Common Definitions¶
This section lists common types and definitions used by all or multiple primitives.
Base Class for Primitives¶
-
struct
dnnl
::
primitive
¶ Base class for all computational primitives.
Subclassed by dnnl::batch_normalization_backward, dnnl::batch_normalization_forward, dnnl::binary, dnnl::concat, dnnl::convolution_backward_data, dnnl::convolution_backward_weights, dnnl::convolution_forward, dnnl::deconvolution_backward_data, dnnl::deconvolution_backward_weights, dnnl::deconvolution_forward, dnnl::eltwise_backward, dnnl::eltwise_forward, dnnl::gru_backward, dnnl::gru_forward, dnnl::inner_product_backward_data, dnnl::inner_product_backward_weights, dnnl::inner_product_forward, dnnl::layer_normalization_backward, dnnl::layer_normalization_forward, dnnl::lbr_gru_backward, dnnl::lbr_gru_forward, dnnl::logsoftmax_backward, dnnl::logsoftmax_forward, dnnl::lrn_backward, dnnl::lrn_forward, dnnl::lstm_backward, dnnl::lstm_forward, dnnl::matmul, dnnl::pooling_backward, dnnl::pooling_forward, dnnl::reorder, dnnl::resampling_backward, dnnl::resampling_forward, dnnl::shuffle_backward, dnnl::shuffle_forward, dnnl::softmax_backward, dnnl::softmax_forward, dnnl::sum, dnnl::vanilla_rnn_backward, dnnl::vanilla_rnn_forward
Public Types
-
enum
kind
¶ Kinds of primitives supported by the library.
Values:
-
enumerator
undef
¶ Undefined primitive.
-
enumerator
reorder
¶ A reorder primitive.
-
enumerator
shuffle
¶ A shuffle primitive.
-
enumerator
concat
¶ A (out-of-place) tensor concatenation primitive.
-
enumerator
sum
¶ A summation primitive.
-
enumerator
convolution
¶ A convolution primitive.
-
enumerator
deconvolution
¶ A deconvolution primitive.
-
enumerator
eltwise
¶ An element-wise primitive.
-
enumerator
softmax
¶ A softmax primitive.
-
enumerator
pooling
¶ A pooling primitive.
-
enumerator
lrn
¶ An LRN primitive.
-
enumerator
batch_normalization
¶ A batch normalization primitive.
-
enumerator
layer_normalization
¶ A layer normalization primitive.
-
enumerator
inner_product
¶ An inner product primitive.
-
enumerator
rnn
¶ An RNN primitive.
-
enumerator
binary
¶ A binary primitive.
-
enumerator
logsoftmax
¶ A logsoftmax primitive.
-
enumerator
matmul
¶ A matmul (matrix multiplication) primitive.
-
enumerator
resampling
¶ A resampling primitive.
-
enumerator
Public Functions
-
primitive
()¶ Default constructor. Constructs an empty object.
-
primitive
(const primitive_desc_base &pd)¶ Constructs a primitive from a primitive descriptor.
- Parameters
pd
: Primitive descriptor.
-
void
execute
(const stream &astream, const std::unordered_map<int, memory> &args) const¶ Executes computations specified by the primitive in a specified stream.
Arguments are passed via an arguments map containing <index, memory object> pairs. The index must be one of the
DNNL_ARG_*
values such asDNNL_ARG_SRC
, and the memory must have a memory descriptor matching the one returned by dnnl::primitive_desc_base::query_md(query::exec_arg_md, index) unless using dynamic shapes (see DNNL_RUNTIME_DIM_VAL).- Parameters
astream
: Stream object. The stream must belong to the same engine as the primitive.args
: Arguments map.
-
enum
-
cl::sycl::event
dnnl::sycl_interop
::
execute
(const primitive &aprimitive, const stream &astream, const std::unordered_map<int, memory> &args, const std::vector<cl::sycl::event> &dependencies = {})¶ Executes computations using a specified primitive object in a specified stream.
Arguments are passed via an arguments map containing <index, memory object> pairs. The index must be one of the
DNNL_ARG_*
values such asDNNL_ARG_SRC
, and the memory must have a memory descriptor matching the one returned by dnnl::primitive_desc_base::query_md(query::exec_arg_md, index) unless using dynamic shapes (see DNNL_RUNTIME_DIM_VAL).- Return
SYCL event object for the specified primitive execution.
- Parameters
aprimitive
: Primitive to be executed.astream
: Stream object. The stream must belong to the same engine as the primitive.args
: Arguments map.dependencies
: Vector of SYCL events that the execution depends on.
Base Class for Primitives Descriptors¶
There is no common base class for operation descriptors because they are very different between different primitives. However, there is a common base class for primitive descriptors.
-
struct
dnnl
::
primitive_desc_base
¶ Base class for all primitive descriptors.
Subclassed by dnnl::concat::primitive_desc, dnnl::primitive_desc, dnnl::reorder::primitive_desc, dnnl::sum::primitive_desc
Public Functions
-
primitive_desc_base
()¶ Default constructor. Produces an empty object.
-
engine
get_engine
() const¶ Returns the engine of the primitive descriptor.
- Return
The engine of the primitive descriptor.
-
const char *
impl_info_str
() const¶ Returns implementation name.
- Return
The implementation name.
-
memory::dim
query_s64
(query what) const¶ Returns a memory::dim value (same as int64_t).
- Return
The result of the query.
- Parameters
what
: The value to query.
-
memory::desc
query_md
(query what, int idx = 0) const¶ Returns a memory descriptor.
- Note
There are also convenience methods dnnl::primitive_desc_base::src_desc(), dnnl::primitive_desc_base::dst_desc(), and others.
- Return
The requested memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a parameter of the specified kind or index.
- Parameters
what
: The kind of parameter to query; can be dnnl::query::src_md, dnnl::query::dst_md, etc.idx
: Index of the parameter. For example, convolution bias can be queried with what = dnnl::query::weights_md and idx = 1.
-
memory::desc
src_desc
(int idx) const¶ Returns a source memory descriptor.
- Return
Source memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a source parameter with index
pdx
.- Parameters
idx
: Source index.
-
memory::desc
dst_desc
(int idx) const¶ Returns a destination memory descriptor.
- Return
Destination memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a destination parameter with index
pdx
.- Parameters
idx
: Destination index.
-
memory::desc
weights_desc
(int idx) const¶ Returns a weights memory descriptor.
- Return
Weights memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a weights parameter with index
pdx
.- Parameters
idx
: Weights index.
-
memory::desc
diff_src_desc
(int idx) const¶ Returns a diff source memory descriptor.
- Return
Diff source memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff source parameter with index
pdx
.- Parameters
idx
: Diff source index.
-
memory::desc
diff_dst_desc
(int idx) const¶ Returns a diff destination memory descriptor.
- Return
Diff destination memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff destination parameter with index
pdx
.- Parameters
idx
: Diff destination index.
-
memory::desc
diff_weights_desc
(int idx) const¶ Returns a diff weights memory descriptor.
- Return
Diff weights memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff weights parameter with index
pdx
.- Parameters
idx
: Diff weights index.
-
memory::desc
src_desc
() const¶ Returns a source memory descriptor.
- Return
Source memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a source parameter.
-
memory::desc
dst_desc
() const¶ Returns a destination memory descriptor.
- Return
Destination memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a destination parameter.
-
memory::desc
weights_desc
() const¶ Returns a weights memory descriptor.
- Return
Weights memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a weights parameter.
-
memory::desc
diff_src_desc
() const¶ Returns a diff source memory descriptor.
- Return
Diff source memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff source memory with.
-
memory::desc
diff_dst_desc
() const¶ Returns a diff destination memory descriptor.
- Return
Diff destination memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff destination parameter.
-
memory::desc
diff_weights_desc
() const¶ Returns a diff weights memory descriptor.
- Return
Diff weights memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff weights parameter.
-
memory::desc
workspace_desc
() const¶ Returns the workspace memory descriptor.
- Return
Workspace memory descriptor.
- Return
A zero memory descriptor if the primitive does not require workspace parameter.
-
memory::desc
scratchpad_desc
() const¶ Returns the scratchpad memory descriptor.
- Return
scratchpad memory descriptor.
- Return
A zero memory descriptor if the primitive does not require scratchpad parameter.
-
engine
scratchpad_engine
() const¶ Returns the engine on which the scratchpad memory is located.
- Return
The engine on which the scratchpad memory is located.
-
primitive_attr
get_primitive_attr
() const¶ Returns the primitive attributes.
- Return
The primitive attributes.
-
It is further derived from to provide base class for all primitives that have operation descriptors.
-
struct
dnnl
::
primitive_desc
: public dnnl::primitive_desc_base¶ A base class for descriptors of all primitives that have an operation descriptor and that support iteration over multiple implementations.
Subclassed by dnnl::batch_normalization_backward::primitive_desc, dnnl::batch_normalization_forward::primitive_desc, dnnl::binary::primitive_desc, dnnl::convolution_backward_data::primitive_desc, dnnl::convolution_backward_weights::primitive_desc, dnnl::convolution_forward::primitive_desc, dnnl::deconvolution_backward_data::primitive_desc, dnnl::deconvolution_backward_weights::primitive_desc, dnnl::deconvolution_forward::primitive_desc, dnnl::eltwise_backward::primitive_desc, dnnl::eltwise_forward::primitive_desc, dnnl::inner_product_backward_data::primitive_desc, dnnl::inner_product_backward_weights::primitive_desc, dnnl::inner_product_forward::primitive_desc, dnnl::layer_normalization_backward::primitive_desc, dnnl::layer_normalization_forward::primitive_desc, dnnl::logsoftmax_backward::primitive_desc, dnnl::logsoftmax_forward::primitive_desc, dnnl::lrn_backward::primitive_desc, dnnl::lrn_forward::primitive_desc, dnnl::matmul::primitive_desc, dnnl::pooling_backward::primitive_desc, dnnl::pooling_forward::primitive_desc, dnnl::resampling_backward::primitive_desc, dnnl::resampling_forward::primitive_desc, dnnl::rnn_primitive_desc_base, dnnl::shuffle_backward::primitive_desc, dnnl::shuffle_forward::primitive_desc, dnnl::softmax_backward::primitive_desc, dnnl::softmax_forward::primitive_desc
The dnnl::reorder
, dnnl::sum
and dnnl::concat
primitives
also subclass dnnl::primitive_desc
to implement their primitive
descriptors.
RNN primitives further subclass the dnnl::primitive_desc_base
to
provide utility functions for frequently queried memory descriptors.
-
struct
dnnl
::
rnn_primitive_desc_base
: public dnnl::primitive_desc¶ Base class for primitive descriptors for RNN primitives.
Subclassed by dnnl::gru_backward::primitive_desc, dnnl::gru_forward::primitive_desc, dnnl::lbr_gru_backward::primitive_desc, dnnl::lbr_gru_forward::primitive_desc, dnnl::lstm_backward::primitive_desc, dnnl::lstm_forward::primitive_desc, dnnl::vanilla_rnn_backward::primitive_desc, dnnl::vanilla_rnn_forward::primitive_desc
Public Functions
-
rnn_primitive_desc_base
()¶ Default constructor. Produces an empty object.
-
memory::desc
src_layer_desc
() const¶ Returns source layer memory descriptor.
- Return
Source layer memory descriptor.
-
memory::desc
src_iter_desc
() const¶ Returns source iteration memory descriptor.
- Return
Source iteration memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a source iteration parameter.
-
memory::desc
src_iter_c_desc
() const¶ Returns source recurrent cell state memory descriptor.
- Return
Source recurrent cell state memory descriptor.
-
memory::desc
weights_layer_desc
() const¶ Returns weights layer memory descriptor.
- Return
Weights layer memory descriptor.
-
memory::desc
weights_iter_desc
() const¶ Returns weights iteration memory descriptor.
- Return
Weights iteration memory descriptor.
-
memory::desc
weights_peephole_desc
() const¶ Returns weights peephole memory descriptor.
- Return
Weights peephole memory descriptor.
-
memory::desc
weights_projection_desc
() const¶ Returns weights projection memory descriptor.
- Return
Weights projection memory descriptor.
-
memory::desc
bias_desc
() const¶ Returns bias memory descriptor.
- Return
Bias memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a bias parameter.
-
memory::desc
dst_layer_desc
() const¶ Returns destination layer memory descriptor.
- Return
Destination layer memory descriptor.
-
memory::desc
dst_iter_desc
() const¶ Returns destination iteration memory descriptor.
- Return
Destination iteration memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a destination iteration parameter.
-
memory::desc
dst_iter_c_desc
() const¶ Returns destination recurrent cell state memory descriptor.
- Return
Destination recurrent cell state memory descriptor.
-
memory::desc
diff_src_layer_desc
() const¶ Returns diff source layer memory descriptor.
- Return
Diff source layer memory descriptor.
-
memory::desc
diff_src_iter_desc
() const¶ Returns diff source iteration memory descriptor.
- Return
Diff source iteration memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff source iteration parameter.
-
memory::desc
diff_src_iter_c_desc
() const¶ Returns diff source recurrent cell state memory descriptor.
- Return
Diff source recurrent cell state memory descriptor.
-
memory::desc
diff_weights_layer_desc
() const¶ Returns diff weights layer memory descriptor.
- Return
Diff weights layer memory descriptor.
-
memory::desc
diff_weights_iter_desc
() const¶ Returns diff weights iteration memory descriptor.
- Return
Diff weights iteration memory descriptor.
-
memory::desc
diff_weights_peephole_desc
() const¶ Returns diff weights peephole memory descriptor.
- Return
Diff weights peephole memory descriptor.
-
memory::desc
diff_weights_projection_desc
() const¶ Returns diff weights projection memory descriptor.
- Return
Diff weights projection memory descriptor.
-
memory::desc
diff_bias_desc
() const¶ Returns diff bias memory descriptor.
- Return
Diff bias memory descriptor.
- Return
A zero memory descriptor if the primitive does not have a diff bias parameter.
-
memory::desc
diff_dst_layer_desc
() const¶ Returns diff destination layer memory descriptor.
- Return
Diff destination layer memory descriptor.
-
Common Enumerations¶
-
enum
dnnl
::
prop_kind
¶ Propagation kind.
Values:
-
enumerator
undef
¶ Undefined propagation kind.
-
enumerator
forward_training
¶ Forward data propagation (training mode). In this mode, primitives perform computations necessary for subsequent backward propagation.
-
enumerator
forward_inference
¶ Forward data propagation (inference mode). In this mode, primitives perform only computations that are necessary for inference and omit computations that are necessary only for backward propagation.
-
enumerator
forward_scoring
¶ Forward data propagation, alias for dnnl::prop_kind::forward_inference.
-
enumerator
forward
¶ Forward data propagation, alias for dnnl::prop_kind::forward_training.
-
enumerator
backward
¶ Backward propagation (with respect to all parameters).
-
enumerator
backward_data
¶ Backward data propagation.
-
enumerator
backward_weights
¶ Backward weights propagation.
-
enumerator
backward_bias
¶ Backward bias propagation.
-
enumerator
-
enum
dnnl
::
algorithm
¶ Kinds of algorithms.
Values:
-
enumerator
undef
¶ Undefined algorithm.
-
enumerator
convolution_auto
¶ Convolution algorithm that is chosen to be either direct or Winograd automatically
-
enumerator
convolution_direct
¶ Direct convolution.
-
enumerator
convolution_winograd
¶ Winograd convolution.
-
enumerator
deconvolution_direct
¶ Direct deconvolution.
-
enumerator
deconvolution_winograd
¶ Winograd deconvolution.
-
enumerator
eltwise_relu
¶ Elementwise: rectified linear unit (ReLU)
-
enumerator
eltwise_tanh
¶ Elementwise: hyperbolic tangent non-linearity (tanh)
-
enumerator
eltwise_elu
¶ Elementwise: exponential linear unit (ELU)
-
enumerator
eltwise_square
¶ Elementwise: square.
-
enumerator
eltwise_abs
¶ Elementwise: abs.
-
enumerator
eltwise_sqrt
¶ Elementwise: square root.
-
enumerator
eltwise_swish
¶ Elementwise: swish ( \(x \cdot sigmoid(a \cdot x)\))
-
enumerator
eltwise_linear
¶ Elementwise: linear.
-
enumerator
eltwise_bounded_relu
¶ Elementwise: bounded_relu.
-
enumerator
eltwise_soft_relu
¶ Elementwise: soft_relu.
-
enumerator
eltwise_logistic
¶ Elementwise: logistic.
-
enumerator
eltwise_exp
¶ Elementwise: exponent.
-
enumerator
eltwise_gelu
¶ Elementwise: gelu alias for dnnl::algorithm::eltwise_gelu_tanh
-
enumerator
eltwise_gelu_tanh
¶ Elementwise: tanh-based gelu.
-
enumerator
eltwise_gelu_erf
¶ Elementwise: erf-based gelu.
-
enumerator
eltwise_log
¶ Elementwise: natural logarithm.
-
enumerator
eltwise_clip
¶ Elementwise: clip.
-
enumerator
eltwise_pow
¶ Elementwise: pow.
-
enumerator
eltwise_round
¶ Elementwise: round.
-
enumerator
eltwise_relu_use_dst_for_bwd
¶ Elementwise: rectified linear unit (ReLU) (dst for backward)
-
enumerator
eltwise_tanh_use_dst_for_bwd
¶ Elementwise: hyperbolic tangent non-linearity (tanh) (dst for backward)
-
enumerator
eltwise_elu_use_dst_for_bwd
¶ Elementwise: exponential linear unit (ELU) (dst for backward)
-
enumerator
eltwise_sqrt_use_dst_for_bwd
¶ Elementwise: square root (dst for backward)
-
enumerator
eltwise_logistic_use_dst_for_bwd
¶ Elementwise: logistic (dst for backward)
-
enumerator
eltwise_exp_use_dst_for_bwd
¶ Elementwise: exponent (dst for backward)
-
enumerator
lrn_across_channels
¶ Local response normalization (LRN) across multiple channels.
-
enumerator
lrn_within_channel
¶ LRN within a single channel.
-
enumerator
pooling_max
¶ Max pooling.
-
enumerator
pooling_avg
¶ Average pooling exclude padding, alias for dnnl::algorithm::pooling_avg_include_padding
-
enumerator
pooling_avg_include_padding
¶ Average pooling include padding.
-
enumerator
pooling_avg_exclude_padding
¶ Average pooling exclude padding.
-
enumerator
vanilla_rnn
¶ RNN cell.
-
enumerator
vanilla_lstm
¶ LSTM cell.
-
enumerator
vanilla_gru
¶ GRU cell.
-
enumerator
lbr_gru
¶ GRU cell with linear before reset. Differs from original GRU in how the new memory gate is calculated: \(c_t = tanh(W_c*x_t + b_{c_x} + r_t*(U_c*h_{t-1}+b_{c_h})) \) LRB GRU expects 4 bias tensors on input: \([b_{u}, b_{r}, b_{c_x}, b_{c_h}]\)
-
enumerator
binary_add
¶ Binary add.
-
enumerator
binary_mul
¶ Binary mul.
-
enumerator
binary_max
¶ Binary max.
-
enumerator
binary_min
¶ Binary min.
-
enumerator
resampling_nearest
¶ Nearest Neighbor resampling method.
-
enumerator
resampling_linear
¶ Linear (Bilinear, Trilinear) resampling method.
-
enumerator
Normalization Primitives Flags¶
-
enum
dnnl
::
normalization_flags
¶ Flags for normalization primitives (can be combined via ‘|’)
Values:
-
enumerator
none
¶ Use no normalization flags. If specified, the library computes mean and variance on forward propagation for training and inference, outputs them on forward propagation for training, and computes the respective derivatives on backward propagation.
-
enumerator
use_global_stats
¶ Use global statistics. If specified, the library uses mean and variance provided by the user as an input on forward propagation and does not compute their derivatives on backward propagation. Otherwise, the library computes mean and variance on forward propagation for training and inference, outputs them on forward propagation for training, and computes the respective derivatives on backward propagation.
-
enumerator
use_scale_shift
¶ Use scale and shift parameters. If specified, the user is expected to pass scale and shift as inputs on forward propagation. On backward propagation of type dnnl::prop_kind::backward, the library computes their derivatives. If not specified, the scale and shift parameters are not used by the library in any way.
-
enumerator
fuse_norm_relu
¶ Fuse normalization with ReLU. On training, normalization will require the workspace to implement backward propagation. On inference, the workspace is not required and behavior is the same as when normalization is fused with ReLU using the post-ops API.
-
enumerator
Execution argument indices¶
-
DNNL_ARG_SRC_0
¶ Source argument #0.
-
DNNL_ARG_SRC
¶ A special mnemonic for source argument for primitives that have a single source. An alias for DNNL_ARG_SRC_0.
-
DNNL_ARG_SRC_LAYER
¶ A special mnemonic for RNN input vector. An alias for DNNL_ARG_SRC_0.
-
DNNL_ARG_FROM
¶ A special mnemonic for reorder source argument. An alias for DNNL_ARG_SRC_0.
-
DNNL_ARG_SRC_1
¶ Source argument #1.
-
DNNL_ARG_SRC_ITER
¶ A special mnemonic for RNN input recurrent hidden state vector. An alias for DNNL_ARG_SRC_1.
-
DNNL_ARG_SRC_2
¶ Source argument #2.
-
DNNL_ARG_SRC_ITER_C
¶ A special mnemonic for RNN input recurrent cell state vector. An alias for DNNL_ARG_SRC_2.
-
DNNL_ARG_DST_0
¶ Destination argument #0.
-
DNNL_ARG_DST
¶ A special mnemonic for destination argument for primitives that have a single destination. An alias for DNNL_ARG_DST_0.
-
DNNL_ARG_TO
¶ A special mnemonic for reorder destination argument. An alias for DNNL_ARG_DST_0.
-
DNNL_ARG_DST_LAYER
¶ A special mnemonic for RNN output vector. An alias for DNNL_ARG_DST_0.
-
DNNL_ARG_DST_1
¶ Destination argument #1.
-
DNNL_ARG_DST_ITER
¶ A special mnemonic for RNN input recurrent hidden state vector. An alias for DNNL_ARG_DST_1.
-
DNNL_ARG_DST_2
¶ Destination argument #2.
-
DNNL_ARG_DST_ITER_C
¶ A special mnemonic for LSTM output recurrent cell state vector. An alias for DNNL_ARG_DST_2.
-
DNNL_ARG_WEIGHTS_0
¶ Weights argument #0.
-
DNNL_ARG_WEIGHTS
¶ A special mnemonic for primitives that have a single weights argument. Alias for DNNL_ARG_WEIGHTS_0.
-
DNNL_ARG_SCALE_SHIFT
¶ A special mnemonic for scale and shift argument of normalization primitives. Alias for DNNL_ARG_WEIGHTS_0.
-
DNNL_ARG_WEIGHTS_LAYER
¶ A special mnemonic for RNN weights applied to the layer input. An alias for DNNL_ARG_WEIGHTS_0.
-
DNNL_ARG_WEIGHTS_1
¶ Weights argument #1.
-
DNNL_ARG_WEIGHTS_ITER
¶ A special mnemonic for RNN weights applied to the recurrent input. An alias for DNNL_ARG_WEIGHTS_1.
-
DNNL_ARG_BIAS
¶ Bias tensor argument.
-
DNNL_ARG_MEAN
¶ Mean values tensor argument.
-
DNNL_ARG_VARIANCE
¶ Variance values tensor argument.
-
DNNL_ARG_WORKSPACE
¶ Workspace tensor argument. Workspace is used to pass information from forward propagation to backward propagation computations.
-
DNNL_ARG_SCRATCHPAD
¶ Scratchpad (temporary storage) tensor argument.
-
DNNL_ARG_DIFF_SRC_0
¶ Gradient (diff) of the source argument #0.
-
DNNL_ARG_DIFF_SRC
¶ A special mnemonic for primitives that have a single diff source argument. An alias for DNNL_ARG_DIFF_SRC_0.
-
DNNL_ARG_DIFF_SRC_LAYER
¶ A special mnemonic for gradient (diff) of RNN input vector. An alias for DNNL_ARG_DIFF_SRC_0.
-
DNNL_ARG_DIFF_SRC_1
¶ Gradient (diff) of the source argument #1.
-
DNNL_ARG_DIFF_SRC_ITER
¶ A special mnemonic for gradient (diff) of RNN input recurrent hidden state vector. An alias for DNNL_ARG_DIFF_SRC_1.
-
DNNL_ARG_DIFF_SRC_2
¶ Gradient (diff) of the source argument #2.
-
DNNL_ARG_DIFF_SRC_ITER_C
¶ A special mnemonic for gradient (diff) of RNN input recurrent cell state vector. An alias for DNNL_ARG_DIFF_SRC_1.
-
DNNL_ARG_DIFF_DST_0
¶ Gradient (diff) of the destination argument #0.
-
DNNL_ARG_DIFF_DST
¶ A special mnemonic for primitives that have a single diff destination argument. An alias for DNNL_ARG_DIFF_DST_0.
-
DNNL_ARG_DIFF_DST_LAYER
¶ A special mnemonic for gradient (diff) of RNN output vector. An alias for DNNL_ARG_DIFF_DST_0.
-
DNNL_ARG_DIFF_DST_1
¶ Gradient (diff) of the destination argument #1.
-
DNNL_ARG_DIFF_DST_ITER
¶ A special mnemonic for gradient (diff) of RNN input recurrent hidden state vector. An alias for DNNL_ARG_DIFF_DST_1.
-
DNNL_ARG_DIFF_DST_2
¶ Gradient (diff) of the destination argument #2.
-
DNNL_ARG_DIFF_DST_ITER_C
¶ A special mnemonic for gradient (diff) of RNN input recurrent cell state vector. An alias for DNNL_ARG_DIFF_DST_2.
-
DNNL_ARG_DIFF_WEIGHTS_0
¶ Gradient (diff) of the weights argument #0.
-
DNNL_ARG_DIFF_WEIGHTS
¶ A special mnemonic for primitives that have a single diff weights argument. Alias for DNNL_ARG_DIFF_WEIGHTS_0.
-
DNNL_ARG_DIFF_SCALE_SHIFT
¶ A special mnemonic for diff of scale and shift argument of normalization primitives. Alias for DNNL_ARG_DIFF_WEIGHTS_0.
-
DNNL_ARG_DIFF_WEIGHTS_LAYER
¶ A special mnemonic for diff of RNN weights applied to the layer input. An alias for DNNL_ARG_DIFF_WEIGHTS_0.
-
DNNL_ARG_DIFF_WEIGHTS_1
¶ Gradient (diff) of the weights argument #1.
-
DNNL_ARG_DIFF_WEIGHTS_ITER
¶ A special mnemonic for diff of RNN weights applied to the recurrent input. An alias for DNNL_ARG_DIFF_WEIGHTS_1.
-
DNNL_ARG_DIFF_BIAS
¶ Gradient (diff) of the bias tensor argument.
-
DNNL_ARG_ATTR_OUTPUT_SCALES
¶ Output scaling factors provided at execution time.
-
DNNL_ARG_MULTIPLE_SRC
¶ Starting index for source arguments for primitives that take a variable number of source arguments.
-
DNNL_ARG_MULTIPLE_DST
¶ Starting index for destination arguments for primitives that produce a variable number of destination arguments.
-
DNNL_ARG_ATTR_ZERO_POINTS
¶ Zero points provided at execution time.
-
DNNL_RUNTIME_DIM_VAL
¶ A wildcard value for dimensions that are unknown at a primitive creation time.
-
DNNL_RUNTIME_SIZE_VAL
¶ A
size_t
counterpart of the DNNL_RUNTIME_DIM_VAL. For instance, this value is returned by dnnl::memory::desc::get_size() if either of the dimensions or strides equal to DNNL_RUNTIME_DIM_VAL.
-
DNNL_RUNTIME_F32_VAL
¶ A wildcard value for floating point values that are unknown at a primitive creation time.
-
DNNL_RUNTIME_S32_VAL
¶ A wildcard value for int32_t values that are unknown at a primitive creation time.