gerc#
Computes a rank-1 update (conjugated) of a general complex matrix.
Description
The gerc
routines compute a scalar-vector-vector product and add the
result to a general matrix. The operation is defined as:
where:
alpha
is a scalar,
A
is an m
-by-n
matrix,
x
is a vector of length m
,
y
is vector of length n
.
gerc
supports the following precisions.
T
std::complex<float>
std::complex<double>
gerc (Buffer Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
void gerc(sycl::queue &queue,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)
}
namespace oneapi::mkl::blas::row_major {
void gerc(sycl::queue &queue,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)
}
Input Parameters
- queue
The queue where the routine should be executed.
- m
Number of rows of
A
. Must be at least zero.- n
Number of columns of
A
. Must be at least zero.- alpha
Scaling factor for the matrix-vector product.
- x
Buffer holding input vector
x
. The buffer must be of size at least (1 + (m
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.- y
Buffer holding input/output vector
y
. The buffer must be of size at least (1 + (n
- 1)*abs(incy
)). See Matrix Storage for more details.- incy
Stride of vector
y
.- a
Buffer holding input matrix
A
. Must have size at leastlda
*n
if column major layout is used or at leastlda
*m
if row major layout is used. See Matrix Storage for more details.- lda
Leading dimension of matrix
A
. Must be positive and at leastm
if column major layout is used or at leastn
if row major layout is used.
Output Parameters
- a
Buffer holding the updated matrix
A
.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
gerc (USM Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event gerc(sycl::queue &queue,
std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event gerc(sycl::queue &queue,
std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- m
Number of rows of
A
. Must be at least zero.- n
Number of columns of
A
. Must be at least zero.- alpha
Scaling factor for the matrix-vector product.
- x
Pointer to the input vector
x
. The array holding input vectorx
must be of size at least (1 + (m
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.- y
Pointer to the input/output vector
y
. The array holding the input/output vectory
must be of size at least (1 + (n
- 1)*abs(incy
)). See Matrix Storage for more details.- incy
Stride of vector
y
.- a
Pointer to input matrix
A
. The array holding input matrixA
must have size at leastlda
*n
if column major layout is used or at leastlda
*m
if row major layout is used. See Matrix Storage for more details.- lda
Leading dimension of matrix
A
. Must be positive and at leastm
if column major layout is used or at leastn
if row major layout is used.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- a
Pointer to the updated matrix
A
.
Return Values
Output event to wait on to ensure computation is complete.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
oneapi::mkl::unsupported_device
Parent topic: BLAS Level 2 Routines