249
dnnl::graph::logical_tensor::data_type::u8 (C++ enumerator), 250
dnnl::graph::logical_tensor::data_type::undef (C++ enumerator), 249
dnnl::graph::logical_tensor::dim (C++ type), 250
dnnl::graph::logical_tensor::dims (C++ type), 250
dnnl::graph::logical_tensor::get_data_type (C++ function), 252
dnnl::graph::logical_tensor::get_dims (C++ function), 252
dnnl::graph::logical_tensor::get_id (C++ function), 252
dnnl::graph::logical_tensor::get_layout_id (C++ function), 252
dnnl::graph::logical_tensor::get_layout_type (C++ function), 252
dnnl::graph::logical_tensor::get_mem_size (C++ function), 253
dnnl::graph::logical_tensor::get_property_type (C++ function), 252
dnnl::graph::logical_tensor::get_strides (C++ function), 253
dnnl::graph::logical_tensor::is_equal (C++ function), 253
dnnl::graph::logical_tensor::layout_type (C++ enum), 250
dnnl::graph::logical_tensor::layout_type::any (C++ enumerator), 250
dnnl::graph::logical_tensor::layout_type::opaque (C++ enumerator), 250
dnnl::graph::logical_tensor::layout_type::strided (C++ enumerator), 250
dnnl::graph::logical_tensor::layout_type::undef (C++ enumerator), 250
dnnl::graph::logical_tensor::logical_tensor (C++ function), 251, 252
dnnl::graph::logical_tensor::operator= (C++ function), 251
dnnl::graph::logical_tensor::property_type (C++ enum), 250
dnnl::graph::logical_tensor::property_type::constant (C++ enumerator), 250
dnnl::graph::logical_tensor::property_type::undef (C++ enumerator), 250
dnnl::graph::logical_tensor::property_type::variable (C++ enumerator), 250
dnnl::graph::op (C++ struct), 253
dnnl::graph::op::add_input (C++ function), 261
dnnl::graph::op::add_inputs (C++ function), 261
dnnl::graph::op::add_output (C++ function), 261
dnnl::graph::op::add_outputs (C++ function), 261
dnnl::graph::op::attr (C++ enum), 257
dnnl::graph::op::attr::alpha (C++ enumerator), 258
dnnl::graph::op::attr::auto_broadcast (C++ enumerator), 260
dnnl::graph::op::attr::auto_pad (C++ enumerator), 260
dnnl::graph::op::attr::axes (C++ enumerator), 258
dnnl::graph::op::attr::axis (C++ enumerator), 258
dnnl::graph::op::attr::begin_norm_axis (C++ enumerator), 258

Index 2004

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::graph::op::attr::beta (C++ enumerator), 258
dnnl::graph::op::attr::coordinate_transformation_mode (C++ enumerator), 260
dnnl::graph::op::attr::data_format (C++ enumerator), 260
dnnl::graph::op::attr::dilations (C++ enumerator), 258
dnnl::graph::op::attr::dst_shape (C++ enumerator), 258
dnnl::graph::op::attr::epsilon (C++ enumerator), 258
dnnl::graph::op::attr::exclude_pad (C++ enumerator), 259
dnnl::graph::op::attr::groups (C++ enumerator), 258
dnnl::graph::op::attr::keep_dims (C++ enumerator), 259
dnnl::graph::op::attr::keep_stats (C++ enumerator), 259
dnnl::graph::op::attr::kernel (C++ enumerator), 258
dnnl::graph::op::attr::max (C++ enumerator), 258
dnnl::graph::op::attr::min (C++ enumerator), 258
dnnl::graph::op::attr::mode (C++ enumerator), 260
dnnl::graph::op::attr::momentum (C++ enumerator), 258
dnnl::graph::op::attr::order (C++ enumerator), 258
dnnl::graph::op::attr::output_padding (C++ enumerator), 259
dnnl::graph::op::attr::pads_begin (C++ enumerator), 259
dnnl::graph::op::attr::pads_end (C++ enumerator), 259
dnnl::graph::op::attr::per_channel_broadcast (C++ enumerator), 259
dnnl::graph::op::attr::qtype (C++ enumerator), 260
dnnl::graph::op::attr::rounding_type (C++ enumerator), 260
dnnl::graph::op::attr::scales (C++ enumerator), 258
dnnl::graph::op::attr::shape (C++ enumerator), 259
dnnl::graph::op::attr::sizes (C++ enumerator), 259
dnnl::graph::op::attr::special_zero (C++ enumerator), 259
dnnl::graph::op::attr::src_shape (C++ enumerator), 259
dnnl::graph::op::attr::strides (C++ enumerator), 259
dnnl::graph::op::attr::transpose_a (C++ enumerator), 259
dnnl::graph::op::attr::transpose_b (C++ enumerator), 260
dnnl::graph::op::attr::undef (C++ enumerator), 257
dnnl::graph::op::attr::use_affine (C++ enumerator), 260
dnnl::graph::op::attr::use_dst (C++ enumerator), 260
dnnl::graph::op::attr::weights_format (C++ enumerator), 260
dnnl::graph::op::attr::weights_shape (C++ enumerator), 259
dnnl::graph::op::attr::zps (C++ enumerator), 259
dnnl::graph::op::kind (C++ enum), 253
dnnl::graph::op::kind::Abs (C++ enumerator), 253
dnnl::graph::op::kind::AbsBackward (C++ enumerator), 253
dnnl::graph::op::kind::Add (C++ enumerator), 253
dnnl::graph::op::kind::AvgPool (C++ enumerator), 253
dnnl::graph::op::kind::AvgPoolBackward (C++ enumerator), 254
dnnl::graph::op::kind::BatchNormForwardTraining (C++ enumerator), 254
dnnl::graph::op::kind::BatchNormInference (C++ enumerator), 254
dnnl::graph::op::kind::BatchNormTrainingBackward (C++ enumerator), 254
dnnl::graph::op::kind::BiasAdd (C++ enumerator), 254
dnnl::graph::op::kind::BiasAddBackward (C++ enumerator), 254
dnnl::graph::op::kind::Clamp (C++ enumerator), 254
dnnl::graph::op::kind::ClampBackward (C++ enumerator), 254
dnnl::graph::op::kind::Concat (C++ enumerator), 254
dnnl::graph::op::kind::Convolution (C++ enumerator), 254
dnnl::graph::op::kind::ConvolutionBackwardData (C++ enumerator), 254
dnnl::graph::op::kind::ConvolutionBackwardWeights (C++ enumerator), 254
dnnl::graph::op::kind::ConvTranspose (C++ enumerator), 254

Index 2005

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::graph::op::kind::ConvTransposeBackwardData (C++ enumerator), 254
dnnl::graph::op::kind::ConvTransposeBackwardWeights (C++ enumerator), 254
dnnl::graph::op::kind::Dequantize (C++ enumerator), 254
dnnl::graph::op::kind::Divide (C++ enumerator), 254
dnnl::graph::op::kind::DynamicDequantize (C++ enumerator), 254
dnnl::graph::op::kind::DynamicQuantize (C++ enumerator), 254
dnnl::graph::op::kind::Elu (C++ enumerator), 254
dnnl::graph::op::kind::EluBackward (C++ enumerator), 254
dnnl::graph::op::kind::End (C++ enumerator), 255
dnnl::graph::op::kind::Exp (C++ enumerator), 255
dnnl::graph::op::kind::GELU (C++ enumerator), 255
dnnl::graph::op::kind::GELUBackward (C++ enumerator), 255
dnnl::graph::op::kind::HardSigmoid (C++ enumerator), 255
dnnl::graph::op::kind::HardSigmoidBackward (C++ enumerator), 255
dnnl::graph::op::kind::HardSwish (C++ enumerator), 255
dnnl::graph::op::kind::HardSwishBackward (C++ enumerator), 255
dnnl::graph::op::kind::Interpolate (C++ enumerator), 255
dnnl::graph::op::kind::InterpolateBackward (C++ enumerator), 255
dnnl::graph::op::kind::LastSymbol (C++ enumerator), 257
dnnl::graph::op::kind::LayerNorm (C++ enumerator), 255
dnnl::graph::op::kind::LayerNormBackward (C++ enumerator), 255
dnnl::graph::op::kind::LeakyReLU (C++ enumerator), 255
dnnl::graph::op::kind::Log (C++ enumerator), 255
dnnl::graph::op::kind::LogSoftmax (C++ enumerator), 255
dnnl::graph::op::kind::LogSoftmaxBackward (C++ enumerator), 255
dnnl::graph::op::kind::MatMul (C++ enumerator), 255
dnnl::graph::op::kind::Maximum (C++ enumerator), 255
dnnl::graph::op::kind::MaxPool (C++ enumerator), 255
dnnl::graph::op::kind::MaxPoolBackward (C++ enumerator), 255
dnnl::graph::op::kind::Minimum (C++ enumerator), 255
dnnl::graph::op::kind::Mish (C++ enumerator), 256
dnnl::graph::op::kind::MishBackward (C++ enumerator), 256
dnnl::graph::op::kind::Multiply (C++ enumerator), 256
dnnl::graph::op::kind::Pow (C++ enumerator), 256
dnnl::graph::op::kind::PReLU (C++ enumerator), 256
dnnl::graph::op::kind::PReLUBackward (C++ enumerator), 256
dnnl::graph::op::kind::Quantize (C++ enumerator), 256
dnnl::graph::op::kind::Reciprocal (C++ enumerator), 256
dnnl::graph::op::kind::ReduceL1 (C++ enumerator), 256
dnnl::graph::op::kind::ReduceL2 (C++ enumerator), 256
dnnl::graph::op::kind::ReduceMax (C++ enumerator), 256
dnnl::graph::op::kind::ReduceMean (C++ enumerator), 256
dnnl::graph::op::kind::ReduceMin (C++ enumerator), 256
dnnl::graph::op::kind::ReduceProd (C++ enumerator), 256
dnnl::graph::op::kind::ReduceSum (C++ enumerator), 256
dnnl::graph::op::kind::ReLU (C++ enumerator), 256
dnnl::graph::op::kind::ReLUBackward (C++ enumerator), 256
dnnl::graph::op::kind::Reorder (C++ enumerator), 256
dnnl::graph::op::kind::Round (C++ enumerator), 256
dnnl::graph::op::kind::Select (C++ enumerator), 256
dnnl::graph::op::kind::Sigmoid (C++ enumerator), 256
dnnl::graph::op::kind::SigmoidBackward (C++ enumerator), 257
dnnl::graph::op::kind::SoftMax (C++ enumerator), 257
dnnl::graph::op::kind::SoftMaxBackward (C++ enumerator), 257

Index 2006

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::graph::op::kind::SoftPlus (C++ enumerator), 257
dnnl::graph::op::kind::SoftPlusBackward (C++ enumerator), 257
dnnl::graph::op::kind::Sqrt (C++ enumerator), 257
dnnl::graph::op::kind::SqrtBackward (C++ enumerator), 257
dnnl::graph::op::kind::Square (C++ enumerator), 257
dnnl::graph::op::kind::SquaredDifference (C++ enumerator), 257
dnnl::graph::op::kind::StaticReshape (C++ enumerator), 257
dnnl::graph::op::kind::StaticTranspose (C++ enumerator), 257
dnnl::graph::op::kind::Subtract (C++ enumerator), 257
dnnl::graph::op::kind::Tanh (C++ enumerator), 257
dnnl::graph::op::kind::TanhBackward (C++ enumerator), 257
dnnl::graph::op::kind::TypeCast (C++ enumerator), 257
dnnl::graph::op::kind::Wildcard (C++ enumerator), 257
dnnl::graph::op::op (C++ function), 261
dnnl::graph::op::set_attr (C++ function), 261
dnnl::gru_backward (C++ struct), 228
dnnl::gru_backward::gru_backward (C++ function), 228
dnnl::gru_backward::primitive_desc (C++ struct), 228
dnnl::gru_backward::primitive_desc::bias_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::diff_bias_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::diff_dst_iter_desc (C++ function), 231
dnnl::gru_backward::primitive_desc::diff_dst_layer_desc (C++ function), 231
dnnl::gru_backward::primitive_desc::diff_src_iter_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::diff_src_layer_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::diff_weights_iter_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::diff_weights_layer_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::dst_iter_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::dst_layer_desc (C++ function), 230
dnnl::gru_backward::primitive_desc::get_cell_kind (C++ function), 231
dnnl::gru_backward::primitive_desc::get_direction (C++ function), 231
dnnl::gru_backward::primitive_desc::get_prop_kind (C++ function), 231
dnnl::gru_backward::primitive_desc::primitive_desc (C++ function), 228
dnnl::gru_backward::primitive_desc::src_iter_desc (C++ function), 229
dnnl::gru_backward::primitive_desc::src_layer_desc (C++ function), 229
dnnl::gru_backward::primitive_desc::weights_iter_desc (C++ function), 229
dnnl::gru_backward::primitive_desc::weights_layer_desc (C++ function), 229
dnnl::gru_backward::primitive_desc::workspace_desc (C++ function), 230
dnnl::gru_forward (C++ struct), 225
dnnl::gru_forward::gru_forward (C++ function), 226
dnnl::gru_forward::primitive_desc (C++ struct), 226
dnnl::gru_forward::primitive_desc::bias_desc (C++ function), 227
dnnl::gru_forward::primitive_desc::dst_iter_desc (C++ function), 227
dnnl::gru_forward::primitive_desc::dst_layer_desc (C++ function), 227
dnnl::gru_forward::primitive_desc::get_cell_kind (C++ function), 227
dnnl::gru_forward::primitive_desc::get_direction (C++ function), 228
dnnl::gru_forward::primitive_desc::get_prop_kind (C++ function), 227
dnnl::gru_forward::primitive_desc::primitive_desc (C++ function), 226
dnnl::gru_forward::primitive_desc::src_iter_desc (C++ function), 227
dnnl::gru_forward::primitive_desc::src_layer_desc (C++ function), 226
dnnl::gru_forward::primitive_desc::weights_iter_desc (C++ function), 227
dnnl::gru_forward::primitive_desc::weights_layer_desc (C++ function), 227
dnnl::gru_forward::primitive_desc::workspace_desc (C++ function), 227
dnnl::inner_product_backward_data (C++ struct), 152
dnnl::inner_product_backward_data::inner_product_backward_data (C++ function), 152

Index 2007

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::inner_product_backward_data::primitive_desc (C++ struct), 152
dnnl::inner_product_backward_data::primitive_desc::diff_dst_desc (C++ function), 153
dnnl::inner_product_backward_data::primitive_desc::diff_src_desc (C++ function), 153
dnnl::inner_product_backward_data::primitive_desc::get_prop_kind (C++ function), 153
dnnl::inner_product_backward_data::primitive_desc::primitive_desc (C++ function), 153
dnnl::inner_product_backward_data::primitive_desc::weights_desc (C++ function), 153
dnnl::inner_product_backward_weights (C++ struct), 153
dnnl::inner_product_backward_weights::inner_product_backward_weights (C++ function), 154
dnnl::inner_product_backward_weights::primitive_desc (C++ struct), 154
dnnl::inner_product_backward_weights::primitive_desc::diff_bias_desc (C++ function), 155
dnnl::inner_product_backward_weights::primitive_desc::diff_dst_desc (C++ function), 155
dnnl::inner_product_backward_weights::primitive_desc::diff_weights_desc (C++ function), 155
dnnl::inner_product_backward_weights::primitive_desc::get_prop_kind (C++ function), 155
dnnl::inner_product_backward_weights::primitive_desc::primitive_desc (C++ function), 154
dnnl::inner_product_backward_weights::primitive_desc::src_desc (C++ function), 155
dnnl::inner_product_forward (C++ struct), 150
dnnl::inner_product_forward::inner_product_forward (C++ function), 150
dnnl::inner_product_forward::primitive_desc (C++ struct), 150
dnnl::inner_product_forward::primitive_desc::bias_desc (C++ function), 152
dnnl::inner_product_forward::primitive_desc::dst_desc (C++ function), 152
dnnl::inner_product_forward::primitive_desc::get_prop_kind (C++ function), 152
dnnl::inner_product_forward::primitive_desc::primitive_desc (C++ function), 151
dnnl::inner_product_forward::primitive_desc::src_desc (C++ function), 151
dnnl::inner_product_forward::primitive_desc::weights_desc (C++ function), 151
dnnl::layer_normalization_backward (C++ struct), 161
dnnl::layer_normalization_backward::layer_normalization_backward (C++ function), 161
dnnl::layer_normalization_backward::primitive_desc (C++ struct), 161
dnnl::layer_normalization_backward::primitive_desc::diff_dst_desc (C++ function), 162
dnnl::layer_normalization_backward::primitive_desc::diff_src_desc (C++ function), 162
dnnl::layer_normalization_backward::primitive_desc::diff_weights_desc (C++ function), 163
dnnl::layer_normalization_backward::primitive_desc::dst_desc (C++ function), 162
dnnl::layer_normalization_backward::primitive_desc::get_epsilon (C++ function), 163
dnnl::layer_normalization_backward::primitive_desc::get_flags (C++ function), 163
dnnl::layer_normalization_backward::primitive_desc::get_prop_kind (C++ function), 163
dnnl::layer_normalization_backward::primitive_desc::mean_desc (C++ function), 163
dnnl::layer_normalization_backward::primitive_desc::primitive_desc (C++ function), 161, 162
dnnl::layer_normalization_backward::primitive_desc::src_desc (C++ function), 162
dnnl::layer_normalization_backward::primitive_desc::variance_desc (C++ function), 163
dnnl::layer_normalization_backward::primitive_desc::weights_desc (C++ function), 162
dnnl::layer_normalization_backward::primitive_desc::workspace_desc (C++ function), 163
dnnl::layer_normalization_forward (C++ struct), 159
dnnl::layer_normalization_forward::layer_normalization_forward (C++ function), 159
dnnl::layer_normalization_forward::primitive_desc (C++ struct), 159
dnnl::layer_normalization_forward::primitive_desc::dst_desc (C++ function), 160
dnnl::layer_normalization_forward::primitive_desc::get_epsilon (C++ function), 160
dnnl::layer_normalization_forward::primitive_desc::get_flags (C++ function), 161
dnnl::layer_normalization_forward::primitive_desc::get_prop_kind (C++ function), 160
dnnl::layer_normalization_forward::primitive_desc::mean_desc (C++ function), 160
dnnl::layer_normalization_forward::primitive_desc::primitive_desc (C++ function), 159
dnnl::layer_normalization_forward::primitive_desc::src_desc (C++ function), 160
dnnl::layer_normalization_forward::primitive_desc::variance_desc (C++ function), 160
dnnl::layer_normalization_forward::primitive_desc::weights_desc (C++ function), 160
dnnl::layer_normalization_forward::primitive_desc::workspace_desc (C++ function), 160
dnnl::lbr_gru_backward (C++ struct), 233

Index 2008

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::lbr_gru_backward::lbr_gru_backward (C++ function), 234
dnnl::lbr_gru_backward::primitive_desc (C++ struct), 234
dnnl::lbr_gru_backward::primitive_desc::bias_desc (C++ function), 235
dnnl::lbr_gru_backward::primitive_desc::diff_bias_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::diff_dst_iter_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::diff_dst_layer_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::diff_src_iter_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::diff_src_layer_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::diff_weights_iter_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::diff_weights_layer_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::dst_iter_desc (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::dst_layer_desc (C++ function), 235
dnnl::lbr_gru_backward::primitive_desc::get_cell_kind (C++ function), 236
dnnl::lbr_gru_backward::primitive_desc::get_direction (C++ function), 237
dnnl::lbr_gru_backward::primitive_desc::get_prop_kind (C++ function), 237
dnnl::lbr_gru_backward::primitive_desc::primitive_desc (C++ function), 234
dnnl::lbr_gru_backward::primitive_desc::src_iter_desc (C++ function), 235
dnnl::lbr_gru_backward::primitive_desc::src_layer_desc (C++ function), 235
dnnl::lbr_gru_backward::primitive_desc::weights_iter_desc (C++ function), 235
dnnl::lbr_gru_backward::primitive_desc::weights_layer_desc (C++ function), 235
dnnl::lbr_gru_backward::primitive_desc::workspace_desc (C++ function), 236
dnnl::lbr_gru_forward (C++ struct), 231
dnnl::lbr_gru_forward::lbr_gru_forward (C++ function), 231
dnnl::lbr_gru_forward::primitive_desc (C++ struct), 231
dnnl::lbr_gru_forward::primitive_desc::bias_desc (C++ function), 233
dnnl::lbr_gru_forward::primitive_desc::dst_iter_desc (C++ function), 233
dnnl::lbr_gru_forward::primitive_desc::dst_layer_desc (C++ function), 233
dnnl::lbr_gru_forward::primitive_desc::get_cell_kind (C++ function), 233
dnnl::lbr_gru_forward::primitive_desc::get_direction (C++ function), 233
dnnl::lbr_gru_forward::primitive_desc::get_prop_kind (C++ function), 233
dnnl::lbr_gru_forward::primitive_desc::primitive_desc (C++ function), 232
dnnl::lbr_gru_forward::primitive_desc::src_iter_desc (C++ function), 232
dnnl::lbr_gru_forward::primitive_desc::src_layer_desc (C++ function), 232
dnnl::lbr_gru_forward::primitive_desc::weights_iter_desc (C++ function), 233
dnnl::lbr_gru_forward::primitive_desc::weights_layer_desc (C++ function), 232
dnnl::lbr_gru_forward::primitive_desc::workspace_desc (C++ function), 233
dnnl::lrn_backward (C++ struct), 167
dnnl::lrn_backward::lrn_backward (C++ function), 168
dnnl::lrn_backward::primitive_desc (C++ struct), 168
dnnl::lrn_backward::primitive_desc::diff_dst_desc (C++ function), 168
dnnl::lrn_backward::primitive_desc::diff_src_desc (C++ function), 168
dnnl::lrn_backward::primitive_desc::get_algorithm (C++ function), 169
dnnl::lrn_backward::primitive_desc::get_alpha (C++ function), 169
dnnl::lrn_backward::primitive_desc::get_beta (C++ function), 169
dnnl::lrn_backward::primitive_desc::get_k (C++ function), 169
dnnl::lrn_backward::primitive_desc::get_local_size (C++ function), 169
dnnl::lrn_backward::primitive_desc::get_prop_kind (C++ function), 169
dnnl::lrn_backward::primitive_desc::primitive_desc (C++ function), 168
dnnl::lrn_backward::primitive_desc::workspace_desc (C++ function), 169
dnnl::lrn_forward (C++ struct), 165
dnnl::lrn_forward::lrn_forward (C++ function), 166
dnnl::lrn_forward::primitive_desc (C++ struct), 166
dnnl::lrn_forward::primitive_desc::dst_desc (C++ function), 166
dnnl::lrn_forward::primitive_desc::get_algorithm (C++ function), 167

Index 2009

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::lrn_forward::primitive_desc::get_alpha (C++ function), 167
dnnl::lrn_forward::primitive_desc::get_beta (C++ function), 167
dnnl::lrn_forward::primitive_desc::get_k (C++ function), 167
dnnl::lrn_forward::primitive_desc::get_local_size (C++ function), 167
dnnl::lrn_forward::primitive_desc::get_prop_kind (C++ function), 167
dnnl::lrn_forward::primitive_desc::primitive_desc (C++ function), 166
dnnl::lrn_forward::primitive_desc::src_desc (C++ function), 166
dnnl::lrn_forward::primitive_desc::workspace_desc (C++ function), 167
dnnl::lstm_backward (C++ struct), 218
dnnl::lstm_backward::lstm_backward (C++ function), 218
dnnl::lstm_backward::primitive_desc (C++ struct), 218
dnnl::lstm_backward::primitive_desc::bias_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::diff_bias_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::diff_dst_iter_c_desc (C++ function), 225
dnnl::lstm_backward::primitive_desc::diff_dst_iter_desc (C++ function), 225
dnnl::lstm_backward::primitive_desc::diff_dst_layer_desc (C++ function), 225
dnnl::lstm_backward::primitive_desc::diff_src_iter_c_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::diff_src_iter_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::diff_src_layer_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::diff_weights_iter_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::diff_weights_layer_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::diff_weights_peephole_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::diff_weights_projection_desc (C++ function), 224
dnnl::lstm_backward::primitive_desc::dst_iter_c_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::dst_iter_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::dst_layer_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::get_cell_kind (C++ function), 225
dnnl::lstm_backward::primitive_desc::get_direction (C++ function), 225
dnnl::lstm_backward::primitive_desc::get_prop_kind (C++ function), 225
dnnl::lstm_backward::primitive_desc::primitive_desc (C++ function), 218, 220, 221
dnnl::lstm_backward::primitive_desc::src_iter_c_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::src_iter_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::src_layer_desc (C++ function), 222
dnnl::lstm_backward::primitive_desc::weights_iter_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::weights_layer_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::weights_peephole_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::weights_projection_desc (C++ function), 223
dnnl::lstm_backward::primitive_desc::workspace_desc (C++ function), 224
dnnl::lstm_forward (C++ struct), 213
dnnl::lstm_forward::lstm_forward (C++ function), 214
dnnl::lstm_forward::primitive_desc (C++ struct), 214
dnnl::lstm_forward::primitive_desc::bias_desc (C++ function), 217
dnnl::lstm_forward::primitive_desc::dst_iter_c_desc (C++ function), 217
dnnl::lstm_forward::primitive_desc::dst_iter_desc (C++ function), 217
dnnl::lstm_forward::primitive_desc::dst_layer_desc (C++ function), 217
dnnl::lstm_forward::primitive_desc::get_cell_kind (C++ function), 218
dnnl::lstm_forward::primitive_desc::get_direction (C++ function), 218
dnnl::lstm_forward::primitive_desc::get_prop_kind (C++ function), 218
dnnl::lstm_forward::primitive_desc::primitive_desc (C++ function), 214–216
dnnl::lstm_forward::primitive_desc::src_iter_c_desc (C++ function), 216
dnnl::lstm_forward::primitive_desc::src_iter_desc (C++ function), 216
dnnl::lstm_forward::primitive_desc::src_layer_desc (C++ function), 216
dnnl::lstm_forward::primitive_desc::weights_iter_desc (C++ function), 217
dnnl::lstm_forward::primitive_desc::weights_layer_desc (C++ function), 217

Index 2010

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::lstm_forward::primitive_desc::weights_peephole_desc (C++ function), 217
dnnl::lstm_forward::primitive_desc::weights_projection_desc (C++ function), 217
dnnl::lstm_forward::primitive_desc::workspace_desc (C++ function), 217
dnnl::matmul (C++ struct), 172
dnnl::matmul::matmul (C++ function), 172
dnnl::matmul::primitive_desc (C++ struct), 172
dnnl::matmul::primitive_desc::bias_desc (C++ function), 173
dnnl::matmul::primitive_desc::dst_desc (C++ function), 173
dnnl::matmul::primitive_desc::primitive_desc (C++ function), 172
dnnl::matmul::primitive_desc::src_desc (C++ function), 173
dnnl::matmul::primitive_desc::weights_desc (C++ function), 173
dnnl::memory (C++ struct), 52
dnnl::memory::data_type (C++ enum), 34
dnnl::memory::data_type::bf16 (C++ enumerator), 35
dnnl::memory::data_type::f16 (C++ enumerator), 35
dnnl::memory::data_type::f32 (C++ enumerator), 35
dnnl::memory::data_type::s32 (C++ enumerator), 35
dnnl::memory::data_type::s8 (C++ enumerator), 35
dnnl::memory::data_type::u8 (C++ enumerator), 35
dnnl::memory::data_type::undef (C++ enumerator), 35
dnnl::memory::desc (C++ struct), 49
dnnl::memory::desc::data_type (C++ function), 51
dnnl::memory::desc::desc (C++ function), 49
dnnl::memory::desc::dims (C++ function), 51
dnnl::memory::desc::get_size (C++ function), 51
dnnl::memory::desc::is_zero (C++ function), 51
dnnl::memory::desc::operator!= (C++ function), 52
dnnl::memory::desc::operator== (C++ function), 52
dnnl::memory::desc::permute_axes (C++ function), 51
dnnl::memory::desc::reshape (C++ function), 50
dnnl::memory::desc::submemory_desc (C++ function), 50
dnnl::memory::dim (C++ type), 39
dnnl::memory::dims (C++ type), 39
dnnl::memory::format_tag (C++ enum), 42
dnnl::memory::format_tag::a (C++ enumerator), 43
dnnl::memory::format_tag::ab (C++ enumerator), 43
dnnl::memory::format_tag::abc (C++ enumerator), 43
dnnl::memory::format_tag::abcd (C++ enumerator), 44
dnnl::memory::format_tag::abcde (C++ enumerator), 44
dnnl::memory::format_tag::abcdef (C++ enumerator), 45
dnnl::memory::format_tag::abdc (C++ enumerator), 44
dnnl::memory::format_tag::abdec (C++ enumerator), 44
dnnl::memory::format_tag::acb (C++ enumerator), 43
dnnl::memory::format_tag::acbde (C++ enumerator), 44
dnnl::memory::format_tag::acbdef (C++ enumerator), 45
dnnl::memory::format_tag::acdb (C++ enumerator), 44
dnnl::memory::format_tag::acdeb (C++ enumerator), 44
dnnl::memory::format_tag::any (C++ enumerator), 43
dnnl::memory::format_tag::ba (C++ enumerator), 43
dnnl::memory::format_tag::bac (C++ enumerator), 43
dnnl::memory::format_tag::bacd (C++ enumerator), 44
dnnl::memory::format_tag::bacde (C++ enumerator), 44
dnnl::memory::format_tag::bca (C++ enumerator), 43
dnnl::memory::format_tag::bcda (C++ enumerator), 44

Index 2011

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::memory::format_tag::bcdea (C++ enumerator), 44
dnnl::memory::format_tag::cba (C++ enumerator), 43
dnnl::memory::format_tag::cdba (C++ enumerator), 44
dnnl::memory::format_tag::cdeba (C++ enumerator), 44
dnnl::memory::format_tag::chwn (C++ enumerator), 45
dnnl::memory::format_tag::cn (C++ enumerator), 45
dnnl::memory::format_tag::dcab (C++ enumerator), 44
dnnl::memory::format_tag::decab (C++ enumerator), 44
dnnl::memory::format_tag::defcab (C++ enumerator), 45
dnnl::memory::format_tag::dhwigo (C++ enumerator), 47
dnnl::memory::format_tag::dhwio (C++ enumerator), 46
dnnl::memory::format_tag::giodhw (C++ enumerator), 47
dnnl::memory::format_tag::giohw (C++ enumerator), 47
dnnl::memory::format_tag::goidhw (C++ enumerator), 47
dnnl::memory::format_tag::goihw (C++ enumerator), 47
dnnl::memory::format_tag::goiw (C++ enumerator), 47
dnnl::memory::format_tag::hwigo (C++ enumerator), 47
dnnl::memory::format_tag::hwio (C++ enumerator), 46
dnnl::memory::format_tag::idhwo (C++ enumerator), 47
dnnl::memory::format_tag::ihwo (C++ enumerator), 46
dnnl::memory::format_tag::io (C++ enumerator), 46
dnnl::memory::format_tag::iodhw (C++ enumerator), 46
dnnl::memory::format_tag::iohw (C++ enumerator), 46
dnnl::memory::format_tag::iwo (C++ enumerator), 46
dnnl::memory::format_tag::ldgo (C++ enumerator), 48
dnnl::memory::format_tag::ldgoi (C++ enumerator), 47
dnnl::memory::format_tag::ldigo (C++ enumerator), 47
dnnl::memory::format_tag::ldio (C++ enumerator), 48
dnnl::memory::format_tag::ldnc (C++ enumerator), 47
dnnl::memory::format_tag::ldoi (C++ enumerator), 48
dnnl::memory::format_tag::nc (C++ enumerator), 45
dnnl::memory::format_tag::ncdhw (C++ enumerator), 45
dnnl::memory::format_tag::nchw (C++ enumerator), 45
dnnl::memory::format_tag::ncw (C++ enumerator), 45
dnnl::memory::format_tag::ndhwc (C++ enumerator), 45
dnnl::memory::format_tag::nhwc (C++ enumerator), 45
dnnl::memory::format_tag::nt (C++ enumerator), 45
dnnl::memory::format_tag::ntc (C++ enumerator), 47
dnnl::memory::format_tag::nwc (C++ enumerator), 45
dnnl::memory::format_tag::odhwi (C++ enumerator), 46
dnnl::memory::format_tag::ohwi (C++ enumerator), 46
dnnl::memory::format_tag::oi (C++ enumerator), 46
dnnl::memory::format_tag::oidhw (C++ enumerator), 46
dnnl::memory::format_tag::oihw (C++ enumerator), 46
dnnl::memory::format_tag::oiw (C++ enumerator), 46
dnnl::memory::format_tag::owi (C++ enumerator), 46
dnnl::memory::format_tag::tn (C++ enumerator), 45
dnnl::memory::format_tag::tnc (C++ enumerator), 47
dnnl::memory::format_tag::undef (C++ enumerator), 43
dnnl::memory::format_tag::wigo (C++ enumerator), 47
dnnl::memory::format_tag::wio (C++ enumerator), 46
dnnl::memory::format_tag::x (C++ enumerator), 45
dnnl::memory::get_data_handle (C++ function), 53
dnnl::memory::get_desc (C++ function), 53

Index 2012

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::memory::get_engine (C++ function), 53
dnnl::memory::map_data (C++ function), 54
dnnl::memory::memory (C++ function), 52, 53
dnnl::memory::set_data_handle (C++ function), 53, 54
dnnl::memory::unmap_data (C++ function), 54
dnnl::normalization_flags (C++ enum), 78
dnnl::normalization_flags::fuse_norm_relu (C++ enumerator), 78
dnnl::normalization_flags::none (C++ enumerator), 78
dnnl::normalization_flags::use_global_stats (C++ enumerator), 78
dnnl::normalization_flags::use_scale (C++ enumerator), 78
dnnl::normalization_flags::use_shift (C++ enumerator), 78
dnnl::pooling_backward (C++ struct), 177
dnnl::pooling_backward::pooling_backward (C++ function), 178
dnnl::pooling_backward::primitive_desc (C++ struct), 178
dnnl::pooling_backward::primitive_desc::diff_dst_desc (C++ function), 179
dnnl::pooling_backward::primitive_desc::diff_src_desc (C++ function), 178
dnnl::pooling_backward::primitive_desc::get_algorithm (C++ function), 179
dnnl::pooling_backward::primitive_desc::get_dilations (C++ function), 179
dnnl::pooling_backward::primitive_desc::get_kernel (C++ function), 179
dnnl::pooling_backward::primitive_desc::get_padding_l (C++ function), 179
dnnl::pooling_backward::primitive_desc::get_padding_r (C++ function), 180
dnnl::pooling_backward::primitive_desc::get_prop_kind (C++ function), 179
dnnl::pooling_backward::primitive_desc::get_strides (C++ function), 179
dnnl::pooling_backward::primitive_desc::primitive_desc (C++ function), 178
dnnl::pooling_backward::primitive_desc::workspace_desc (C++ function), 179
dnnl::pooling_forward (C++ struct), 175
dnnl::pooling_forward::pooling_forward (C++ function), 175
dnnl::pooling_forward::primitive_desc (C++ struct), 175
dnnl::pooling_forward::primitive_desc::dst_desc (C++ function), 176
dnnl::pooling_forward::primitive_desc::get_algorithm (C++ function), 177
dnnl::pooling_forward::primitive_desc::get_dilations (C++ function), 177
dnnl::pooling_forward::primitive_desc::get_kernel (C++ function), 177
dnnl::pooling_forward::primitive_desc::get_padding_l (C++ function), 177
dnnl::pooling_forward::primitive_desc::get_padding_r (C++ function), 177
dnnl::pooling_forward::primitive_desc::get_prop_kind (C++ function), 177
dnnl::pooling_forward::primitive_desc::get_strides (C++ function), 177
dnnl::pooling_forward::primitive_desc::primitive_desc (C++ function), 176
dnnl::pooling_forward::primitive_desc::src_desc (C++ function), 176
dnnl::pooling_forward::primitive_desc::workspace_desc (C++ function), 176
dnnl::post_ops (C++ struct), 86
dnnl::post_ops::append_binary (C++ function), 87
dnnl::post_ops::append_eltwise (C++ function), 87
dnnl::post_ops::append_sum (C++ function), 86
dnnl::post_ops::get_params_binary (C++ function), 87
dnnl::post_ops::get_params_eltwise (C++ function), 87
dnnl::post_ops::get_params_sum (C++ function), 86, 87
dnnl::post_ops::kind (C++ function), 86
dnnl::post_ops::len (C++ function), 86
dnnl::post_ops::post_ops (C++ function), 86
dnnl::prelu_backward (C++ struct), 183
dnnl::prelu_backward::prelu_backward (C++ function), 183
dnnl::prelu_backward::primitive_desc (C++ struct), 183
dnnl::prelu_backward::primitive_desc::diff_dst_desc (C++ function), 184
dnnl::prelu_backward::primitive_desc::diff_src_desc (C++ function), 183

Index 2013

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::prelu_backward::primitive_desc::get_prop_kind (C++ function), 184
dnnl::prelu_backward::primitive_desc::primitive_desc (C++ function), 183
dnnl::prelu_backward::primitive_desc::src_desc (C++ function), 183
dnnl::prelu_forward (C++ struct), 181
dnnl::prelu_forward::prelu_forward (C++ function), 182
dnnl::prelu_forward::primitive_desc (C++ struct), 182
dnnl::prelu_forward::primitive_desc::dst_desc (C++ function), 182
dnnl::prelu_forward::primitive_desc::get_prop_kind (C++ function), 182
dnnl::prelu_forward::primitive_desc::primitive_desc (C++ function), 182
dnnl::prelu_forward::primitive_desc::src_desc (C++ function), 182
dnnl::primitive (C++ struct), 59
dnnl::primitive::execute (C++ function), 61
dnnl::primitive::get_kind (C++ function), 61
dnnl::primitive::kind (C++ enum), 60
dnnl::primitive::kind::batch_normalization (C++ enumerator), 60
dnnl::primitive::kind::binary (C++ enumerator), 61
dnnl::primitive::kind::concat (C++ enumerator), 60
dnnl::primitive::kind::convolution (C++ enumerator), 60
dnnl::primitive::kind::deconvolution (C++ enumerator), 60
dnnl::primitive::kind::eltwise (C++ enumerator), 60
dnnl::primitive::kind::inner_product (C++ enumerator), 61
dnnl::primitive::kind::layer_normalization (C++ enumerator), 60
dnnl::primitive::kind::lrn (C++ enumerator), 60
dnnl::primitive::kind::matmul (C++ enumerator), 61
dnnl::primitive::kind::pooling (C++ enumerator), 60
dnnl::primitive::kind::prelu (C++ enumerator), 60
dnnl::primitive::kind::reorder (C++ enumerator), 60
dnnl::primitive::kind::resampling (C++ enumerator), 61
dnnl::primitive::kind::rnn (C++ enumerator), 61
dnnl::primitive::kind::shuffle (C++ enumerator), 60
dnnl::primitive::kind::softmax (C++ enumerator), 60
dnnl::primitive::kind::sum (C++ enumerator), 60
dnnl::primitive::kind::undef (C++ enumerator), 60
dnnl::primitive::operator= (C++ function), 61
dnnl::primitive::primitive (C++ function), 61
dnnl::primitive_attr (C++ struct), 93
dnnl::primitive_attr::get_fpmath_mode (C++ function), 93
dnnl::primitive_attr::get_post_ops (C++ function), 94
dnnl::primitive_attr::get_scales_mask (C++ function), 93
dnnl::primitive_attr::get_scratchpad_mode (C++ function), 93
dnnl::primitive_attr::primitive_attr (C++ function), 93
dnnl::primitive_attr::set_fpmath_mode (C++ function), 93
dnnl::primitive_attr::set_post_ops (C++ function), 94
dnnl::primitive_attr::set_rnn_data_qparams (C++ function), 94
dnnl::primitive_attr::set_rnn_weights_qparams (C++ function), 95
dnnl::primitive_attr::set_scales_mask (C++ function), 93
dnnl::primitive_attr::set_scratchpad_mode (C++ function), 93
dnnl::primitive_attr::set_zero_points_mask (C++ function), 94
dnnl::primitive_desc (C++ struct), 69
dnnl::primitive_desc::next_impl (C++ function), 69
dnnl::primitive_desc::primitive_desc (C++ function), 69
dnnl::primitive_desc_base (C++ struct), 62
dnnl::primitive_desc_base::bias_desc (C++ function), 66
dnnl::primitive_desc_base::diff_dst_desc (C++ function), 67, 68

Index 2014

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::primitive_desc_base::diff_src_desc (C++ function), 67, 68
dnnl::primitive_desc_base::diff_weights_desc (C++ function), 67, 68
dnnl::primitive_desc_base::dst_desc (C++ function), 66, 67
dnnl::primitive_desc_base::get_activation_kind (C++ function), 65
dnnl::primitive_desc_base::get_algorithm (C++ function), 63
dnnl::primitive_desc_base::get_alpha (C++ function), 64
dnnl::primitive_desc_base::get_axis (C++ function), 64
dnnl::primitive_desc_base::get_beta (C++ function), 64
dnnl::primitive_desc_base::get_cell_kind (C++ function), 65
dnnl::primitive_desc_base::get_dilations (C++ function), 63
dnnl::primitive_desc_base::get_direction (C++ function), 65
dnnl::primitive_desc_base::get_engine (C++ function), 62
dnnl::primitive_desc_base::get_epsilon (C++ function), 63
dnnl::primitive_desc_base::get_factors (C++ function), 64
dnnl::primitive_desc_base::get_flags (C++ function), 63
dnnl::primitive_desc_base::get_group_size (C++ function), 65
dnnl::primitive_desc_base::get_k (C++ function), 64
dnnl::primitive_desc_base::get_kernel (C++ function), 65
dnnl::primitive_desc_base::get_kind (C++ function), 69
dnnl::primitive_desc_base::get_local_size (C++ function), 64
dnnl::primitive_desc_base::get_p (C++ function), 64
dnnl::primitive_desc_base::get_padding_l (C++ function), 63
dnnl::primitive_desc_base::get_padding_r (C++ function), 63
dnnl::primitive_desc_base::get_primitive_attr (C++ function), 68
dnnl::primitive_desc_base::get_prop_kind (C++ function), 65
dnnl::primitive_desc_base::get_strides (C++ function), 62
dnnl::primitive_desc_base::impl_info_str (C++ function), 62
dnnl::primitive_desc_base::primitive_desc_base (C++ function), 62
dnnl::primitive_desc_base::query_md (C++ function), 65
dnnl::primitive_desc_base::query_s64 (C++ function), 62
dnnl::primitive_desc_base::scratchpad_desc (C++ function), 68
dnnl::primitive_desc_base::scratchpad_engine (C++ function), 68
dnnl::primitive_desc_base::src_desc (C++ function), 66, 67
dnnl::primitive_desc_base::weights_desc (C++ function), 66, 68
dnnl::primitive_desc_base::workspace_desc (C++ function), 68
dnnl::prop_kind (C++ enum), 72
dnnl::prop_kind::backward (C++ enumerator), 73
dnnl::prop_kind::backward_bias (C++ enumerator), 73
dnnl::prop_kind::backward_data (C++ enumerator), 73
dnnl::prop_kind::backward_weights (C++ enumerator), 73
dnnl::prop_kind::forward (C++ enumerator), 73
dnnl::prop_kind::forward_inference (C++ enumerator), 73
dnnl::prop_kind::forward_scoring (C++ enumerator), 73
dnnl::prop_kind::forward_training (C++ enumerator), 72
dnnl::prop_kind::undef (C++ enumerator), 72
dnnl::reduction (C++ struct), 186
dnnl::reduction::primitive_desc (C++ struct), 186
dnnl::reduction::primitive_desc::dst_desc (C++ function), 186
dnnl::reduction::primitive_desc::get_algorithm (C++ function), 187
dnnl::reduction::primitive_desc::get_epsilon (C++ function), 187
dnnl::reduction::primitive_desc::get_p (C++ function), 187
dnnl::reduction::primitive_desc::primitive_desc (C++ function), 186
dnnl::reduction::primitive_desc::src_desc (C++ function), 186
dnnl::reduction::reduction (C++ function), 186

Index 2015

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::reorder (C++ struct), 189
dnnl::reorder::execute (C++ function), 190
dnnl::reorder::primitive_desc (C++ struct), 190
dnnl::reorder::primitive_desc::dst_desc (C++ function), 191
dnnl::reorder::primitive_desc::get_dst_engine (C++ function), 191
dnnl::reorder::primitive_desc::get_src_engine (C++ function), 190
dnnl::reorder::primitive_desc::primitive_desc (C++ function), 190
dnnl::reorder::primitive_desc::src_desc (C++ function), 191
dnnl::reorder::reorder (C++ function), 189
dnnl::resampling_backward (C++ struct), 195
dnnl::resampling_backward::primitive_desc (C++ struct), 196
dnnl::resampling_backward::primitive_desc::diff_dst_desc (C++ function), 197
dnnl::resampling_backward::primitive_desc::diff_src_desc (C++ function), 197
dnnl::resampling_backward::primitive_desc::primitive_desc (C++ function), 196
dnnl::resampling_backward::resampling_backward (C++ function), 196
dnnl::resampling_forward (C++ struct), 194
dnnl::resampling_forward::primitive_desc (C++ struct), 194
dnnl::resampling_forward::primitive_desc::dst_desc (C++ function), 195
dnnl::resampling_forward::primitive_desc::primitive_desc (C++ function), 194, 195
dnnl::resampling_forward::primitive_desc::src_desc (C++ function), 195
dnnl::resampling_forward::resampling_forward (C++ function), 194
dnnl::rnn_direction (C++ enum), 204
dnnl::rnn_direction::bidirectional_concat (C++ enumerator), 205
dnnl::rnn_direction::bidirectional_sum (C++ enumerator), 205
dnnl::rnn_direction::undef (C++ enumerator), 204
dnnl::rnn_direction::unidirectional (C++ enumerator), 205
dnnl::rnn_direction::unidirectional_left2right (C++ enumerator), 204
dnnl::rnn_direction::unidirectional_right2left (C++ enumerator), 205
dnnl::rnn_flags (C++ enum), 204
dnnl::rnn_flags::undef (C++ enumerator), 204
dnnl::rnn_primitive_desc_base (C++ struct), 69
dnnl::rnn_primitive_desc_base::augru_attention_desc (C++ function), 70
dnnl::rnn_primitive_desc_base::bias_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::diff_augru_attention_desc (C++ function), 72
dnnl::rnn_primitive_desc_base::diff_bias_desc (C++ function), 72
dnnl::rnn_primitive_desc_base::diff_dst_iter_c_desc (C++ function), 72
dnnl::rnn_primitive_desc_base::diff_dst_iter_desc (C++ function), 72
dnnl::rnn_primitive_desc_base::diff_dst_layer_desc (C++ function), 72
dnnl::rnn_primitive_desc_base::diff_src_iter_c_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::diff_src_iter_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::diff_src_layer_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::diff_weights_iter_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::diff_weights_layer_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::diff_weights_peephole_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::diff_weights_projection_desc (C++ function), 72
dnnl::rnn_primitive_desc_base::dst_iter_c_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::dst_iter_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::dst_layer_desc (C++ function), 71
dnnl::rnn_primitive_desc_base::rnn_primitive_desc_base (C++ function), 70
dnnl::rnn_primitive_desc_base::src_iter_c_desc (C++ function), 70
dnnl::rnn_primitive_desc_base::src_iter_desc (C++ function), 70
dnnl::rnn_primitive_desc_base::src_layer_desc (C++ function), 70
dnnl::rnn_primitive_desc_base::weights_iter_desc (C++ function), 70
dnnl::rnn_primitive_desc_base::weights_layer_desc (C++ function), 70

Index 2016

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::rnn_primitive_desc_base::weights_peephole_desc (C++ function), 70
dnnl::rnn_primitive_desc_base::weights_projection_desc (C++ function), 70
dnnl::scratchpad_mode (C++ enum), 88
dnnl::scratchpad_mode::library (C++ enumerator), 88
dnnl::scratchpad_mode::user (C++ enumerator), 88
dnnl::shuffle_backward (C++ struct), 240
dnnl::shuffle_backward::primitive_desc (C++ struct), 240
dnnl::shuffle_backward::primitive_desc::diff_dst_desc (C++ function), 241
dnnl::shuffle_backward::primitive_desc::diff_src_desc (C++ function), 241
dnnl::shuffle_backward::primitive_desc::get_axis (C++ function), 241
dnnl::shuffle_backward::primitive_desc::get_group_size (C++ function), 241
dnnl::shuffle_backward::primitive_desc::get_prop_kind (C++ function), 241
dnnl::shuffle_backward::primitive_desc::primitive_desc (C++ function), 241
dnnl::shuffle_backward::shuffle_backward (C++ function), 240
dnnl::shuffle_forward (C++ struct), 239
dnnl::shuffle_forward::primitive_desc (C++ struct), 239
dnnl::shuffle_forward::primitive_desc::dst_desc (C++ function), 240
dnnl::shuffle_forward::primitive_desc::get_axis (C++ function), 240
dnnl::shuffle_forward::primitive_desc::get_group_size (C++ function), 240
dnnl::shuffle_forward::primitive_desc::get_prop_kind (C++ function), 240
dnnl::shuffle_forward::primitive_desc::primitive_desc (C++ function), 239
dnnl::shuffle_forward::primitive_desc::src_desc (C++ function), 239
dnnl::shuffle_forward::shuffle_forward (C++ function), 239
dnnl::softmax_backward (C++ struct), 245
dnnl::softmax_backward::primitive_desc (C++ struct), 245
dnnl::softmax_backward::primitive_desc::diff_dst_desc (C++ function), 246
dnnl::softmax_backward::primitive_desc::diff_src_desc (C++ function), 246
dnnl::softmax_backward::primitive_desc::dst_desc (C++ function), 246
dnnl::softmax_backward::primitive_desc::get_algorithm (C++ function), 246
dnnl::softmax_backward::primitive_desc::get_axis (C++ function), 246
dnnl::softmax_backward::primitive_desc::get_prop_kind (C++ function), 246
dnnl::softmax_backward::primitive_desc::primitive_desc (C++ function), 245
dnnl::softmax_backward::softmax_backward (C++ function), 245
dnnl::softmax_forward (C++ struct), 244
dnnl::softmax_forward::primitive_desc (C++ struct), 244
dnnl::softmax_forward::primitive_desc::dst_desc (C++ function), 244
dnnl::softmax_forward::primitive_desc::get_algorithm (C++ function), 245
dnnl::softmax_forward::primitive_desc::get_axis (C++ function), 245
dnnl::softmax_forward::primitive_desc::get_prop_kind (C++ function), 245
dnnl::softmax_forward::primitive_desc::primitive_desc (C++ function), 244
dnnl::softmax_forward::primitive_desc::src_desc (C++ function), 244
dnnl::softmax_forward::softmax_forward (C++ function), 244
dnnl::stream (C++ struct), 33
dnnl::stream::flags (C++ enum), 33
dnnl::stream::flags::default_flags (C++ enumerator), 33
dnnl::stream::flags::in_order (C++ enumerator), 33
dnnl::stream::flags::out_of_order (C++ enumerator), 33
dnnl::stream::get_engine (C++ function), 34
dnnl::stream::stream (C++ function), 33
dnnl::stream::wait (C++ function), 34
dnnl::sum (C++ struct), 248
dnnl::sum::primitive_desc (C++ struct), 248
dnnl::sum::primitive_desc::dst_desc (C++ function), 249
dnnl::sum::primitive_desc::primitive_desc (C++ function), 248

Index 2017

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::sum::primitive_desc::src_desc (C++ function), 248
dnnl::sum::sum (C++ function), 248
dnnl::sycl_interop::execute (C++ function), 61
dnnl::sycl_interop::get_buffer (C++ function), 57
dnnl::sycl_interop::get_context (C++ function), 32
dnnl::sycl_interop::get_device (C++ function), 32
dnnl::sycl_interop::get_memory_kind (C++ function), 57
dnnl::sycl_interop::get_queue (C++ function), 34
dnnl::sycl_interop::make_engine (C++ function), 32
dnnl::sycl_interop::make_memory (C++ function), 55, 56
dnnl::sycl_interop::make_stream (C++ function), 34
dnnl::sycl_interop::memory_kind (C++ enum), 55
dnnl::sycl_interop::memory_kind::buffer (C++ enumerator), 55
dnnl::sycl_interop::memory_kind::usm (C++ enumerator), 55
dnnl::sycl_interop::set_buffer (C++ function), 57
dnnl::vanilla_rnn_backward (C++ struct), 208
dnnl::vanilla_rnn_backward::primitive_desc (C++ struct), 209
dnnl::vanilla_rnn_backward::primitive_desc::bias_desc (C++ function), 211
dnnl::vanilla_rnn_backward::primitive_desc::diff_bias_desc (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::diff_dst_iter_desc (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::diff_dst_layer_desc (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::diff_src_iter_desc (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::diff_src_layer_desc (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::diff_weights_iter_desc (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::diff_weights_layer_desc (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::dst_iter_desc (C++ function), 211
dnnl::vanilla_rnn_backward::primitive_desc::dst_layer_desc (C++ function), 211
dnnl::vanilla_rnn_backward::primitive_desc::get_activation_kind (C++ function), 213
dnnl::vanilla_rnn_backward::primitive_desc::get_alpha (C++ function), 213
dnnl::vanilla_rnn_backward::primitive_desc::get_beta (C++ function), 213
dnnl::vanilla_rnn_backward::primitive_desc::get_cell_kind (C++ function), 212
dnnl::vanilla_rnn_backward::primitive_desc::get_direction (C++ function), 213
dnnl::vanilla_rnn_backward::primitive_desc::get_prop_kind (C++ function), 213
dnnl::vanilla_rnn_backward::primitive_desc::primitive_desc (C++ function), 209, 210
dnnl::vanilla_rnn_backward::primitive_desc::src_iter_desc (C++ function), 211
dnnl::vanilla_rnn_backward::primitive_desc::src_layer_desc (C++ function), 211
dnnl::vanilla_rnn_backward::primitive_desc::weights_iter_desc (C++ function), 211
dnnl::vanilla_rnn_backward::primitive_desc::weights_layer_desc (C++ function), 211
dnnl::vanilla_rnn_backward::primitive_desc::workspace_desc (C++ function), 212
dnnl::vanilla_rnn_backward::vanilla_rnn_backward (C++ function), 209
dnnl::vanilla_rnn_forward (C++ struct), 205
dnnl::vanilla_rnn_forward::primitive_desc (C++ struct), 205
dnnl::vanilla_rnn_forward::primitive_desc::bias_desc (C++ function), 207
dnnl::vanilla_rnn_forward::primitive_desc::dst_iter_desc (C++ function), 207
dnnl::vanilla_rnn_forward::primitive_desc::dst_layer_desc (C++ function), 207
dnnl::vanilla_rnn_forward::primitive_desc::get_activation_kind (C++ function), 208
dnnl::vanilla_rnn_forward::primitive_desc::get_alpha (C++ function), 208
dnnl::vanilla_rnn_forward::primitive_desc::get_beta (C++ function), 208
dnnl::vanilla_rnn_forward::primitive_desc::get_cell_kind (C++ function), 208
dnnl::vanilla_rnn_forward::primitive_desc::get_direction (C++ function), 208
dnnl::vanilla_rnn_forward::primitive_desc::get_prop_kind (C++ function), 208
dnnl::vanilla_rnn_forward::primitive_desc::primitive_desc (C++ function), 205, 206
dnnl::vanilla_rnn_forward::primitive_desc::src_iter_desc (C++ function), 207
dnnl::vanilla_rnn_forward::primitive_desc::src_layer_desc (C++ function), 207

Index 2018

oneAPI Specification, Release 1.4-provisional-rev-1

dnnl::vanilla_rnn_forward::primitive_desc::weights_iter_desc (C++ function), 207
dnnl::vanilla_rnn_forward::primitive_desc::weights_layer_desc (C++ function), 207
dnnl::vanilla_rnn_forward::primitive_desc::workspace_desc (C++ function), 207
dnnl::vanilla_rnn_forward::vanilla_rnn_forward (C++ function), 205
DNNL_ARG_ATTR_SCALES (C macro), 82
DNNL_ARG_ATTR_ZERO_POINTS (C macro), 82
DNNL_ARG_BIAS (C macro), 80
DNNL_ARG_DIFF_BIAS (C macro), 82
DNNL_ARG_DIFF_DST (C macro), 81
DNNL_ARG_DIFF_DST_0 (C macro), 81
DNNL_ARG_DIFF_DST_1 (C macro), 81
DNNL_ARG_DIFF_DST_2 (C macro), 81
DNNL_ARG_DIFF_DST_ITER (C macro), 81
DNNL_ARG_DIFF_DST_ITER_C (C macro), 81
DNNL_ARG_DIFF_DST_LAYER (C macro), 81
DNNL_ARG_DIFF_SCALE (C macro), 82
DNNL_ARG_DIFF_SHIFT (C macro), 82
DNNL_ARG_DIFF_SRC (C macro), 80
DNNL_ARG_DIFF_SRC_0 (C macro), 80
DNNL_ARG_DIFF_SRC_1 (C macro), 81
DNNL_ARG_DIFF_SRC_2 (C macro), 81
DNNL_ARG_DIFF_SRC_ITER (C macro), 81
DNNL_ARG_DIFF_SRC_ITER_C (C macro), 81
DNNL_ARG_DIFF_SRC_LAYER (C macro), 81
DNNL_ARG_DIFF_WEIGHTS (C macro), 82
DNNL_ARG_DIFF_WEIGHTS_0 (C macro), 81
DNNL_ARG_DIFF_WEIGHTS_1 (C macro), 82
DNNL_ARG_DIFF_WEIGHTS_ITER (C macro), 82
DNNL_ARG_DIFF_WEIGHTS_LAYER (C macro), 82
DNNL_ARG_DST (C macro), 79
DNNL_ARG_DST_0 (C macro), 79
DNNL_ARG_DST_1 (C macro), 79
DNNL_ARG_DST_2 (C macro), 79
DNNL_ARG_DST_ITER (C macro), 79
DNNL_ARG_DST_ITER_C (C macro), 80
DNNL_ARG_DST_LAYER (C macro), 79
DNNL_ARG_FROM (C macro), 79
DNNL_ARG_MEAN (C macro), 80
DNNL_ARG_MULTIPLE_DST (C macro), 82
DNNL_ARG_MULTIPLE_SRC (C macro), 82
DNNL_ARG_SCALE (C macro), 80
DNNL_ARG_SCRATCHPAD (C macro), 80
DNNL_ARG_SHIFT (C macro), 80
DNNL_ARG_SRC (C macro), 79
DNNL_ARG_SRC_0 (C macro), 79
DNNL_ARG_SRC_1 (C macro), 79
DNNL_ARG_SRC_2 (C macro), 79
DNNL_ARG_SRC_ITER (C macro), 79
DNNL_ARG_SRC_ITER_C (C macro), 79
DNNL_ARG_SRC_LAYER (C macro), 79
DNNL_ARG_TO (C macro), 79
DNNL_ARG_VARIANCE (C macro), 80
DNNL_ARG_WEIGHTS (C macro), 80
DNNL_ARG_WEIGHTS_0 (C macro), 80

Index 2019

oneAPI Specification, Release 1.4-provisional-rev-1

DNNL_ARG_WEIGHTS_1 (C macro), 80
DNNL_ARG_WEIGHTS_ITER (C macro), 80
DNNL_ARG_WEIGHTS_LAYER (C macro), 80
DNNL_ARG_WORKSPACE (C macro), 80
DNNL_GRAPH_UNKNOWN_DIM (C macro), 263
DNNL_GRAPH_UNKNOWN_NDIMS (C macro), 263
DNNL_MEMORY_ALLOCATE (C macro), 58
DNNL_MEMORY_NONE (C macro), 58
DNNL_RUNTIME_DIM_VAL (C macro), 82
DNNL_RUNTIME_F32_VAL (C macro), 82
DNNL_RUNTIME_S32_VAL (C macro), 83
DNNL_RUNTIME_SIZE_VAL (C macro), 82
do_allocate (C++ function), 890
do_deallocate (C++ function), 890
do_is_equal (C++ function), 890
DPC++, 414

E
empty (C++ function), 542
end (C++ function), 543
enqueue (C++ function), 621
ets_key_usage_type::ets_key_per_instance (C++ enum), 882
ets_key_usage_type::ets_no_key (C++ enum), 882
ets_key_usage_type::ets_suspend_aware (C++ enum), 882
exception_thrown (C++ function), 554
execute (C++ function), 621

F
F::operator() (C++ function), 500
Feature, 411
Feature vector, 411
filter (C++ function), 538
finalize (C++ function), 611, 612
FirstFilterBody::Body::operator() (C++ function), 506
Flat data, 413
Func::~Func (C++ function), 514
Func::Func (C++ function), 514
Func::operator() (C++ function), 502, 514
FunctionNodeBody::Body::~Body (C++ function), 514
FunctionNodeBody::Body::Body (C++ function), 514
FunctionNodeBody::Body::operator() (C++ function), 514

G
Getter, 413
global_control (C++ function), 609
grainsize (C++ function), 542
graph (C++ function), 554

H
H::~H (C++ function), 511
H::equal (C++ function), 511
H::H (C++ function), 511
H::hash (C++ function), 511

Index 2020

oneAPI Specification, Release 1.4-provisional-rev-1

Heterogeneous data, 413
Homogeneous data, 413
Host/Device, 414

I
Immutability, 413
Index::~Index (C++ function), 500
Index::Index (C++ function), 500
Inference, 411
Inference set, 411
initialize (C++ function), 620, 910
input_node (C++ function), 564
input_ports (C++ function), 596
InputNodeBody::Body::~Body (C++ function), 514
InputNodeBody::Body::Body (C++ function), 514
InputNodeBody::Body::operator() (C++ function), 515
Interval feature, 411
is_a (C++ function), 601
is_active (C++ function), 621
is_cancelled (C++ function), 554
is_divisible (C++ function), 542
is_final_scan (C++ function), 530
is_group_execution_cancelled (C++ function), 607
is_observing (C++ function), 625

J
JIT, 414

K
Kernel, 414
kind_t::bound (C++ enum), 607
kind_t::isolated (C++ enum), 607

L
Label, 412
LastFilterBody::Body::operator() (C++ function), 506
left (C++ function), 552
lock (C++ function), 904

M
make_filter (C++ function), 538
max_concurrency (C++ function), 621
max_size (C++ function), 889
Metadata, 413
MiddleFilterBody::Body::operator() (C++ function), 506
Model, 412
MultifunctionNodeBody::Body::~Body (C++ function), 515
MultifunctionNodeBody::Body::Body (C++ function), 515
MultifunctionNodeBody::Body::operator() (C++ function), 515
mutex_func::M::~scoped_lock (C++ function), 507
mutex_func::M::is_fair_mutex (C++ member), 508
mutex_func::M::is_recursive_mutex (C++ member), 508
mutex_func::M::is_rw_mutex (C++ member), 508

Index 2021

oneAPI Specification, Release 1.4-provisional-rev-1

mutex_func::M::scoped_lock (C++ function), 507
mutex_func::M::scoped_lock::acquire (C++ function), 508
mutex_func::M::scoped_lock::release (C++ function), 508
mutex_func::M::scoped_lock::try_acquire (C++ function), 508
mutex_type::M::scoped_lock (C++ type), 507

N
Nominal feature, 412
not_complete (C macro), 615
not_initialized (C++ member), 618
null_mutex (C++ function), 904
numa_nodes (C++ function), 909

O
Observation, 412
observe (C++ function), 625
on_scheduler_entry (C++ function), 625
on_scheduler_exit (C++ function), 625
oneapi::dal::array (C++ class), 440
oneapi::dal::array::array (C++ function), 442, 443
oneapi::dal::array::empty (C++ function), 440
oneapi::dal::array::full (C++ function), 440
oneapi::dal::array::get_count (C++ function), 444
oneapi::dal::array::get_data (C++ function), 444
oneapi::dal::array::get_mutable_data (C++ function), 444
oneapi::dal::array::get_size (C++ function), 444
oneapi::dal::array::has_mutable_data (C++ function), 444
oneapi::dal::array::need_mutable_data (C++ function), 444
oneapi::dal::array::operator= (C++ function), 443, 444
oneapi::dal::array::operator[] (C++ function), 444
oneapi::dal::array::reset (C++ function), 444, 445
oneapi::dal::array::wrap (C++ function), 441
oneapi::dal::array::zeros (C++ function), 441
oneapi::dal::column_accessor (C++ class), 448
oneapi::dal::column_accessor::column_accessor (C++ function), 448
oneapi::dal::column_accessor::pull (C++ function), 448, 449
oneapi::dal::csv::data_source (C++ class), 455
oneapi::dal::csv::data_source::data_source (C++ function), 455
oneapi::dal::csv::data_source::delimiter (C++ member), 456
oneapi::dal::csv::data_source::file_name (C++ member), 455
oneapi::dal::csv::data_source::options (C++ member), 456
oneapi::dal::csv::read_args (C++ class), 456
oneapi::dal::csv::read_args::read_args (C++ function), 456
oneapi::dal::data_layout (C++ enum), 460
oneapi::dal::data_type (C++ enum), 429
oneapi::dal::feature_type (C++ enum), 461
oneapi::dal::homogen_table (C++ class), 462
oneapi::dal::homogen_table::get_data (C++ function), 463
oneapi::dal::homogen_table::get_kind (C++ function), 463
oneapi::dal::homogen_table::homogen_table (C++ function), 462
oneapi::dal::homogen_table::kind (C++ function), 462
oneapi::dal::homogen_table::wrap (C++ function), 462
oneapi::dal::kmeans::descriptor (C++ class), 466
oneapi::dal::kmeans::descriptor::accuracy_threshold (C++ member), 467

Index 2022

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::dal::kmeans::descriptor::cluster_count (C++ member), 467
oneapi::dal::kmeans::descriptor::descriptor (C++ function), 466
oneapi::dal::kmeans::descriptor::max_iteration_count (C++ member), 466
oneapi::dal::kmeans::infer (C++ function), 472
oneapi::dal::kmeans::infer_input (C++ class), 471
oneapi::dal::kmeans::infer_input::data (C++ member), 471
oneapi::dal::kmeans::infer_input::infer_input (C++ function), 471
oneapi::dal::kmeans::infer_input::model (C++ member), 471
oneapi::dal::kmeans::infer_result (C++ class), 472
oneapi::dal::kmeans::infer_result::get_labels (C++ function), 472
oneapi::dal::kmeans::infer_result::get_objective_function_value (C++ function), 472
oneapi::dal::kmeans::infer_result::infer_result (C++ function), 472
oneapi::dal::kmeans::method::by_default (C++ type), 467
oneapi::dal::kmeans::method::lloyd (C++ struct), 467
oneapi::dal::kmeans::model (C++ class), 468
oneapi::dal::kmeans::model::get_centroids (C++ function), 468
oneapi::dal::kmeans::model::get_cluster_count (C++ function), 468
oneapi::dal::kmeans::model::model (C++ function), 468
oneapi::dal::kmeans::task::by_default (C++ type), 467
oneapi::dal::kmeans::task::clustering (C++ struct), 467
oneapi::dal::kmeans::train (C++ function), 470
oneapi::dal::kmeans::train_input (C++ class), 468
oneapi::dal::kmeans::train_input::data (C++ member), 469
oneapi::dal::kmeans::train_input::initial_centroids (C++ member), 469
oneapi::dal::kmeans::train_input::train_input (C++ function), 468
oneapi::dal::kmeans::train_result (C++ class), 469
oneapi::dal::kmeans::train_result::get_iteration_count (C++ function), 469
oneapi::dal::kmeans::train_result::get_labels (C++ function), 469
oneapi::dal::kmeans::train_result::get_model (C++ function), 469
oneapi::dal::kmeans::train_result::get_objective_function_value (C++ function), 470
oneapi::dal::kmeans::train_result::train_result (C++ function), 469
oneapi::dal::kmeans_init::compute (C++ function), 476
oneapi::dal::kmeans_init::compute_input (C++ class), 475
oneapi::dal::kmeans_init::compute_input::compute_input (C++ function), 475
oneapi::dal::kmeans_init::compute_input::data (C++ member), 475
oneapi::dal::kmeans_init::compute_result (C++ class), 476
oneapi::dal::kmeans_init::compute_result::compute_result (C++ function), 476
oneapi::dal::kmeans_init::compute_result::get_centroids (C++ function), 476
oneapi::dal::kmeans_init::descriptor (C++ class), 474
oneapi::dal::kmeans_init::descriptor::cluster_count (C++ member), 474
oneapi::dal::kmeans_init::descriptor::descriptor (C++ function), 474
oneapi::dal::kmeans_init::method::by_default (C++ type), 475
oneapi::dal::kmeans_init::method::dense (C++ struct), 475
oneapi::dal::kmeans_init::task::by_default (C++ type), 475
oneapi::dal::kmeans_init::task::init (C++ struct), 475
oneapi::dal::knn::descriptor (C++ class), 479
oneapi::dal::knn::descriptor::class_count (C++ member), 480
oneapi::dal::knn::descriptor::descriptor (C++ function), 479
oneapi::dal::knn::descriptor::neighbor_count (C++ member), 480
oneapi::dal::knn::infer (C++ function), 484
oneapi::dal::knn::infer_input (C++ class), 483
oneapi::dal::knn::infer_input::data (C++ member), 483
oneapi::dal::knn::infer_input::infer_input (C++ function), 483
oneapi::dal::knn::infer_input::model (C++ member), 483

Index 2023

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::dal::knn::infer_result (C++ class), 484
oneapi::dal::knn::infer_result::get_labels (C++ function), 484
oneapi::dal::knn::infer_result::infer_result (C++ function), 484
oneapi::dal::knn::method::bruteforce (C++ struct), 480
oneapi::dal::knn::method::by_default (C++ type), 480
oneapi::dal::knn::method::kd_tree (C++ struct), 480
oneapi::dal::knn::model (C++ class), 481
oneapi::dal::knn::model::model (C++ function), 481
oneapi::dal::knn::task::by_default (C++ type), 480
oneapi::dal::knn::task::classification (C++ struct), 480
oneapi::dal::knn::train (C++ function), 482
oneapi::dal::knn::train_input (C++ class), 481
oneapi::dal::knn::train_input::data (C++ member), 481
oneapi::dal::knn::train_input::labels (C++ member), 482
oneapi::dal::knn::train_input::train_input (C++ function), 481
oneapi::dal::knn::train_result (C++ class), 482
oneapi::dal::knn::train_result::get_model (C++ function), 482
oneapi::dal::knn::train_result::train_result (C++ function), 482
oneapi::dal::pca::descriptor (C++ class), 488
oneapi::dal::pca::descriptor::component_count (C++ member), 488
oneapi::dal::pca::descriptor::descriptor (C++ function), 488
oneapi::dal::pca::descriptor::deterministic (C++ member), 488
oneapi::dal::pca::infer (C++ function), 493
oneapi::dal::pca::infer_input (C++ class), 492
oneapi::dal::pca::infer_input::data (C++ member), 492
oneapi::dal::pca::infer_input::infer_input (C++ function), 492
oneapi::dal::pca::infer_input::model (C++ member), 492
oneapi::dal::pca::infer_result (C++ class), 493
oneapi::dal::pca::infer_result::get_transformed_data (C++ function), 493
oneapi::dal::pca::infer_result::infer_result (C++ function), 493
oneapi::dal::pca::method::by_default (C++ type), 489
oneapi::dal::pca::method::cov (C++ struct), 488
oneapi::dal::pca::method::svd (C++ struct), 488
oneapi::dal::pca::model (C++ class), 489
oneapi::dal::pca::model::get_component_count (C++ function), 489
oneapi::dal::pca::model::get_eigenvectors (C++ function), 489
oneapi::dal::pca::model::model (C++ function), 489
oneapi::dal::pca::task::by_default (C++ type), 489
oneapi::dal::pca::task::dim_reduction (C++ struct), 489
oneapi::dal::pca::train (C++ function), 491
oneapi::dal::pca::train_input (C++ class), 490
oneapi::dal::pca::train_input::data (C++ member), 490
oneapi::dal::pca::train_input::train_input (C++ function), 490
oneapi::dal::pca::train_result (C++ class), 490
oneapi::dal::pca::train_result::get_eigenvalues (C++ function), 491
oneapi::dal::pca::train_result::get_eigenvectors (C++ function), 491
oneapi::dal::pca::train_result::get_means (C++ function), 491
oneapi::dal::pca::train_result::get_model (C++ function), 491
oneapi::dal::pca::train_result::get_variances (C++ function), 491
oneapi::dal::pca::train_result::train_result (C++ function), 491
oneapi::dal::range (C++ struct), 430
oneapi::dal::range::get_element_count (C++ function), 430
oneapi::dal::range::range (C++ function), 430
oneapi::dal::read (C++ function), 456

Index 2024

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::dal::row_accessor (C++ class), 451
oneapi::dal::row_accessor::pull (C++ function), 451, 452
oneapi::dal::row_accessor::row_accessor (C++ function), 451
oneapi::dal::table (C++ class), 458
oneapi::dal::table::get_column_count (C++ function), 459
oneapi::dal::table::get_data_layout (C++ function), 459
oneapi::dal::table::get_kind (C++ function), 459
oneapi::dal::table::get_metadata (C++ function), 459
oneapi::dal::table::get_row_count (C++ function), 459
oneapi::dal::table::has_data (C++ function), 459
oneapi::dal::table::operator= (C++ function), 459
oneapi::dal::table::table (C++ function), 459
oneapi::dal::table_metadata (C++ class), 460
oneapi::dal::table_metadata::get_data_type (C++ function), 460
oneapi::dal::table_metadata::get_feature_count (C++ function), 460
oneapi::dal::table_metadata::get_feature_type (C++ function), 460
oneapi::dal::table_metadata::table_metadata (C++ function), 460
oneapi::tbb::combinable::~combinable (C++ function), 875
oneapi::tbb::combinable::clear (C++ function), 875
oneapi::tbb::combinable::combinable (C++ function), 875
oneapi::tbb::combinable::combine (C++ function), 875
oneapi::tbb::combinable::combine_each (C++ function), 875
oneapi::tbb::combinable::local (C++ function), 875
oneapi::tbb::combinable::operator= (C++ function), 875
oneapi::tbb::enumerable_thread_specific::begin (C++ function), 881
oneapi::tbb::enumerable_thread_specific::combine (C++ function), 882
oneapi::tbb::enumerable_thread_specific::combine_each (C++ function), 882
oneapi::tbb::enumerable_thread_specific::empty (C++ function), 881
oneapi::tbb::enumerable_thread_specific::end (C++ function), 881
oneapi::tbb::enumerable_thread_specific::local (C++ function), 880
oneapi::tbb::enumerable_thread_specific::range (C++ function), 881
oneapi::tbb::enumerable_thread_specific::size (C++ function), 881
oneapi::tbb::flatten2d::begin (C++ function), 884
oneapi::tbb::flatten2d::end (C++ function), 884
oneapi::tbb::flatten2d::flatten2d (C++ function), 884
oneapi::tbb::flatten2d::flattened2d (C++ function), 884
oneapi::tbb::flatten2d::size (C++ function), 884
oneapi::tbb::flow::indexer_node::indexer_node (C++ function), 594
oneapi::tbb::flow::indexer_node::input_ports (C++ function), 594
oneapi::tbb::flow::indexer_node::try_get (C++ function), 594
oneapi::tbb::flow::limiter_node::decrementer (C++ function), 586
oneapi::tbb::flow::limiter_node::limiter_node (C++ function), 586
oneapi::tbb::flow::limiter_node::try_get (C++ function), 586
oneapi::tbb::flow::limiter_node::try_put (C++ function), 586
oneapi::tbb::flow::overwrite_node::~overwrite_node (C++ function), 575
oneapi::tbb::flow::overwrite_node::clear (C++ function), 575
oneapi::tbb::flow::overwrite_node::is_valid (C++ function), 575
oneapi::tbb::flow::overwrite_node::overwrite_node (C++ function), 575
oneapi::tbb::flow::overwrite_node::try_get (C++ function), 575
oneapi::tbb::flow::overwrite_node::try_put (C++ function), 575
oneapi::tbb::flow::priority_node_queue::priority_queue_node (C++ function), 582
oneapi::tbb::flow::priority_node_queue::try_get (C++ function), 582
oneapi::tbb::flow::priority_node_queue::try_put (C++ function), 582
oneapi::tbb::flow::queue_node::queue_node (C++ function), 581

Index 2025

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::tbb::flow::queue_node::try_get (C++ function), 581
oneapi::tbb::flow::queue_node::try_put (C++ function), 581
oneapi::tbb::flow::sequencer_node::sequencer_node (C++ function), 583
oneapi::tbb::flow::sequencer_node::try_get (C++ function), 583
oneapi::tbb::flow::sequencer_node::try_put (C++ function), 583
oneapi::tbb::flow::split_node::~split_node (C++ function), 592
oneapi::tbb::flow::split_node::output_ports (C++ function), 592
oneapi::tbb::flow::split_node::split_node (C++ function), 592
oneapi::tbb::flow::split_node::try_put (C++ function), 592
oneapi::tbb::flow::write_once_mode::~write_once_node (C++ function), 577
oneapi::tbb::flow::write_once_mode::clear (C++ function), 578
oneapi::tbb::flow::write_once_mode::is_valid (C++ function), 578
oneapi::tbb::flow::write_once_mode::try_get (C++ function), 578
oneapi::tbb::flow::write_once_mode::try_put (C++ function), 578
oneapi::tbb::flow::write_once_mode::write_once_node (C++ function), 577
oneapi::tbb::mutex::~mutex (C++ function), 895
oneapi::tbb::mutex::lock (C++ function), 895
oneapi::tbb::mutex::mutex (C++ function), 895
oneapi::tbb::mutex::scoped_lock (C++ class), 895
oneapi::tbb::mutex::try_lock (C++ function), 895
oneapi::tbb::mutex::unlock (C++ function), 895
oneapi::tbb::null_rw_mutex::~null_rw_mutex (C++ function), 905
oneapi::tbb::null_rw_mutex::lock (C++ function), 905
oneapi::tbb::null_rw_mutex::lock_shared (C++ function), 905
oneapi::tbb::null_rw_mutex::null_rw_mutex (C++ function), 905
oneapi::tbb::null_rw_mutex::scoped_lock (C++ class), 905
oneapi::tbb::null_rw_mutex::try_lock (C++ function), 905
oneapi::tbb::null_rw_mutex::try_lock_shared (C++ function), 905
oneapi::tbb::null_rw_mutex::unlock (C++ function), 905
oneapi::tbb::null_rw_mutex::unlock_shared (C++ function), 905
oneapi::tbb::queueing_mutex::~queuing_mutex (C++ function), 902
oneapi::tbb::queueing_mutex::queuing_mutex (C++ function), 902
oneapi::tbb::queueing_mutex::scoped_lock (C++ class), 902
oneapi::tbb::queueing_rw_mutex::~queuing_rw_mutex (C++ function), 903
oneapi::tbb::queueing_rw_mutex::queuing_rw_mutex (C++ function), 903
oneapi::tbb::queueing_rw_mutex::scoped_lock (C++ class), 903
oneapi::tbb::rw_mutex::~rw_mutex (C++ function), 896
oneapi::tbb::rw_mutex::lock (C++ function), 896
oneapi::tbb::rw_mutex::lock_shared (C++ function), 896
oneapi::tbb::rw_mutex::rw_mutex (C++ function), 896
oneapi::tbb::rw_mutex::scoped_lock (C++ class), 896
oneapi::tbb::rw_mutex::try_lock (C++ function), 896
oneapi::tbb::rw_mutex::try_lock_shared (C++ function), 897
oneapi::tbb::rw_mutex::unlock (C++ function), 896
oneapi::tbb::rw_mutex::unlock_shared (C++ function), 897
oneapi::tbb::scalable_allocator::allocate (C++ function), 887
oneapi::tbb::scalable_allocator::deallocate (C++ function), 887
oneapi::tbb::scalable_allocator::operator!= (C++ function), 888
oneapi::tbb::scalable_allocator::operator== (C++ function), 887
oneapi::tbb::speculative_spin_mutex::~speculative_spin_mutex (C++ function), 900
oneapi::tbb::speculative_spin_mutex::scoped_lock (C++ class), 900
oneapi::tbb::speculative_spin_mutex::speculative_spin_mutex (C++ function), 900
oneapi::tbb::speculative_spin_rw_mutex::~speculative_spin_rw_mutex (C++ function), 901
oneapi::tbb::speculative_spin_rw_mutex::scoped_lock (C++ class), 901

Index 2026

oneAPI Specification, Release 1.4-provisional-rev-1

oneapi::tbb::speculative_spin_rw_mutex::speculative_spin_rw_mutex (C++ function), 901
oneapi::tbb::spin_mutex::~spin_mutex (C++ function), 898
oneapi::tbb::spin_mutex::lock (C++ function), 898
oneapi::tbb::spin_mutex::scoped_lock (C++ class), 898
oneapi::tbb::spin_mutex::spin_mutex (C++ function), 898
oneapi::tbb::spin_mutex::try_lock (C++ function), 898
oneapi::tbb::spin_mutex::unlock (C++ function), 898
oneapi::tbb::spin_rw_mutex::~spin_rw_mutex (C++ function), 899
oneapi::tbb::spin_rw_mutex::lock (C++ function), 899
oneapi::tbb::spin_rw_mutex::lock_shared (C++ function), 899
oneapi::tbb::spin_rw_mutex::scoped_lock (C++ class), 899
oneapi::tbb::spin_rw_mutex::spin_rw_mutex (C++ function), 899
oneapi::tbb::spin_rw_mutex::try_lock (C++ function), 899
oneapi::tbb::spin_rw_mutex::try_lock_shared (C++ function), 899
oneapi::tbb::spin_rw_mutex::unlock (C++ function), 899
oneapi::tbb::spin_rw_mutex::unlock_shared (C++ function), 899
oneapi::tbb::task_group::~task_group (C++ function), 614
oneapi::tbb::task_group::cancel (C++ function), 614
oneapi::tbb::task_group::defer (C++ function), 614
oneapi::tbb::task_group::is_current_task_group_canceling (C++ function), 615
oneapi::tbb::task_group::run (C++ function), 614
oneapi::tbb::task_group::run_and_wait (C++ function), 614
oneapi::tbb::task_group::task_group (C++ function), 614
oneapi::tbb::task_group::wait (C++ function), 614
oneapi::tbb::tbb_allocator::allocate (C++ function), 886
oneapi::tbb::tbb_allocator::allocator_type (C++ function), 886
oneapi::tbb::tbb_allocator::deallocate (C++ function), 886
oneapi::tbb::tbb_allocator::operator!= (C++ function), 886
oneapi::tbb::tbb_allocator::operator== (C++ function), 886
Online mode, 414
operator bool (C++ function), 530, 611
operator split (C++ function), 552
operator!= (C++ function), 889
operator* (C++ function), 501
operator+ (C++ function), 501, 506
operator++ (C++ function), 501
operator/ (C++ function), 501
operator= (C++ function), 501, 505, 611
operator== (C++ function), 889
operator& (C++ function), 538
operator- (C++ function), 501, 506
operator< (C++ function), 498, 501, 505
operator<= (C++ function), 501
Ordinal feature, 412
Outlier, 412
output_ports (C++ function), 596

P
ParallelReduceBody::Body::~Body (C++ function), 501
ParallelReduceBody::Body::Body (C++ function), 501
ParallelReduceBody::Body::join (C++ function), 501
ParallelReduceBody::Body::operator() (C++ function), 501
parameter::max_allowed_parallelism (C++ enum), 608
parameter::terminate_on_exception (C++ enum), 608

Index 2027

oneAPI Specification, Release 1.4-provisional-rev-1

parameter::thread_stack_size (C++ enum), 608
priority::high (C++ enum), 618
priority::low (C++ enum), 618
priority::normal (C++ enum), 618
proportional_split (C++ function), 552

R
R::~R (C++ function), 499
R::empty (C++ function), 499
R::is_divisible (C++ function), 499
R::R (C++ function), 498, 499
Ratio feature, 412
Reduction::operator() (C++ function), 502
Reference-counted object, 414
Regression, 412
release (C++ function), 611
reset (C++ function), 554, 607
Response, 412
right (C++ function), 552
RWM::scoped_lock (C++ type), 509
RWM::scoped_lock::M::is_fair_mutex (C++ member), 510
RWM::scoped_lock::M::is_recursive_mutex (C++ member), 510
RWM::scoped_lock::M::is_rw_mutex (C++ member), 510
RWM::scoped_lock::RWM::~scoped_lock (C++ function), 509
RWM::scoped_lock::RWM::scoped_lock (C++ function), 509
RWM::scoped_lock::RWM::scoped_lock::acquire (C++ function), 509
RWM::scoped_lock::RWM::scoped_lock::downgrade_to_reader (C++ function), 510
RWM::scoped_lock::RWM::scoped_lock::release (C++ function), 509
RWM::scoped_lock::RWM::scoped_lock::try_acquire (C++ function), 509
RWM::scoped_lock::RWM::scoped_lock::upgrade_to_writer (C++ function), 510

S
S::~S (C++ function), 515
S::operator() (C++ function), 515
S::S (C++ function), 515
scalable_allocation_command (C function), 893
scalable_allocation_mode (C++ function), 892
scalable_msize (C++ function), 892
Scan::operator() (C++ function), 505
scoped_lock (C++ class), 904
set_external_ports (C++ function), 596
Setter, 414
SingleFilterBody::Body::operator() (C++ function), 506
size (C++ function), 542
size_type (C++ type), 542
SPIR-V, 414
std::begin (C++ function), 504
std::end (C++ function), 504
stop (C++ function), 539
Supervised learning, 412
SuspendFunc::Func::Func (C++ function), 512
SuspendFunc::Func::operator() (C++ function), 512
swap (C++ function), 498
SYCL, 414

Index 2028

oneAPI Specification, Release 1.4-provisional-rev-1

T
T::release_wait (C++ function), 513
T::reserve_wait (C++ function), 513
T::try_put (C++ function), 513
Table, 414
tag (C++ function), 601
tagged_msg (C++ function), 601
task_arena (C++ function), 619, 620, 910
task_group_context (C++ function), 607
task_scheduler_handle (C++ function), 611
task_scheduler_observer (C++ function), 625
tbb::task_handle::~task_handle (C++ function), 616
tbb::task_handle::operator bool (C++ function), 616
tbb::task_handle::operator= (C++ function), 616
tbb::task_handle::task_handle (C++ function), 616
tbb::this_task_arena::current_thread_index (C++ function), 623
tbb::this_task_arena::enqueue (C++ function), 624
tbb::this_task_arena::isolate (C++ function), 623
tbb::this_task_arena::max_concurrency (C++ function), 623
TBBMALLOC_CLEAN_ALL_BUFFERS (C macro), 893
TBBMALLOC_CLEAN_THREAD_BUFFERS (C macro), 893
TBBMALLOC_SET_HUGE_SIZE_THRESHOLD (C macro), 893
TBBMALLOC_SET_SOFT_HEAP_LIMIT (C macro), 893
TBBMALLOC_USE_HUGE_PAGES (C macro), 893
terminate (C++ function), 620
Training, 412
Training set, 412
traits (C++ function), 607
traits_type::fp_settings (C++ enum), 607
try_get (C++ function), 564, 580, 587
try_lock (C++ function), 904
try_put (C++ function), 580, 587

U
unlock (C++ function), 904
Unsupervised learning, 412
upstream_resource (C++ function), 890

V
Value::~Value (C++ function), 505
Value::Value (C++ function), 505

W
wait_for_all (C++ function), 554
Workload, 414

X
X::X (C++ function), 499

Index 2029

	Introduction
	Target Audience
	Goals of the Specification
	Definitions
	Contribution Guidelines

	Software Architecture
	oneAPI Platform
	API Programming Example
	Direct Programming Example

	oneDPL
	Namespaces
	Parallel API
	Execution Policies
	C++ Standard Aligned Execution Policies
	Device Execution Policy
	device_policy Class
	make_device_policy Function

	Buffer Wrappers
	Iterators
	Parallel Algorithms

	SYCL Kernels API
	Supported C++ Standard Library APIs and Algorithms
	Random Number Generation
	Supported Functionality
	Limitations
	Extensions

	Function Objects

	oneDNN
	Introduction
	Graph Extension
	General API notes
	Error Handling
	Namespaces

	Conventions
	Variable (Tensor) Names
	RNN-Specific Notation

	Execution Model
	Engine
	Stream

	Data model
	Data types
	Bfloat16
	Workflow
	Support

	Int8
	Workflow
	Quantization Model
	Numerical behavior
	Example: Convolution Quantization Workflow
	Per-Channel Scaling

	Support

	Memory
	Memory Formats
	Plain Memory Formats
	Format Tags
	Optimized Format ‘any’
	Memory Format Propagation
	API

	Memory Descriptors and Objects
	Descriptors
	Objects
	API

	Primitives
	Common Definitions
	Base Class for Primitives
	Base Class for Primitives Descriptors
	Common Enumerations
	Normalization Primitives Flags
	Execution argument indices

	Attributes
	Post-ops
	Supported Post-ops
	Eltwise Post-op
	Sum Post-op
	Binary post-ops
	Examples of Chained Post-ops
	Sum -> ReLU

	API

	Scratchpad Mode
	Examples
	Library Manages Scratchpad
	User Manages Scratchpad

	Quantization
	Quantization Attributes (scales and zero-points)
	Example 1: weights quantization with per-output-channel scaling
	Example 2: convolution with groups, with per-output-channel quantization

	Implicit downconversions and floating-point math mode
	Attribute Related Error Handling
	API

	Batch Normalization
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Source, Destination, and Their Gradients
	Statistics Tensors

	Post-ops and Attributes
	API

	Binary
	Forward and Backward
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Types Support
	Data Representation
	API

	Concat
	Forward and Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	API

	Convolution and Deconvolution
	Forward
	Regular Convolution
	Convolution with Groups
	Convolution with Dilation
	Deconvolution (Transposed Convolution)
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	Example 1
	Example 2

	Algorithms
	API

	Elementwise
	Forward
	Backward
	Difference Between Forward Training and Forward Inference
	Execution Arguments
	Operation Details
	Data Type Support
	Data Representation
	Post-ops and Attributes
	API

	Inner Product
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments

	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	API

	Layer normalization
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Mean and Variance
	Scale and Shift
	Source, Destination, and Their Gradients

	API

	Local Response Normalization
	Forward
	Backward
	Execution Arguments
	Operation Details
	Data Type Support
	Data Representation

	Source, Destination, and Their Gradients
	Post-ops and Attributes
	API

	Matrix Multiplication
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Attributes and Post-ops
	API

	Pooling
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Type Support
	Data Representation
	Source, Destination, and Their Gradients

	Post-ops and Attributes
	API

	Prelu
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Types Support
	Data Representation
	Source, Destination, and Their Gradients

	API

	Reduction
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Attributes and Post-ops
	API

	Reorder
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	API

	Resampling
	Forward
	Nearest Neighbor Resampling
	Bilinear Resampling
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Post-ops and Attributes
	API

	RNN
	Cell Functions
	Vanilla RNN
	LSTM
	LSTM (or Vanilla LSTM)
	LSTM with Peephole
	LSTM with Projection

	GRU
	Linear-Before-Reset GRU
	AUGRU
	Linear-Before-Reset AUGRU

	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes

	API

	Shuffle
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Layouts
	Post-ops and Attributes
	API

	Softmax
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Types Support
	Data Representation
	Source, Destination, and Their Gradients

	API

	Sum
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Types Support
	Data Representation
	Sources, Destination

	API

	Graph extension
	Common Definitions
	Logical tensor enums and type
	Operation attributes and kinds
	Graph objects member functions
	Macros to specify unknown shapes

	Programming Model
	Logical Tensor
	Operations
	Graph
	Partition
	Tensor
	Compiled Partition
	Engine
	Stream
	General API notes
	Error Handling

	Data Model
	Low Precision Support

	Operation Set
	Abs
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	AbsBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Add
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	AvgPool
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	AvgPoolBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	BatchNormForwardTraining
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	BatchNormInference
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	BatchNormTrainingBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	BiasAdd
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	BiasAddBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Clamp
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ClampBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Concat
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ConvTranspose
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ConvTransposeBackwardData
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ConvTransposeBackwardWeights
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Convolution
	Regular Convolution
	Convolution with Groups
	Convolution with Dilation
	Operation Attributes
	Execution Arguments

	Inputs
	Outputs
	Supported Data Types

	ConvolutionBackwardData
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ConvolutionBackwardWeights
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Dequantize
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Divide
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	DynamicDequantize
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	DynamicQuantize
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Elu
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	EluBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	End
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Exp
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	GELU
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	GELUBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	HardSigmoid
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	HardSigmoidBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	HardSwish
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	HardSwishBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Interpolate
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	InterpolateBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	LayerNorm
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	LayerNormBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	LeakyReLU
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Log
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	LogSoftmax
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	LogSoftmaxBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	MatMul
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	MaxPool
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	MaxPoolBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Maximum
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Minimum
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Mish
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	MishBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Multiply
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Pow
	Inputs
	Outputs
	Supported Data Types

	PReLU
	Operation Attributes
	Broadcasting Rules

	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	PReLUBackward
	Operation Attributes
	Broadcasting Rules

	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Quantize
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReLU
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReLUBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Reciprocal
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReduceL1
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReduceL2
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReduceMax
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReduceMean
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReduceMin
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReduceProd
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	ReduceSum
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Reorder
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Round
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Select
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Sigmoid
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	SigmoidBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	SoftPlus
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	SoftPlusBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	SoftMax
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	SoftMaxBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Sqrt
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	SqrtBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Square
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	SquaredDifference
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	StaticReshape
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	StaticTranspose
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Subtract
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Tanh
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	TanhBackward
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	TypeCast
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Wildcard
	Operation Attributes
	Execution Arguments
	Inputs
	Outputs

	Supported Data Types

	Open Source Implementation
	Implementation Notes
	Testing

	oneCCL
	Introduction
	Namespaces
	oneapi::ccl namespace
	ccl namespace

	Current Version of this oneCCL Specification
	Definitions
	oneCCL Concepts
	Device
	Context
	Key-Value Store
	Communicator
	Stream
	Event
	Operation Attributes

	Communication Operations
	Datatypes
	Custom Datatypes

	Reductions
	Collective Operations
	Allgatherv
	Allreduce
	Alltoallv
	Barrier
	Broadcast
	Reduce
	ReduceScatter
	Point-To-Point Operations
	Send
	Recv

	Operation Attributes
	Operation Progress Tracking
	Event

	Error handling
	Exception classification
	Common exceptions

	Programming Model
	Generic Workflow

	oneDAL
	Introduction
	Glossary
	Machine learning terms
	oneDAL terms
	Common oneAPI terms

	Mathematical Notations
	Programming model
	End-to-end example
	Descriptors
	Floating-point Types
	Computational Methods
	Computational Tasks

	Operations
	General operation definition
	Operation shortcuts
	Input
	Result
	Supported operation
	Supported operations
	Train
	Infer
	Compute

	Computational modes
	Batch
	Online
	Distributed

	Common Interface
	Current Version of this oneDAL Specification
	Header files
	Namespaces
	Error handling
	Exception classification

	Common type definitions
	Programming interface
	Scalar types
	Enum classes
	Data type
	Range

	Data management
	Key concepts
	Dataset
	Data source
	Table
	Table metadata
	Accessor
	Example of interaction between table and accessor objects

	Details
	Array
	Usage example
	Data ownership requirements
	Implementation notes
	Programming interface

	Accessors
	Requirements
	Accessor Types
	Details
	Column accessor
	Usage example
	Programming interface
	Row accessor
	Usage example
	Programming interface

	Data Sources
	Read
	Read operation definition
	Read operation shortcuts
	Args
	Result

	Data Source Types
	Details
	CSV data source
	Usage example
	Programming Interface
	Reading oneapi::dal::read<Object>(...)
	Args
	Operation

	Tables
	Requirements on table types
	Table types
	Programming interface
	Table
	Table metadata
	Data layout
	Feature type
	Homogeneous table
	Programming interface

	Algorithms
	Clustering
	K-Means
	Mathematical formulation
	Training
	Training method: Lloyd’s
	Inference
	Inference method: Lloyd’s

	Usage example
	Training
	Inference

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Model
	Training train(...)
	Input
	Result
	Operation
	Inference infer(...)
	Input
	Result
	Operation

	K-Means initialization
	Mathematical formulation
	Computing
	Computing method: dense

	Usage example
	Computing

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Computing compute(...)
	Input
	Result
	Operation

	Nearest Neighbors (kNN)
	k-Nearest Neighbors Classification (k-NN)
	Mathematical formulation
	Training
	Training method: brute-force
	Training method: k-d tree
	Inference
	Inference method: brute-force
	Inference method: k-d tree

	Usage example
	Training
	Inference

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Model
	Training train(...)
	Input
	Result
	Operation
	Inference infer(...)
	Input
	Result
	Operation

	Decomposition
	Principal Components Analysis (PCA)
	Mathematical formulation
	Training
	Training method: Covariance
	Training method: SVD
	Sign-flip technique
	Inference
	Inference methods: Covariance and SVD

	Usage example
	Training
	Inference

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Model
	Training train(...)
	Input
	Result
	Operation
	Inference infer(...)
	Input
	Result
	Operation

	Appendix
	k-d Tree
	Related terms

	Bibliography

	oneTBB
	General Information
	Introduction
	Notational Conventions
	Identifiers
	Case
	Reserved Identifier Prefixes

	Named Requirements
	Algorithms
	Range
	Splittable
	ParallelForBody
	ParallelForFunc
	ParallelForIndex
	ParallelReduceBody
	ParallelReduceFunc
	ParallelReduceReduction
	ParallelForEachBody
	Terms

	ContainerBasedSequence
	ParallelScanBody
	ParallelScanCombine
	ParallelScanFunc
	BlockedRangeValue
	FilterBody

	Mutexes
	Mutex
	ReaderWriterMutex

	Containers
	HashCompare
	ContainerRange

	Task scheduler
	SuspendFunc

	Flow Graph
	AsyncNodeBody
	ContinueNodeBody
	GatewayType
	FunctionNodeBody
	JoinNodeFunctionObject
	InputNodeBody
	MultifunctionNodeBody
	Sequencer

	Thread Safety

	oneTBB Interfaces
	Configuration
	Namespaces
	tbb Namespace
	tbb::flow Namespace
	oneapi::tbb Namespace

	Version Information
	TBB_runtime_interface_version Function
	TBB_runtime_version Function
	TBB_VERSION Environment Variable

	Enabling Debugging Features
	TBB_USE_ASSERT Macro
	TBB_USE_PROFILING_TOOLS Macro

	Feature Macros
	TBB_USE_EXCEPTIONS macro
	TBB_USE_GLIBCXX_VERSION macro

	Algorithms
	Parallel Functions
	collaborative_call_once
	collaborative_once_flag Class
	collaborative_once_flag
	Member functions
	Example

	parallel_for
	parallel_reduce
	Example (Imperative Form)
	Example with Lambda Expressions

	parallel_deterministic_reduce
	parallel_scan
	pre_scan and final_scan Classes
	pre_scan_tag and final_scan_tag
	Member functions
	Example (Imperative Form)
	Example with Lambda Expressions

	parallel_for_each
	feeder Class
	feeder
	Member functions
	Example

	parallel_invoke
	Example

	parallel_pipeline
	Example
	filter Class Template
	filter
	filter_mode Enumeration
	filter_mode
	Member functions
	Non-member functions
	Deduction Guides
	flow_control Class
	flow_control
	Member functions

	parallel_sort

	Blocked Ranges
	blocked_range
	Member functions

	blocked_range2d
	Member types
	Member functions

	blocked_range3d
	Member types
	Member functions

	Partitioners
	auto_partitioner
	affinity_partitioner
	static_partitioner
	simple_partitioner

	Split Tags
	proportional split
	Member functions

	split

	Flow Graph
	Graph Class
	graph
	reset_flags enumeration
	reset_flags Enumeration
	Member functions

	Nodes
	Abstract Interfaces
	graph_node
	sender
	receiver

	Properties
	Forwarding and Buffering
	Forwarding
	Buffering

	Functional Nodes
	continue_node
	Member functions
	Deduction Guides
	Example
	function_node
	Member functions
	Deduction Guides
	Example
	input_node
	Member functions
	Deduction Guides
	multifunction_node
	Member types
	Member functions
	async_node
	Member types
	Member functions
	Function Nodes Policies
	Queueing
	Rejecting
	Lightweight
	Example
	Nodes Priorities
	Example
	Predefined Concurrency Limits
	copy_body

	Buffering Nodes
	overwrite_node
	Member functions
	Examples
	write_once_node
	Member functions
	Example
	buffer_node
	Member functions
	queue_node
	Member functions
	Example
	priority_queue_node
	Member functions
	Example
	sequencer_node
	Member functions
	Deduction Guides
	Example

	Service Nodes
	limiter_node
	Member functions
	broadcast_node
	Member functions
	join_node
	join_node Policies
	Member types
	Member functions
	Non-Member Types
	Deduction Guides
	split_node
	Member functions
	indexer_node
	Member types
	Member functions
	composite_node
	Member functions

	Ports and Edges
	input_port
	output_port
	make_edge
	remove_edge

	Special Messages Types
	continue_msg
	tagged_msg
	Member functions
	Non-member functions

	Examples
	Dependency Flow Graph Example
	Message Flow Graph Example

	Task Scheduler
	Scheduling controls
	task_group_context
	Member types and constants
	Member functions

	global_control
	Member types and constants
	Member functions

	Resumable tasks
	Example

	task_scheduler_handle
	Member Functions
	Non-member Functions
	Examples

	Task Group
	task_group
	Member functions
	Non-member functions

	task_group_status
	Member constants

	task_handle
	Member Functions
	Non-Member Functions

	Task Arena
	task_arena
	Member types and constants
	Member functions
	Example

	this_task_arena
	task_scheduler_observer
	Member functions
	Example

	Helper types
	attach tag type

	Containers
	Sequences
	concurrent_vector
	Class Template Synopsis
	Requirements
	Description
	Exception Safety
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	assign
	get_allocator
	Concurrent growth
	grow_by
	grow_to_at_least
	push_back
	emplace_back
	Element access
	Access by index
	Access the first and the last element
	Iterators
	begin and cbegin
	end and cend
	rbegin and crbegin
	rend and crend
	Size and capacity
	size
	empty
	max_size
	capacity
	Concurrently unsafe operations
	Reserving
	Resizing
	shrink_to_fit
	clear
	swap
	Parallel iteration
	range member function
	Non-member functions
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Non-member swap
	Other
	Deduction guides

	Queues
	concurrent_queue
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	assign
	Concurrently safe member functions
	Pushing elements
	Popping elements
	get_allocator
	Concurrently unsafe member functions
	The number of elements
	clear
	swap
	Iterators
	unsafe_begin and unsafe_cbegin
	unsafe_end and unsafe_cend
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_bounded_queue
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	assign
	Concurrently safe member functions
	Pushing elements
	Popping elements
	abort
	Capacity of the queue
	get_allocator
	Concurrently unsafe member functions
	The number of elements
	clear
	swap
	Iterators
	unsafe_begin and unsafe_cbegin
	unsafe_end and unsafe_cend
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_priority_queue
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	assign
	Size and capacity
	empty
	size
	Concurrently safe modifiers
	Pushing elements
	Popping elements
	Concurrently unsafe modifiers
	clear
	swap
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	Unordered associative containers
	concurrent_hash_map
	Class Template Synopsis
	Member classes
	accessor and const_accessor
	accessor member class
	const_accessor member class
	Member functions
	Construction and destruction
	Emptiness
	Key-value pair access
	Releasing
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	get_allocator
	Concurrently unsafe modifiers
	clear
	swap
	Hash policy
	Rehashing
	bucket_count
	Size and capacity
	empty
	size
	max_size
	Lookup
	find
	count
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Emplacing elements
	Erasing elements
	Iterators
	begin and cbegin
	end and cend
	equal_range
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_map
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Emplacing elements
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Element access
	at
	operator[]
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_multimap
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Emplacing elements
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_set
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_multiset
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	Ordered associative containers
	concurrent_map
	Class Template Synopsis
	Member classes
	value_compare
	Class Synopsis
	Member objects
	Member functions
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Element access
	at
	operator[]
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	concurrent_multimap
	Class Template Synopsis
	Member classes
	value_compare
	Class Synopsis
	Member objects
	Member functions
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Emplacing elements
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	concurrent_set
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	concurrent_multiset
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	Auxiliary classes
	tbb_hash_compare
	Class Template Synopsis
	Member functions

	Node handles
	Class synopsis
	Member functions
	Constructors
	Assignment
	Destructor
	Swap
	State
	Access to the stored element
	get_allocator

	Thread Local Storage
	combinable
	Member functions

	enumerable_thread_specific
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Concurrently safe modifiers
	Concurrently unsafe modifiers
	clear
	Size and capacity
	Iteration
	Combining

	Non-member types and constants

	flattened2d
	Member functions
	Non-member functions

	oneTBB Auxiliary Interfaces
	Memory Allocation
	Allocators
	tbb_allocator
	Member Functions
	Non-member Functions

	scalable_allocator
	Member Functions
	Non-member Functions

	cache_aligned_allocator
	Member Functions
	Non-member Functions

	Memory Resources
	cache_aligned_resource
	Member Functions

	scalable_memory_resource

	Library Functions
	C Interface to Scalable Allocator

	Mutual Exclusion
	Mutex Classes
	mutex
	Member classes
	Member functions

	rw_mutex
	Member classes
	Member functions

	spin_mutex
	Member classes
	Member functions

	spin_rw_mutex
	Member classes
	Member functions

	speculative_spin_mutex
	Member classes
	Member functions

	speculative_spin_rw_mutex
	Member classes
	Member functions

	queuing_mutex
	Member classes
	Member functions

	queuing_rw_mutex
	Member classes
	Member functions

	null_mutex
	Member classes
	Member functions

	null_rw_mutex
	Member classes
	Member functions

	Timing
	Syntax
	Classes
	tick_count class
	tick_count::interval_t class
	Non-member functions

	info Namespace
	Types
	Functions

	oneTBB Deprecated Interfaces
	task_arena::attach
	Member types and constants
	Member functions

	oneMKL
	oneMKL Architecture
	Execution Model
	Use of Queues
	Non-Member Functions
	Member Functions

	Device Usage
	Asynchronous Execution
	Synchronization When Using Buffers
	Synchronization When Using USM APIs

	Host Thread Safety

	Memory Model
	The Buffer Memory Model
	Unified Shared Memory Model

	API Design
	oneMKL namespaces
	Standard C++ datatype usage
	DPC++ datatype usage
	oneMKL defined datatypes

	Exceptions and Error Handling
	Exception classification
	Common exceptions
	LAPACK specific exceptions

	Other Features
	Current Version of this oneMKL Specification
	Pre/Post Condition Checking

	oneMKL Domains
	Dense Linear Algebra
	Matrix Storage
	Scalar Arguments in BLAS
	BLAS Routines
	BLAS Level 1 Routines
	asum
	asum (Buffer Version)
	asum (USM Version)
	axpy
	axpy (Buffer Version)
	axpy (USM Version)
	copy
	copy (Buffer Version)
	copy (USM Version)
	dot
	dot (Buffer Version)
	dot (USM Version)
	sdsdot
	sdsdot (Buffer Version)
	sdsdot (USM Version)
	dotc
	dotc (Buffer Version)
	dotc (USM Version)
	dotu
	dotu (Buffer Version)
	dotu (USM Version)
	nrm2
	nrm2 (Buffer Version)
	nrm2 (USM Version)
	rot
	rot (Buffer Version)
	rot (USM Version)
	rotg
	rotg (Buffer Version)
	rotg (USM Version)
	rotm
	rotm (Buffer Version)
	rotm (USM Version)
	rotmg
	rotmg (Buffer Version)
	rotmg (USM Version)
	scal
	scal (Buffer Version)
	scal (USM Version)
	swap
	swap (Buffer Version)
	swap (USM Version)
	iamax
	iamax (Buffer Version)
	iamax (USM Version)
	iamin
	iamin (Buffer Version)
	iamin (USM Version)

	BLAS Level 2 Routines
	gbmv
	gbmv (Buffer Version)
	gbmv (USM Version)
	gemv
	gemv (Buffer Version)
	gemv (USM Version)
	ger
	ger (Buffer Version)
	ger (USM Version)
	gerc
	gerc (Buffer Version)
	gerc (USM Version)
	geru
	geru (Buffer Version)
	geru (USM Version)
	hbmv
	hbmv (Buffer Version)
	hbmv (USM Version)
	hemv
	hemv (Buffer Version)
	hemv (USM Version)
	her
	her (Buffer Version)
	her (USM Version)
	her2
	her2 (Buffer Version)
	her2 (USM Version)
	hpmv
	hpmv (Buffer Version)
	hpmv (USM Version)
	hpr
	hpr (Buffer Version)
	hpr (USM Version)
	hpr2
	hpr2 (Buffer Version)
	hpr2 (USM Version)
	sbmv
	sbmv (Buffer Version)
	sbmv (USM Version)
	spmv
	spmv (Buffer Version)
	spmv (USM Version)
	spr
	spr (Buffer Version)
	spr (USM Version)
	spr2
	spr2 (Buffer Version)
	spr2 (USM Version)
	symv
	symv (Buffer Version)
	symv (USM Version)
	syr
	syr (Buffer Version)
	syr (USM Version)
	syr2
	syr2 (Buffer Version)
	syr2 (USM Version)
	tbmv
	tbmv (Buffer Version)
	tbmv (USM Version)
	tbsv
	tbsv (Buffer Version)
	tbsv (USM Version)
	tpmv
	tpmv (Buffer Version)
	tpmv (USM Version)
	tpsv
	tpsv (Buffer Version)
	tpsv (USM Version)
	trmv
	trmv (Buffer Version)
	trmv (USM Version)
	trsv
	trsv (Buffer Version)
	trsv (USM Version)

	BLAS Level 3 Routines
	gemm
	gemm (Buffer Version)
	gemm (USM Version)
	hemm
	hemm (Buffer Version)
	hemm (USM Version)
	herk
	herk (Buffer Version)
	herk (USM Version)
	her2k
	her2k (Buffer Version)
	her2k (USM Version)
	symm
	symm (Buffer Version)
	symm (USM Version)
	syrk
	syrk (Buffer Version)
	syrk (USM Version)
	syr2k
	syr2k (Buffer Version)
	syr2k (USM Version)
	trmm
	trmm (Buffer Version)
	In-place API
	Out-of-place API
	trmm (USM Version)
	In-place API
	Out-of-place API
	trsm
	trsm (Buffer Version)
	In-place API
	Out-of-place API
	trsm (USM Version)
	In-place API
	Out-of-place API

	BLAS-like Extensions
	axpy_batch
	axpy_batch (Buffer Version)
	axpy_batch (USM Version)
	axpby
	axpby (Buffer Version)
	axpby (USM Version)
	copy_batch
	copy_batch (Buffer Version)
	copy_batch (USM Version)
	dgmm_batch
	dgmm_batch (Buffer Version)
	dgmm_batch (USM Version)
	gemm_batch
	gemm_batch (Buffer Version)
	gemm_batch (USM Version)
	gemv_batch
	gemv_batch (Buffer Version)
	gemv_batch (USM Version)
	syrk_batch
	syrk_batch (Buffer Version)
	syrk_batch (USM Version)
	trsm_batch
	trsm_batch (Buffer Version)
	trsm_batch (USM Version)
	gemmt
	gemmt (Buffer Version)
	gemmt (USM Version)
	gemm_bias
	gemm_bias (Buffer Version)
	gemm_bias (USM Version)
	imatcopy
	imatcopy (Buffer Version)
	imatcopy (USM Version)
	omatcopy
	omatcopy (Buffer Version)
	omatcopy (USM Version)
	omatcopy2
	omatcopy2 (Buffer Version)
	omatcopy2 (USM Version)
	omatadd
	omatadd (Buffer Version)
	omatadd (USM Version)
	imatcopy_batch
	imatcopy_batch (Buffer Version)
	imatcopy_batch (USM Version)
	omatcopy_batch
	omatcopy_batch (Buffer Version)
	omatcopy_batch (USM Version)
	omatadd_batch
	omatadd_batch (Buffer Version)
	omatadd_batch (USM Version)

	LAPACK Routines
	LAPACK Linear Equation Routines
	geqrf
	geqrf (Buffer Version)
	geqrf (USM Version)
	geqrf_scratchpad_size
	gerqf
	gerqf (Buffer Version)
	gerqf (USM Version)
	gerqf_scratchpad_size
	gerqf_scratchpad_size
	getrf
	getrf (BUFFER Version)
	getrf (USM Version)
	getrf_scratchpad_size
	getrf_scratchpad_size
	getri
	getri (BUFFER Version)
	getri (USM Version)
	getri_scratchpad_size
	getri_scratchpad_size
	getrs
	getrs (Buffer Version)
	getrs (USM Version)
	getrs_scratchpad_size
	getrs_scratchpad_size
	hetrf
	hetrf (Buffer Version)
	hetrf (USM Version)
	hetrf_scratchpad_size
	hetrf_scratchpad_size
	orgqr
	orgqr (Buffer Version)
	orgqr (USM Version)
	orgqr_scratchpad_size
	orgqr_scratchpad_size
	ormqr
	ormqr (Buffer Version)
	ormqr (USM Version)
	ormqr_scratchpad_size
	ormqr_scratchpad_size
	ormrq
	ormrq (Buffer Version)
	ormrq (USM Version)
	ormrq_scratchpad_size
	ormrq_scratchpad_size
	potrf
	potrf (Buffer Version)
	potrf (USM Version)
	potrf_scratchpad_size
	potrf_scratchpad_size
	potri
	potri (Buffer Version)
	potri (USM Version)
	potri_scratchpad_size
	potri_scratchpad_size
	potrs
	potrs (Buffer Version)
	potrs (USM Version)
	potrs_scratchpad_size
	potrs_scratchpad_size
	sytrf
	sytrf (Buffer Version)
	sytrf (USM Version)
	sytrf_scratchpad_size
	sytrf_scratchpad_size
	trtrs
	trtrs (Buffer Version)
	trtrs (USM Version)
	trtrs_scratchpad_size
	trtrs_scratchpad_size
	ungqr
	ungqr (Buffer Version)
	ungqr (USM Version)
	ungqr_scratchpad_size
	ungqr_scratchpad_size
	unmqr
	unmqr (Buffer Version)
	unmqr (USM Version)
	unmqr_scratchpad_size
	unmqr_scratchpad_size
	unmrq
	unmrq (Buffer Version)
	unmrq (USM Version)
	unmrq_scratchpad_size
	unmrq_scratchpad_size

	LAPACK Singular Value and Eigenvalue Problem Routines
	gebrd
	gebrd (Buffer Version)
	gebrd (USM Version)
	gebrd_scratchpad_size
	gesvd
	gesvd (Buffer Version)
	gesvd (USM Version)
	gesvd_scratchpad_size
	gesvd_scratchpad_size
	heevd
	heevd (Buffer Version)
	heevd (USM Version)
	heevd_scratchpad_size
	heevd_scratchpad_size
	hegvd
	hegvd (Buffer Version)
	hegvd (USM Version)
	hegvd_scratchpad_size
	hegvd_scratchpad_size
	hetrd
	hetrd (Buffer Version)
	hetrd (USM Version)
	hetrd_scratchpad_size
	hetrd_scratchpad_size
	orgbr
	orgbr (Buffer Version)
	orgbr (USM Version)
	orgbr_scratchpad_size
	orgbr_scratchpad_size
	orgtr
	orgtr (Buffer Version)
	orgtr (USM Version)
	orgtr_scratchpad_size
	orgtr_scratchpad_size
	ormtr
	ormtr (Buffer Version)
	ormtr (USM Version)
	ormtr_scratchpad_size
	ormtr_scratchpad_size
	syevd
	syevd (Buffer Version)
	syevd (USM Version)
	syevd_scratchpad_size
	syevd_scratchpad_size
	sygvd
	sygvd (Buffer Version)
	sygvd (USM Version)
	sygvd_scratchpad_size
	sygvd_scratchpad_size
	sytrd
	sytrd (Buffer Version)
	sytrd (USM Version)
	sytrd_scratchpad_size
	sytrd_scratchpad_size
	ungbr
	ungbr (Buffer Version)
	ungbr (USM Version)
	ungbr_scratchpad_size
	ungbr_scratchpad_size
	ungtr
	ungtr (Buffer Version)
	ungtr (USM Version)
	ungtr_scratchpad_size
	ungtr_scratchpad_size
	unmtr
	unmtr (Buffer Version)
	unmtr (USM Version)
	unmtr_scratchpad_size
	unmtr_scratchpad_size

	LAPACK-like Extensions Routines
	geqrf_batch
	geqrf_batch (Buffer Version)
	geqrf_batch (USM Version)
	geqrf_batch_scratchpad_size
	getrf_batch
	getrf_batch (Buffer Version)
	getrf_batch (USM Version)
	getrf_batch_scratchpad_size
	getri_batch
	getri_batch (Buffer Version)
	getri_batch (USM Version)
	getri_batch_scratchpad_size
	getrs_batch
	getrs_batch (Buffer Version)
	getrs_batch (USM Version)
	getrs_batch_scratchpad_size
	orgqr_batch
	orgqr_batch (Buffer Version)
	orgqr_batch (USM Version)
	orgqr_batch_scratchpad_size
	potrf_batch
	potrf_batch (Buffer Version)
	potrf_batch (USM Version)
	potrf_batch_scratchpad_size
	potrs_batch
	potrs_batch (Buffer Version)
	potrs_batch (USM Version)
	potrs_batch_scratchpad_size
	ungqr_batch
	ungqr_batch (Buffer Version)
	ungqr_batch (USM Version)
	ungqr_batch_scratchpad_size

	Sparse Linear Algebra
	Sparse BLAS
	Data handles
	Dense vector handle
	Dense matrix handle
	Sparse matrix handle
	init_dense_vector
	init_dense_vector (Buffer version)
	init_dense_vector (USM version)
	init_dense_matrix
	init_dense_matrix (Buffer version)
	init_dense_matrix (USM version)
	init_coo_matrix
	init_coo_matrix (Buffer version)
	init_coo_matrix (USM version)
	init_csr_matrix
	init_csr_matrix (Buffer version)
	init_csr_matrix (USM version)
	release_dense_vector
	release_dense_matrix
	release_sparse_matrix
	set_dense_vector_data
	set_dense_vector_data (Buffer version)
	set_dense_vector_data (USM version)
	set_dense_matrix_data
	set_dense_matrix_data (Buffer version)
	set_dense_matrix_data (USM version)
	set_coo_matrix_data
	set_coo_matrix_data (Buffer version)
	set_coo_matrix_data (USM version)
	set_csr_matrix_data
	set_csr_matrix_data (Buffer version)
	set_csr_matrix_data (USM version)
	set_matrix_property
	Matrix properties
	set_matrix_property
	Sparse storage formats

	spmm
	spmm_descr
	init_spmm_descr
	release_spmm_descr
	spmm_alg
	spmm

	spmv
	spmv_descr
	init_spmv_descr
	release_spmv_descr
	spmv_alg
	spmv

	spsv
	spsv_descr
	init_spsv_descr
	release_spsv_descr
	spsv_alg
	spsv

	Matrix view
	matrix_descr
	matrix_view

	Supported template types

	Discrete Fourier Transforms
	Discrete Fourier Transform Functions
	Definitions
	Finite range of indices
	Elementary range of indices
	Additional constraints for data in backward domain of real DFTs

	Recommended usage
	Summary table
	The descriptor class
	Descriptor class constructors
	Descriptor class assignment operators
	set_value
	get_value
	set_workspace
	commit
	DFT-related scoped enumeration types
	precision
	domain
	config_param
	config_value
	Configuration of Data Layouts
	Data storage
	Complex descriptors
	Real descriptors
	Workspace placement
	WORKSPACE_PLACEMENT
	Typical usage of WORKSPACE_EXTERNAL
	compute_forward
	compute_forward (Buffer version)
	compute_forward (USM version)
	compute_backward
	compute_backward (Buffer version)
	compute_backward (USM version)

	Random Number Generators
	Random Number Generators (RNG)
	Random Number Generators Host Routines
	oneMKL RNG Host Usage Model
	Buffer-based example
	USM-based example
	Host Generate Routine
	generate
	generate (Buffer version)
	generate (USM version)
	Host Engines (Basic Random Number Generators)
	default_engine
	type alias default_engine
	mrg32k3a
	class mrg32k3a
	philox4x32x10
	class philox4x32x10
	mcg31m1
	class mcg31m1
	mcg59
	class mcg59
	r250
	class r250
	wichmann_hill
	class wichmann_hill
	mt19937
	class mt19937
	sfmt19937
	class sfmt19937
	mt2203
	class mt2203
	ars5
	class ars5
	sobol
	class sobol
	niederreiter
	class niederreiter
	nondeterministic
	class nondeterministic
	Host Service Routines
	leapfrog
	leapfrog
	skip_ahead
	skip_ahead
	skip_ahead (Interface with a partitioned number of skipped elements)
	Host Distributions
	Distributions Template Parameter Method
	uniform (continuous)
	class uniform
	gaussian
	class gaussian
	exponential
	class exponential
	laplace
	class laplace
	weibull
	class weibull
	cauchy
	class cauchy
	rayleigh
	class rayleigh
	lognormal
	class lognormal
	gumbel
	class gumbel
	gamma
	class gamma
	beta
	class beta
	chi_square
	class chi_square
	gaussian_mv
	class gaussian_mv
	uniform (discrete)
	class uniform
	uniform_bits
	class uniform_bits
	bits
	class bits
	bernoulli
	class bernoulli
	geometric
	class geometric
	binomial
	class binomial
	hypergeometric
	class hypergeometric
	poisson
	class poisson
	poisson_v
	class poisson_v
	negative_binomial
	class negative_binomial
	multinomial
	class multinomial
	Bibliography

	Random Number Generators Device Routines
	oneMKL RNG Device Usage Model
	Example of Scalar Random Numbers Generation
	Example of Vector Random Numbers Generation
	Device Generate Routines
	generate
	Device Engines (Basic Random Number Generators)
	mrg32k3a
	class mrg32k3a
	philox4x32x10
	class philox4x32x10
	mcg31m1
	class mcg31m1
	mcg59
	class mcg59
	Device Distributions
	Distributions Template Parameter Method
	uniform (Continuous)
	class uniform
	gaussian
	class gaussian
	lognormal
	class lognormal
	exponential
	class exponential
	uniform (Discrete)
	class uniform
	bits
	class bits
	uniform_bits
	class uniform_bits
	poisson
	class poisson
	bernoulli
	class bernoulli
	beta
	class beta
	gamma
	class gamma
	Device Service Routines
	skip_ahead
	skip_ahead

	Summary Statistics
	Summary Statistics
	oneMKL Summary Statistics Usage Model
	USM-based example

	dataset
	structure dataset (Buffer version)
	structure dataset (USM version)

	Summary Statistics Routines
	raw_sum
	raw_sum (Buffer version)
	raw_sum (USM version)
	central_sum
	central_sum (Buffer version)
	central_sum (USM version)
	central_sum with provided mean
	central_sum with provided mean (buffer version)
	central_sum with provided mean (USM version)
	mean
	mean (buffer version)
	mean (USM version)
	raw_moment
	oneapi::mkl::stats::raw_moment (buffer version)
	raw_moment (USM version)
	central_moment
	central_moment (buffer version)
	central_moment (USM version)
	central_moment with provided mean
	central_moment with provided mean (buffer version)
	central_moment with provided mean (USM version)
	variation
	variation (buffer version)
	variation (USM version)
	variation with provided mean
	oneapi::mkl::stats::variation (buffer version)
	variation with provided mean (USM version)
	skewness
	skewness (buffer version)
	skewness (USM version)
	skewness with provided mean
	skewness with provided mean (buffer version)
	skewness with provided mean (USM version)
	kurtosis
	kurtosis (buffer version)
	kurtosis (USM version)
	kurtosis with provided mean
	kurtosis with provided mean (buffer version)
	kurtosis with provided mean (USM version)
	min
	min (buffer version)
	min (USM version)
	max
	max (buffer version)
	max (USM version)
	min_max
	min_max (buffer version)
	min_max (USM version)

	Service Routines
	make_dataset
	make_dataset (buffer version)
	make_dataset (USM version)

	Vector Math
	Vector Math
	Special Value Notations
	VM Mathematical Functions
	abs
	acos
	acosh
	acospi
	add
	arg
	asin
	asinh
	asinpi
	atan
	atan2
	atan2pi
	atanh
	atanpi
	cbrt
	cdfnorm
	cdfnorminv
	ceil
	cis
	conj
	copysign
	cos
	cosd
	cosh
	cospi
	div
	erf
	erfc
	erfcinv
	erfinv
	exp
	exp10
	exp2
	expint1
	expm1
	fdim
	floor
	fmax
	fmin
	fmod
	frac
	hypot
	inv
	invcbrt
	invsqrt
	lgamma
	linearfrac
	ln
	log10
	log1p
	log2
	logb
	maxmag
	minmag
	modf
	mul
	mulbyconj
	nearbyint
	nextafter
	pow
	pow2o3
	pow3o2
	powr
	powx
	remainder
	rint
	round
	sin
	sincos
	sind
	sinh
	sinpi
	sqr
	sqrt
	sub
	tan
	tand
	tanh
	tanpi
	tgamma
	trunc

	VM Service Functions
	set_mode
	get_mode
	set_status
	get_status
	clear_status
	create_error_handler

	Exceptions
	Bibliography

	oneMKL Appendix
	Future considerations
	Acknowledgment

	Legal Notices and Disclaimers
	Bibliography
	Index

