tpsv
Contents
tpsv#
Solves a system of linear equations whose coefficients are in a triangular packed matrix.
Description
The tpsv
routines solve a system of linear equations whose
coefficients are in a triangular packed matrix. The operation is
defined as:
where:
op(A
) is one of op(A
) = A
, or op(A
) =
A
T, or op(A
) = A
H,
A
is an n
-by-n
unit or non-unit, upper or lower
triangular band matrix, supplied in packed form,
b
and x
are vectors of length n
.
tpsv
supports the following precisions.
T
float
double
std::complex<float>
std::complex<double>
tpsv (Buffer Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
void tpsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)
}
namespace oneapi::mkl::blas::row_major {
void tpsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A
is upper or lower triangular. See oneMKL defined datatypes for more details.- trans
Specifies op(
A
), the transposition operation applied toA
. See oneMKL defined datatypes for more details.- unit_nonunit
Specifies whether the matrix
A
is unit triangular or not. See oneMKL defined datatypes for more details.- n
Numbers of rows and columns of
A
. Must be at least zero.- a
Buffer holding input matrix
A
. Must have size at least (n
*(n
+1))/2. See Matrix Storage for more details.- x
Buffer holding the
n
-element right-hand side vectorb
. The buffer must be of size at least (1 + (n
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.
Output Parameters
- x
Buffer holding the solution vector
x
.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
tpsv (USM Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event tpsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event tpsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A
is upper or lower triangular. See oneMKL defined datatypes for more details.- trans
Specifies op(
A
), the transposition operation applied toA
. See oneMKL defined datatypes for more details.- unit_nonunit
Specifies whether the matrix
A
is unit triangular or not. See oneMKL defined datatypes for more details.- n
Numbers of rows and columns of
A
. Must be at least zero.- a
Pointer to input matrix
A
. The array holding input matrixA
must have size at least (n
*(n
+1))/2. See Matrix Storage for more details.- x
Pointer to the
n
-element right-hand side vectorb
. The array holding then
-element right-hand side vectorb
must be of size at least (1 + (n
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- x
Pointer to the solution vector
x
.
Return Values
Output event to wait on to ensure computation is complete.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
oneapi::mkl::unsupported_device
Parent topic: BLAS Level 2 Routines