Matrix Storage¶
The oneMKL BLAS and LAPACK routines for DPC++ use several matrix and vector storage formats. These are the same formats used in traditional Fortran BLAS/LAPACK.
General Matrix
A general matrix A
of m
rows and n
columns with
leading dimension lda
is represented as a one dimensional
array a
of size of at least lda
* n
if column major
layout is used and at least lda
* m
if row major layout
is used. Before entry in any BLAS function using a general
matrix, the leading m
by n
part of the array a
must
contain the matrix A
. For column (respectively row) major
layout, the elements of each column (respectively row) are
contiguous in memory while the elements of each row
(respectively column) are at distance lda
from the element
in the same row (respectively column) and the previous column
(respectively row).
Visually, the matrix
is stored in memory as an array
For column major layout,
For row major layout,
Triangular Matrix
A triangular matrix A
of n
rows and n
columns with
leading dimension lda
is represented as a one dimensional
array a
, of a size of at least lda
* n
. When column
(respectively row) major layout is used, the elements of each
column (respectively row) are contiguous in memory while the
elements of each row (respectively column) are at distance
lda
from the element in the same row (respectively column)
and the previous column (respectively row).
Before entry in any BLAS function using a triangular matrix,
If
upper_lower = uplo::upper
, the leadingn
byn
upper triangular part of the arraya
must contain the upper triangular part of the matrixA
. The strictly lower triangular part of the arraya
is not referenced. In other words, the matrix\[\begin{split}A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \ldots & A_{1n}\\ * & A_{22} & A_{23} & \ldots & A_{2n}\\ * & * & A_{33} & \ldots & A_{3n}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ * & * & * & \ldots & A_{nn} \end{bmatrix}\end{split}\]is stored in memory as the array
For column major layout,
\[\scriptstyle a = [\underbrace{\underbrace{A_{11},*,...,*}_\text{lda}, \underbrace{A_{12},A_{22},*,...,*}_\text{lda}, ..., \underbrace{A_{1n},A_{2n},A_{3n},...,A_{nn},*,...,*}_\text{lda}} _\text{lda x n}]\]For row major layout,
\[\scriptstyle a = [\underbrace{\underbrace{A_{11},A_{12},A_{13},...,A_{1n},*,...,*}_\text{lda}, \underbrace{*,A_{22},A_{23},...,A_{2n},*,...,*}_\text{lda}, ..., \underbrace{*,...,*,A_{nn},*,...,*}_\text{lda}} _\text{lda x n}]\]If
upper_lower = uplo::lower
, the leadingn
byn
lower triangular part of the arraya
must contain the lower triangular part of the matrixA
. The strictly upper triangular part of the arraya
is not referenced. That is, the matrix\[\begin{split}A = \begin{bmatrix} A_{11} & * & * & \ldots & * \\ A_{21} & A_{22} & * & \ldots & * \\ A_{31} & A_{32} & A_{33} & \ldots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ A_{n1} & A_{n2} & A_{n3} & \ldots & A_{nn} \end{bmatrix}\end{split}\]is stored in memory as the array
For column major layout,
\[\scriptstyle a = [\underbrace{\underbrace{A_{11},A_{21},A_{31},..,A_{n1},*,...,*}_\text{lda}, \underbrace{*,A_{22},A_{32},...,A_{n2},*,...,*}_\text{lda}, ..., \underbrace{*,...,*,A_{nn},*,...,*}_\text{lda}} _\text{lda x n}]\]For row major layout,
\[\scriptstyle a = [\underbrace{\underbrace{A_{11},*,...,*}_\text{lda}, \underbrace{A_{21},A_{22},*,...,*}_\text{lda}, ..., \underbrace{A_{n1},A_{n2},A_{n3},...,A_{nn},*,...,*}_\text{lda}} _\text{lda x n}]\]
Band Matrix
A general band matrix A
of m
rows and n
columns with
kl
sub-diagonals, ku
super-diagonals, and leading
dimension lda
is represented as a one dimensional array
a
of a size of at least lda
* n
(respectively
lda
* m
) if column (respectively row) major layout is
used.
Before entry in any BLAS function using a general band matrix,
the leading (kl
+ ku
+ 1)
by n
(respectively
m
) part of the array a
must contain the matrix
A
. This matrix must be supplied column-by-column
(respectively row-by-row), with the main diagonal of the matrix
in row ku
(respectively kl
) of the array (0-based
indexing), the first super-diagonal starting at position 1
(respectively 0) in row (ku
- 1) (respectively column
(kl
+ 1)), the first sub-diagonal starting at position 0
(respectively 1) in row (ku
+ 1) (respectively column
(kl
- 1)), and so on. Elements in the array a
that do
not correspond to elements in the band matrix (such as the top
left ku
by ku
triangle) are not referenced.
Visually, the matrix A
is stored in memory as an array
For column major layout,
For row major layout,
The following program segment transfers a band matrix from
conventional full matrix storage (variable matrix
, with
leading dimension ldm
) to band storage (variable a
, with
leading dimension lda
):
Using matrices stored with column major layout,
for (j = 0; j < n; j++) {
k = ku – j;
for (i = max(0, j – ku); i < min(m, j + kl + 1); i++) {
a[(k + i) + j * lda] = matrix[i + j * ldm];
}
}
Using matrices stored with row major layout,
for (i = 0; i < n; i++) {
k = kl – i;
for (j = max(0, i – kl); j < min(n, i + ku + 1); j++) {
a[(k + j) + i * lda] = matrix[j + i * ldm];
}
}
Triangular Band Matrix
A triangular band matrix A
of n
rows and n
columns
with k
sub/super-diagonals and leading dimension lda
is
represented as a one dimensional array a
of size at least
lda
* n
.
Before entry in any BLAS function using a triangular band matrix,
If
upper_lower = uplo::upper
, the leading (k
+ 1) byn
part of the arraya
must contain the upper triangular band part of the matrixA
. When using column major layout, this matrix must be supplied column-by-column (respectively row-by-row) with the main diagonal of the matrix in row (k
) (respectively column 0) of the array, the first super-diagonal starting at position 1 (respectively 0) in row (k
- 1) (respectively column 1), and so on. Elements in the arraya
that do not correspond to elements in the triangular band matrix (such as the top leftk
byk
triangle) are not referenced.Visually, the matrix
\[\begin{split}A = \left[\begin{smallmatrix} A_{11} & A_{12} & A_{13} & \ldots & A_{1,k+1} & * & \ldots & \ldots & \ldots & \ldots & \ldots & * \\ * & A_{22} & A_{23} & A_{24} & \ldots & A_{2,k+2} & * & \ldots & \ldots & \ldots & \ldots & * \\ \vdots & * & A_{33} & A_{34} & A_{35} & \ldots & A_{3,k+3} & * & \ldots & \ldots & \ldots & * \\ \vdots & \vdots & * & \ddots & \ddots & \ddots & \ddots & \ddots & * & \ldots & \ldots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & * & \ldots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & * \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & A_{n-k,n}\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & A_{n-2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & A_{n-1,n} \\ * & * & * & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & * & A_{n,n} \end{smallmatrix}\right]\end{split}\]is stored as an array
For column major layout,
\[\scriptstyle a = [\underbrace{ \underbrace{\underbrace{*,...,*}_\text{ku},A_{11},*,...,*}_\text{lda}, \underbrace{\underbrace{*,...,*}_\text{ku-1},A_{max(1,2-k),2},...,A_{2,2},*,...*}_\text{lda}, ..., \underbrace{\underbrace{*,...,*}_\text{max(0,k-n+1)},A_{max(1,n-k),n},...,A_{n,n},*,...*}_\text{lda} }_\text{lda x n}]\]For row major layout,
\[\scriptstyle a = [\underbrace{ \underbrace{A_{11},A_{21},...,A_{min(k+1,n),1},*,...,*}_\text{lda}, \underbrace{A_{2,2},...,A_{min(k+2,n),2},*,...,*}_\text{lda}, ..., \underbrace{A_{n,n},*,...*}_\text{lda} }_\text{lda x n}]\]
The following program segment transfers a band matrix from
conventional full matrix storage (variable matrix
, with
leading dimension ldm
) to band storage (variable a
,
with leading dimension lda
):
Using matrices stored with column major layout,
for (j = 0; j < n; j++) {
m = k – j;
for (i = max(0, j – k); i <= j; i++) {
a[(m + i) + j * lda] = matrix[i + j * ldm];
}
}
Using matrices stored with column major layout,
for (i = 0; i < n; i++) {
m = –i;
for (j = i; j < min(n, i + k + 1); j++) {
a[(m + j) + i * lda] = matrix[j + i * ldm];
}
}
If
upper_lower = uplo::lower
, the leading (k
+ 1) byn
part of the arraya
must contain the upper triangular band part of the matrixA
. This matrix must be supplied column-by-column with the main diagonal of the matrix in row 0 of the array, the first sub-diagonal starting at position 0 in row 1, and so on. Elements in the arraya
that do not correspond to elements in the triangular band matrix (such as the bottom rightk
byk
triangle) are not referenced.That is, the matrix
\[\begin{split}A = \left[\begin{smallmatrix} A_{11} & * & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & * \\ A_{21} & A_{22} & * & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & * \\ A_{31} & A_{32} & A_{33} & * & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & * \\ \vdots & A_{42} & A_{43} & \ddots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \vdots \\ A_{k+1,1} & \vdots & A_{53} & \ddots & \ddots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \vdots \\ * & A_{k+2,2} & \vdots & \ddots & \ddots & \ddots & \ddots & \ldots & \ldots & \ldots & \ldots & \vdots \\ \vdots & * & A_{k+3,3} & \ddots & \ddots & \ddots & \ddots & \ddots & \ldots & \ldots & \ldots & \vdots \\ \vdots & \vdots & * & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ldots & \ldots & \vdots \\ \vdots & \vdots & \vdots & * & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ldots & \vdots \\ \vdots & \vdots & \vdots & \vdots & * & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & * \\ * & * & * & \ldots & \ldots & \ldots & * & A_{n,n-k} & \ldots & A_{n,n-2} & A_{n,n-1} & A_{n,n} \end{smallmatrix}\right]\end{split}\]is stored as the array
For column major layout,
\[\scriptstyle a = [\underbrace{ \underbrace{A_{11},A_{21},...,A_{min(k+1,n),1},*,...,*}_\text{lda}, \underbrace{A_{2,2},...,A_{min(k+2,n),2},*,...,*}_\text{lda}, ..., \underbrace{A_{n,n},*,...*}_\text{lda} }_\text{lda x n}]\]For row major layout,
\[\scriptstyle a = [\underbrace{ \underbrace{\underbrace{*,...,*}_\text{k},A_{11},*,...,*}_\text{lda}, \underbrace{\underbrace{*,...,*}_\text{k-1},A_{max(1,2-k),2},...,A_{2,2},*,...*}_\text{lda}, ..., \underbrace{\underbrace{*,...,*}_\text{max(0,k-n+1)},A_{max(1,n-k),n},...,A_{n,n},*,...*}_\text{lda} }_\text{lda x n}]\]
The following program segment transfers a band matrix from
conventional full matrix storage (variable matrix
, with
leading dimension ldm
) to band storage (variable a
,
with leading dimension lda
):
Using matrices stored with column major layout,
for (j = 0; j < n; j++) {
m = –j;
for (i = j; i < min(n, j + k + 1); i++) {
a[(m + i) + j * lda] = matrix[i + j * ldm];
}
}
Using matrices stored with row major layout,
for (i = 0; i < n; i++) {
m = k – i;
for (j = max(0, i – k); j <= i; j++) {
a[(m + j) + i * lda] = matrix[j + i * ldm];
}
}
Packed Triangular Matrix
A triangular matrix A
of n
rows and n
columns is
represented in packed format as a one dimensional array a
of
size at least (n
*(n
+ 1))/2. All elements in the upper
or lower part of the matrix A
are stored contiguously in the
array a
.
Before entry in any BLAS function using a triangular packed matrix,
If
upper_lower = uplo::upper
, if column (respectively row) major layout is used, the first (n
*(n
+ 1))/2 elements in the arraya
must contain the upper triangular part of the matrixA
packed sequentially, column by column (respectively row by row) so thata
[0] containsA
11,a
[1] anda
[2] containA
12 andA
22 (respectivelyA
13) respectively, and so on. Hence, the matrix\[\begin{split}A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \ldots & A_{1n}\\ * & A_{22} & A_{23} & \ldots & A_{2n}\\ * & * & A_{33} & \ldots & A_{3n}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ * & * & * & \ldots & A_{nn} \end{bmatrix}\end{split}\]is stored as the array
For column major layout,
\[\scriptstyle a = [A_{11},A_{12},A_{22},A_{13},A_{23},A_{33},...,A_{(n-1),n},A_{nn}]\]For row major layout,
\[\scriptstyle a = [A_{11},A_{12},A_{13},...,A_{1n}, A_{22},A_{23},...,A_{2n},..., A_{(n-1),(n-1)},A_{(n-1),n},A_{nn}]\]
If
upper_lower = uplo::lower
, if column (respectively row) major layout is used, the first (n
*(n
+ 1))/2 elements in the arraya
must contain the lower triangular part of the matrixA
packed sequentially, column by column (row by row) so thata
[0] containsA
11,a
[1] anda
[2] containA
21 andA
31 (respectivelyA
22) respectively, and so on. The matrix\[\begin{split}A = \begin{bmatrix} A_{11} & * & * & \ldots & * \\ A_{21} & A_{22} & * & \ldots & * \\ A_{31} & A_{32} & A_{33} & \ldots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ A_{n1} & A_{n2} & A_{n3} & \ldots & A_{nn} \end{bmatrix}\end{split}\]is stored as the array
For column major layout,
\[\scriptstyle a = [A_{11},A_{21},A_{31},...,A_{n1}, A_{22},A_{32},...,A_{n2},..., A_{(n-1),(n-1)},A_{n,(n-1)},A_{nn}]\]For row major layout,
\[\scriptstyle a = [A_{11},A_{21},A_{22},A_{31},A_{32},A_{33},...,A_{n,(n-1)},A_{nn}]\]
Vector
A vector X
of n
elements with increment incx
is
represented as a one dimensional array x
of size at least (1 +
(n
- 1) * abs(incx
)).
Visually, the vector
is stored in memory as an array
Parent topic: Dense Linear Algebra